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Abstract

We present a system for detection of lexical stress in English words spoken by English learners. This system was designed to be part of
the EduSpeak� computer-assisted language learning (CALL) software. The system uses both prosodic and spectral features to detect the
level of stress (unstressed, primary or secondary) for each syllable in a word. Features are computed on the vowels and include
normalized energy, pitch, spectral tilt, and duration measurements, as well as log-posterior probabilities obtained from the frame-level
mel-frequency cepstral coefficients (MFCCs). Gaussian mixture models (GMMs) are used to represent the distribution of these features
for each stress class. The system is trained on utterances by L1-English children and tested on English speech from L1-English children
and L1-Japanese children with variable levels of English proficiency. Since it is trained on data from L1-English speakers, the system can
be used on English utterances spoken by speakers of any L1 without retraining. Furthermore, automatically determined stress patterns
are used as the intended target; therefore, hand-labeling of training data is not required. This allows us to use a large amount of data for
training the system. Our algorithm results in an error rate of approximately 11% on English utterances from L1-English speakers and
20% on English utterances from L1-Japanese speakers. We show that all features, both spectral and prosodic, are necessary for achieve-
ment of optimal performance on the data from L1-English speakers; MFCC log-posterior probability features are the single best set of
features, followed by duration, energy, pitch and finally, spectral tilt features. For English utterances from L1-Japanese speakers, energy,
MFCC log-posterior probabilities and duration are the most important features.
� 2015 Elsevier B.V. All rights reserved.
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1 A note on nomenclature: Throughout the paper we will use the word
“native” to refer to the L1 of a speaker and, also, to whether the language
being spoken is the speaker’s L1. Hence, the phrase “native English
speakers” refers to L1-English speakers, the phrase “native Japanese
speakers” refers to L1-Japanese speakers, and the phrase “non-native
English speakers” refers to speakers with L1 other than English.
Furthermore, we will call “native data” any data where the language
spoken is the same as the L1 of the speakers, and “non-native data” any
data where the language spoken is not the same as the L1 of the speakers.
When no language is specified, native and non-native refer to native
English and non-native English (data or speakers), respectively.
1. Introduction

Lexical stress is an important component of English
pronunciation, as English makes a greater use of stress
than many other languages. To understand spoken words,
native1 speakers of English rely not only on the pronun-
ciation of sounds, but also on the stress patterns. Using
the incorrect stress pattern can greatly reduce a speaker’s
intelligibility. This poses a big problem for English learn-
ers, especially for native speakers of languages that have
more consistent lexical stress patterns or have different
ways of incorporating timing and rhythm. This is especially
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true for native Japanese speakers learning English: in
Japanese, the rhythm is more regular and syllables are
more similar in prominence than in English. Computer-as-
sisted language learning (CALL) software can then greatly
benefit from the ability to provide feedback about stress
pronunciation to the user.

A large variety of automatic systems that use different
features and modeling techniques to classify stress have
been proposed in the literature. Unfortunately, as we
explain below, many of them are unsuitable for use in
CALL systems because the assumptions they make do
not apply to language learners. Many others were not test-
ed on non-native speakers of the language for which the
system was trained and, hence, their suitability for CALL
systems is unknown.

Most proposed stress classification systems are based on
prosodic features like pitch, energy and duration, which are
normalized in different ways to make them independent of
the speaker’s baseline pitch, the channel volume, the speech
rate and so on. Measurements are generally obtained only
over the nucleus for each syllable. Examples of this kind of
segmental features can be found in several papers
(Tepperman and Narayanan, 2005; Chen and Wang,
2010; Deshmukh and Verma, 2009; Chen and Jang, 2012;
Verma et al., 2006; Zhu et al., 2003). Spectral features,
on the other hand, have been rarely used for stress detec-
tion. Li et al. (2007) and Lai et al. (2006) propose similar
systems using mel-frequency cepstral coefficients (MFCCs)
modeled by hidden Markov models (HMMs). Both papers
address the problem of detecting English sentence-level
stress rather than word-level stress and test only on data
from native English speakers.

Modeling techniques for stress detection vary widely and
include decision trees (Deshmukh and Verma, 2009), Gaus-
sian mixture models (GMMs) (Tepperman and Narayanan,
2005; Chen and Jang, 2012), support vector machines
(Deshmukh and Verma, 2009; Chen and Wang, 2010;
Zhao et al., 2011), deep belief networks (Li et al., 2013),
and HMMs (Lai et al., 2006; Li et al., 2007;
Ananthakrishnan and Narayanan, 2005). In many cases,
the task of stress detection is defined as the problem of
locating the single primary stressed syllable in a word.
Under this assumption, modeling techniques can make a
single decision per word – rather than one decision per syl-
lable – using features extracted from all syllables in the word
(Chen and Wang, 2010; Chen and Jang, 2012) or obtain syl-
lable-level scores and then choose the syllable with the lar-
gest score as the primary stress location (Tepperman and
Narayanan, 2005; Zhao et al., 2011). Furthermore, some
techniques require that words have correct phonetic pro-
nunciation in order to make a stress level decision (Chen
and Jang, 2012). Finally, the task of labeling each syllable
in an utterance from a non-native English speaker as
unstressed, primary stressed or secondary stressed is an
extremely complex one. In our database, the observed dis-
agreement for native Japanese children speaking English
across three annotators is, on average, 21% (corresponding
to an agreement of 79%). Given this difficulty, some
researchers simplify the labeling task by asking annotators
to assign “correct” versus “incorrect” labels to each word
rather than actual stress pronounced on each syllable
(Deshmukh and Verma, 2009; Verma et al., 2006) or by
labeling only the location of the primary stress
(Tepperman and Narayanan, 2005; Chen and Jang, 2012).
Many of these modeling and labeling assumptions are inap-
propriate for language learners who will most likely mispro-
nounce both phones and stress within a word and might
pronounce more than one syllable with primary stress.

We describe a novel system for lexical stress feedback
intended for use by native Japanese children learning Eng-
lish. We expect the learners to pronounce sounds poorly
and to pronounce most syllables with more prominence
than native English speakers would. In fact, according to
our phonetician’s annotations, in our Japanese children’s
database around one third of the incorrectly stressed words
have primary stress in at least two syllables. Therefore, our
system must allow more than one syllable with primary
stress in a word. Furthermore, phonetic and stress pronun-
ciations are tied together; pointing out a stress mistake
might go a long way toward fixing the phonetic mistakes,
and conversely. For this reason, we do not wish to assume
correct phonetic pronunciation before giving feedback
about the stress pronunciation.

The proposed system is designed to approximate the
decisions a phonetician would make about the stress level
pronounced for every syllable in a word. For the Japanese
children data, the system is evaluated against decisions
made by annotators. The goal is to approximate those deci-
sions as well as possible. Hence, the most natural approach
would be to train such a system using data from the same
population of Japanese children speaking English. This
way, the model would describe the stress level as pro-
nounced by this population of speakers. Nevertheless, since
the stress labeling task is costly and agreement is low, little
amount of data is available with reliable labels for training
the system. For this reason, we propose to use utterances
from native English speakers to train our system. For this
data, stress labels are obtained automatically, assuming
that native English speakers pronounce stress in a pre-
dictable manner for selected words according to a dic-
tionary. While this approach results in models that
represent stress as pronounced by native English speakers,
we show that it results in good performance on the Japane-
se children’s data. Matched Japanese children’s data can
then be used to fine-tune the system through adaptation
of the models.

The decisions made by the system are meant to be used
as a tool within CALL software. The software could be
designed to only correct the speaker when the stress mis-
take would result in intelligibility problems (for example,
when the meaning of the word depends on the stress pat-
tern). On the other hand, the software could aim at achiev-
ing native-like pronunciation, correcting the speakers every
time they make a mistake, regardless of whether this would
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cause intelligibility problems or not. The specific exercises
assigned by the software and the way the stress decisions
output by the system are used to give feedback to the user
are not the subject of this work.

Our approach to stress detection models features based
on duration, pitch, energy, spectral tilt and MFCC-based
measurements over the syllable nuclei. The first three types
of features are commonly used in the literature on stress
detection, with spectral tilt and MFCC-based measure-
ments being less common. A novel aspect of our system
is the successful integration of spectral information
(MFCCs and spectral tilt) and prosodic (duration, pitch
and energy) information. It is reasonable to assume that,
given the phonetic pronunciation mistakes made by lan-
guage learners, spectral features would fail to carry robust
stress information, especially when models are learned
using data from native English speakers. Nevertheless, as
we will see, we find significant gains from the inclusion of
this information in the system for both native and non-na-
tive English data. We propose to use GMMs for stress
modeling and show that, when adaptation techniques are
used to obtain robust models, this method outperforms
decision tree and neural network methods.

Finally, another novel aspect of our proposed system is
the way it makes the final decisions. Stress detection sys-
tems for language learning commit two types of errors:
false corrections, where the learner is corrected when he
actually pronounced stress correctly; and missed correc-
tions, where a mistake made by the learner goes uncorrect-
ed. We believe the first kind of error is much more
bothersome to the learner than the second one. A student
that is constantly corrected when he feels he has done it
right will be likely to stop using the system. Hence, we want
to be able to set the system to operate with a certain max-
imum level of false corrections, even if this implies an
increase in the rate of missed corrections. To our knowl-
edge, all papers in the area of stress detection report results
on hard decisions made by the system, with most papers
reporting a single accuracy number (Verma et al., 2006;
Ananthakrishnan and Narayanan, 2005; Chen and Wang,
2010; Lai et al., 2006; Tepperman and Narayanan, 2005).
Our system generates posterior probabilities that are used
to make the final decisions with thresholds that are chosen
according to the desired maximum level of false correc-
tions. We report the percent of missed corrections at a false
correction level of 5%, along with the more traditional
error rates.

As a consequence of the work presented in this paper,
stress classification capabilities were integrated into SRI’s
CALL toolkit, EduSpeak�. This makes EduSpeak one of
very few commercially available CALL toolkits with stress
classification capabilities.

The rest of the paper is organized as follows. Section 2
describes the system architecture, including the features,
modeling technique and decision making. Section 3
describes the datasets used for the experiments; annotation
statistics; performance metrics; and, finally, detailed results
on the proposed system, including results from feature
selection experiments. Finally, Section 4 gives our conclu-
sions and future work.

2. System description

Our proposed stress detection system is designed to per-
form well on non-native English utterances, satisfying the
following constraints: (1) the system should predict stress
for each syllable using three levels: unstressed, primary
and secondary stress; (2) the system should not assume a
single syllable per word has primary stress; (3) the system
should be word-independent (no previous knowledge of
the words of interest can be used); (4) the system should
not rely on good phonetic pronunciations; and (5) there
should be a way to maintain the percent of false corrections
below a certain threshold. The features and system archi-
tecture defined in the following sections satisfy these
constraints.

A flowchart of the system is given in Fig. 1. The follow-
ing sections describe the different steps in this figure in
detail.

2.1. Features

Features are extracted over the nucleus of each syllable.
Five types of segmental features are defined based on dura-
tion, pitch, energy, spectral tilt and MFCCs. All features
undergo some type of normalization to make them as inde-
pendent as possible of characteristics that might confound
the classification of stress, like the channel, the speech rate,
the baseline pitch of the speaker, and so on. We perform all
normalizations at the word level. This way, syllable-level
features are all relative to the mean values found in the
word.

As already mentioned, we wish to design a system that
works well even when the word is incorrectly pronounced.
Only extreme mispronunciations, in which a full syllable
was deleted, were discarded from our database during
labeling. Given this type of data, we have found in pre-
liminary experiments that vowel-dependent modeling or
normalization does not lead to significant gains, even when
training on matched data. For this reason, vowel-depen-
dent modeling or normalization is not performed by our
system. This result contradicts previous papers on the topic
(Deshmukh and Verma, 2009; Oxman and Golshtein,
2012). We believe the likely reason for this discrepancy is
that our children’s database (see Section 3.1) has a very
high rate of pronunciation mistakes while the Indian and
Hebrew databases in those papers are likely to have better
pronunciation quality.

2.1.1. Phone-level alignments

In order to locate the vowels within the waveforms, we
run EduSpeak (Franco et al., 2000; Franco et al., 2010),
SRI International’s automatic speech recognizer (ASR)
and pronunciation scoring toolkit for language learning



Fig. 1. Proposed stress detection system. The inputs to the system are a speech waveform corresponding to a single word, and its canonical pronunciation.
Frame-level MFCCs, and frame-level pitch, energy and spectral tilt signals are estimated from the waveform. Forced alignments are created using the
MFCCs and the phonetic transcription for the word. The resulting alignments are used to compute the normalized duration features and to constrain the
MFCC, pitch, energy and spectral tilt frame-level features to the regions over the vowels. For each vowel, a polynomial approximation of order 1 is
computed from the pitch, energy and spectral tilt normalized values, resulting in two coefficients each. Also for each vowel, the likelihoods of the MFCC
GMMs are computed and converted into posterior probabilities using equal priors. The log posterior probabilities for stress class 0 and 1, along with the
normalized duration and the polynomial coefficients for pitch, energy and spectral tilt, are concatenated into a segment-level feature vector for each vowel.
Finally, for each of these vectors, the likelihoods of the segment-level GMMs are computed and converted into posterior probabilities using priors learned
from data. The final decision on stress level for each syllable is made based on these posterior probabilities using the algorithm described in Fig. 2.
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applications. EduSpeak uses a standard GMM hidden
Markov model (GMM-HMM) speech recognizer. Recog-
nition is run in forced alignment mode, where the output
is constrained to the words in the transcription, using a sin-
gle forward pass. A 39-dimensional acoustic speech feature
is used, which consists of energy and 12 MFCCs, plus their
deltas and double deltas. The cepstrum is normalized using
cepstral mean subtraction (CMS) with normalization coef-
ficients computed over the entire sentence.

For recognition of the native English data, we used ASR
models trained on short utterances from children aged 4–
14, with a total of 52,300 utterances from 342 speakers,
approximately half male and half female. For recognition
of the non-native English data from L1-Japanese children,
we used ASR models trained on 47,548 short utterances
from 301 native English-speaking children aged 10–14
and adapted to 7119 short utterance from 148 Japanese
children on the same age range. In all cases, the data were
gender-balanced. The datasets used to train and adapt the
ASR models overlap with the datasets described in Sec-
tion 3.1, which were used for training and evaluating the
stress detection systems. This fact might result in slightly
optimistic ASR performance, though we believe this bias
to be very small given the relatively large amount of speak-
ers used for training the ASR models.

As discussed later on, in future work, we wish to evalu-
ate performance of the proposed stress detection systems
when using human-annotated alignments. The difference
between this performance and the one obtained with the
inaccurate alignments extracted using the ASR models
described above would tell us how much of the error in
our system’s output is due to alignment mistakes.

2.1.2. Log of normalized duration
The duration of the vowel in the syllable is first normal-

ized by dividing it by the mean vowel duration for all
syllables of the same type. The syllable type is determined
by concatenating two subtypes:

� next consonant type: ufc (unvoiced following consonant):
the consonant after the vowel is unvoiced; or vfc (voiced
following consonant): the consonant after the vowel is
voiced; or nfc (no following consonant): no consonant
after the vowel (either another vowel follows, or the
vowel is the last in the word).
� pause type: nonpp (non pre-pausal word): the word is not

followed by a pause longer than 0.1 s; or ppls (pre-pau-
sal word, last syllable): the word is followed by a pause
longer than 0.1 s and this vowel is the last in the word;
or ppws (pre-pausal word, within-word syllable): the
word is followed by a pause longer than 0.1 s, and this
vowel is not the last in the word.

The duration normalized by syllable type is further nor-
malized by speech rate by dividing it by the mean of the syl-
lable type-normalized duration for all the vowels within the
same word. Finally, the logarithm of this normalized value
is computed.

2.1.3. Polynomial coefficients of normalized pitch, energy

and spectral tilt

Pitch, energy and spectral tilt measurements are extract-
ed at the frame level (every 10 ms) over the full waveform.
Pitch (F0) is approximated by the fundamental frequency
estimated by our own implementation of the algorithm
described by Talkin (1995). Energy (Eg) is approximated
by the root mean square value. The spectral tilt (ST) values
are computed as the slope of the fast Fourier transform
(FFT), extracted over a window of 20 ms that is shifted
every 10 ms. The use of spectral tilt was motivated by the
findings of Sluijter and Van Heuven (1996). In the follow-
ing, F0 and Eg refer to the logarithm of the signals extracted
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as described above, while ST is not transformed. The exact
same processing is done for the F0, Eg and ST signals, as
follows:

� Turn the F0, Eg and ST values that correspond to
unvoiced frames, as indicated by a missing F0 value,
into undefined values. Undefined values are ignored dur-
ing the computation of the polynomial approximation.
� For each word, find the mean of these signals over the

frames corresponding to the vowels. Only defined values
are taken into account to compute this mean.
� For each word, subtract the computed mean from the

signals only over defined values.
� For each vowel in each word, compute the Legendre

polynomial approximation of order 1 for the three sig-
nals, which results in 2 coefficients for each signal.

The use of Legendre polynomials was proposed for lan-
guage identification using prosodic features (Lin and
Wang., 2005). This paper can be consulted for details on
the computation.

2.1.4. MFCC log posteriors
The same MFCCs used to obtain phone alignments are

modeled at the frame level (every 10 ms) over the vowels
using one GMM for each stress class. These GMMs were
obtained by adaptation to a single GMM trained using
samples from all stress classes in the same way as for seg-
mental features (see Section 2.2.1). Given a test utterance,
the likelihood of each of these three GMMs is computed
for each frame over each vowel. The geometric mean of
the likelihoods over all frames in a vowel is computed for
each stress class, resulting in three segment-level likeli-
hoods, one for each stress class. These likelihoods are
transformed into posterior probabilities using Bayes rule,
assuming equal prior probabilities for all stress classes.
Finally, the log of the posterior probabilities for stress
classes 0 and 1 are used as segment-level features. The pos-
terior probability for class 2 is redundant, given the other
two; hence, it is discarded.

2.2. Modeling approaches

Three modeling approaches were compared in our
experiments: GMMs, decision trees and neural networks.
This section describes the three approaches.

2.2.1. Gaussian mixture modeling

The five types of segmental features – two polynomial
coefficients for pitch, two for energy, and two for spectral
tilt; plus log normalized duration; plus the log MFCC pos-
terior probabilities for stress classes 0 and 1 – were concate-
nated into a single feature vector per vowel of size 9. These
feature vectors were then modeled with one GMM for each
stress class. This modeling was done in two steps. First, a
single model for all stress classes was trained. Then, the
model was adapted to the data from each stress class. This
procedure allowed us to train robust models for even the
secondary stress class, for which a very little amount of
data is available in comparison to the other two stress
classes. The adaptation was done using a maximum a pos-
teriori (MAP) approach commonly used for speaker recog-
nition (Reynolds et al., 2000). This method allows for a
regularization parameter, the relevance factor, that con-
trols how much the global means, weights, and covariances
should be adapted to the data from each class.

Given a new utterance, we compute the likelihood of the
GMM for each of the three stress classes for each vowel.
The likelihoods are converted into posterior probabilities
using Bayes rule and a set of prior probabilities. These pri-
or probabilities should be computed from data as similar to
the test data as possible.

2.2.2. Decision trees

Decision trees have been shown to outperform support
vector machines, Naive Bayes and logistic regression by
Deshmukh and Verma (2009) for the task of stress detec-
tion. Furthermore, decision trees are a standard tool for
modeling prosodic features. For this reason, we compared
the performance of our proposed GMM approach for seg-
mental feature modeling with that of decision trees. We
used CART-style decision trees implemented in the IND
toolkit (Buntine, 1992). Deshmukh used C4.5-style decision
trees (Duda et al., 2001), but our experiments showed that
CART-style significantly outperforms C4.5-style.

To give decision trees a fair chance of outperforming
GMMs, we tried two common approaches for improving
decision tree performance. We upsampled the minority
classes to obtain equal counts for all three classes to allow
the trees to describe all classes with equal detail. This
approach did not result in a performance improvement in
our data; hence, it was not used in our experiments. We
also implemented bagging, a technique by which the train-
ing data are sampled with replacement N times, thus train-
ing a separate decision tree for each sample. The posterior
probabilities generated by these trees are then averaged to
obtain the final posterior probabilities.

The posterior probabilities generated by the trees were
transformed to reflect the desired prior probabilities. As
in the case of GMMs, these prior probabilities can be cho-
sen to coincide with those in the native data or the non-na-
tive data, or chosen arbitrarily to match the prior
probabilities expected during testing of the system. The
posterior probabilities for the three classes were trans-
formed by multiplying each of them by the ratio of the
desired prior probability for the corresponding class divid-
ed by the prior probability seen during training for this
class. The resulting posterior probabilities for the three
classes were finally normalized to sum to one.

CART-style decision trees use cost-complexity pruning
with cross-validation. We modified IND code to accept a
file indicating what the subsets for cross-validation should
be (rather than determining them randomly, as in the ori-
ginal IND code) and defined the subsets by speaker such



Fig. 2. Proposed decision making algorithm. For each syllable, the
posterior probability pc for the canonical stress level c is compared with a
threshold t. If the posterior probability pc is larger than t, the syllable is
labeled as having the canonical stress c. Otherwise, the stress class with
largest posterior probability for the syllable is chosen.
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that all samples from a speaker occur in the same subset.
This is essential for good performance when bagging or
upsampling, since repeated samples occurring in different
subsets break the pruning approach and result in large trees
that overfit the training data. We use 10 subsets for cross-
validation.

Note that, even when decision trees were used for seg-
mental-feature modeling, segment-level MFCC posterior
probabilities were still generated using GMMs. This way,
in our comparisons, the features modeled by the decision
trees and the segmental GMMs are identical.

2.2.3. Neural networks

Neural networks and, in particular, deep neural net-
works, have had great success in a large variety of prob-
lems. Recently, deep neural networks have been shown to
outperform GMMs in a few different speech processing
tasks. In this work, we explored the use of different multi-
layer perceptron NN architectures, including deep architec-
tures with several hidden layers.

The NNs had one input node per input feature and one
output node for each stress class, which were set to 1 for
the stress class corresponding to the sample, and 0 for
the other classes. The NNs were trained with a multiclass
cross-entropy objective, hyperbolic tangent activation
functions in the hidden layers and softmax activations in
the output layer. The backpropagation algorithm was used
for training the network parameters. The input features
were normalized to have zero mean and standard deviation
of one before NN modeling, using the statistics obtained
on the training data.

The posterior probabilities generated by the NNs were
transformed to reflect the desired prior probabilities with
a procedure identical to the one used for the decision tree
approach. Finally, as also done for decision trees, when
using NNs for segmental feature modeling, segment-level
MFCC posterior probabilities were still generated using
GMMs for consistent comparison of performance with
the other two modeling approaches.

2.3. Making decisions

A straightforward way to make decisions based on the
posterior probabilities generated by the system is to simply
pick the class with the highest posterior probability. This
simple procedure may result, depending on the data, in
an unacceptably high level of false corrections for a CALL
system (see Section 3.2 for a definition of false correction).
In general, we wish to control the maximum level of false
corrections that is acceptable for the system. For this rea-
son, we used the algorithm depicted in Fig. 2 to reach the
final decisions.

The algorithm takes the posterior probabilities generat-
ed by the GMM, decision tree, or neural network and the
canonical (correct, as indicated by a stress dictionary)
stress level for each syllable, c. For each syllable, the poste-
rior probability pc for the canonical stress level is compared
with a threshold t. If the posterior probability pc is larger
than t, the syllable is labeled as having the canonical stress
c. Otherwise, the stress class with the largest posterior
probability for the syllable is chosen. That is, the system
will choose to output the canonical stress for a syllable if
(1) its posterior probability is larger than a predefined
threshold, or (2) its posterior probability is the largest of
the three posterior probabilities for the syllable. By varying
the threshold, we can then control the level of false correc-
tions. We refer to this as the “benefit of the doubt” algo-
rithm, since the system will only claim an incorrect (non-
canonical) stress was produced if the posterior probability
for the canonical class is lower than a threshold; otherwise,
it gives the canonical label the benefit of the doubt. The
threshold t is determined empirically, based on the accept-
able level of false corrections for the application.
3. Experiments

In this section we describe the methods used for the
experiments, present statistics on the data and show results
for a variety of systems and performance measures.
3.1. Data

Experiments were run on a dataset of L1-Japanese chil-
dren, aged 10–14, reading English phrases. We call this set
the “non-native” set. The children were in the process of
learning English and had different levels of proficiency. A
set of 959 multisyllabic words was selected from this data-
set and labeled by three annotators for stress level. These
words came from 668 randomly chosen phrases from 168
distinct speakers from both genders. The chosen speakers
were those with a larger number of stress pronunciation
errors as judged by an initial quick annotation performed
on the data from the full set of 198 speakers, in which stress
pronunciation quality was judged at the word level as
either correct or incorrect. Multisyllabic words from the
remaining 30 “better” speakers were used to compute sylla-
ble-type statistics for which we do not require stress labels.
These statistics were used to normalize vowel duration for
these data.

Annotators were instructed to label each syllable in each
selected word from the 168 chosen speakers with a label of



L. Ferrer et al. / Speech Communication 69 (2015) 31–45 37
“unstressed” (0), “primary stressed” (1) or “secondary
stressed” (2). Annotators were allowed to label more than
one syllable with primary or secondary stress. Words for
which the number of pronounced syllables did not corre-
spond to the number of syllables in the canonical pronun-
ciation (according to at least one annotator) were
discarded. This resulted in 848 words that were labeled
by the three annotators and correspond to 1776 syllables;
most words were bisyllabic words. These data were only
used for testing. They were not used for training or calibra-
tion of our systems, except for the experiments in which we
adapted models or learned prior probabilities from the
non-native data. In all these cases, a cross-validation tech-
nique was used to avoid reporting optimistic results.

Unless otherwise stated, results reported in this paper
were computed on the set of syllables for which all three
annotators agreed on the same stress label, which contains
1240 syllables. The selection was done at the syllable level.
Annotators might disagree on the label for some syllables
in a word, but not for others. In order to preserve the lar-
gest amount of data as possible, we kept syllables for which
there is agreement, even if they came from a word contain-
ing some other syllable or syllables for which annotators
disagree. We call this set the agreement set.

A separate dataset of native English-speaking children
aged 10–14 was used for training the models and system
calibration. We call this set the “native” set. The data
consist of read speech from 329 children with a total of
41,022 phrases. All children were native speakers of
American English and from the west coast of the United
States. All were considered to speak using the “standard”

or “accepted” pronunciation of that region. There were
approximately equal numbers of boys and girls. Multisyl-
labic words for which a single stress pronunciation is list-
ed in our lexical stress dictionary were selected. The
canonical stress found in the dictionary was then
assigned as label for each of these words. We assume that
native English speakers pronounced stress as listed in the
dictionary in the vast majority of cases for these words.
This assumption allowed us to use a large amount of
data for training the models without the need for manual
annotations. This database contains 74,206 words with a
total of 157,888 syllables.

The syllable type statistics used to normalize vowel
duration for the native English data were computed on
the native data itself. As mentioned above, the statistics
used for normalizing duration for the non-native data were
computed on a held-out set of non-native L1-Japanese
speakers. On preliminary experiments performed on two
separate datasets of adult data, we found that the use of
statistics from matched datasets gives better performance
than the application of the native data statistics to the
non-native data. This improvement was also confirmed
on the children’s dataset in which an increase in error rate
of around 1% absolute was observed when the native
duration statistics were used on the non-native data, as
compared to using statistics computed on the held-out set
of non-native speakers. This difference might in part be
due to consistent errors performed by the ASR system used
to obtain phone-level alignments, which are likely to be dif-
ferent for native and non-native data. The computation of
vowel duration statistics by syllable type was the only part
of the system that required held-out non-native data. Note
that these held-out data used for statistic computation do
not require stress labeling.

3.2. Performance metrics

We will use three different performance metrics:

� Error rate: The number of samples in which the detected
label disagrees with the annotated label divided by the
total number of samples times 100. This metric can also
be used to compute disagreement between annotators as
in Section 3.3.1. It does not involve the use of the cano-
nical stress labels. The accuracy, computed as 100 minus
the error rate, is the most standard metric in this field.
We chose to report error rates instead, since we believe
they give a more intuitive feel of the differences in per-
formance across systems: for example, a change in accu-
racy from 90% to 92% is less descriptive of the system’s
improvement than a reduction in error from 10% to 8%,
which corresponds to a 20% relative reduction in error
rate.
� False corrections: The percent of times that the system

detects a correctly pronounced syllable as incorrectly
pronounced, mistakenly correcting the user. This metric
uses the canonical labels as determined by a stress dic-
tionary to decide whether a syllable was correctly or
incorrectly pronounced. Since stress labels for natives
are always assumed to be the canonical ones, this metric
only makes sense for non-native data.
� Missed corrections: The percent of times that the system

detects an incorrectly pronounced syllable as correctly
pronounced, missing a chance to correct the speaker.
This metric, like the false corrections, only makes sense
for non-native data.

To compute these measures, we used the agreement set
for which all three annotators agreed on the label (0, 1 or
2), unless otherwise indicated. When results for stressed
versus unstressed are presented – the task we call 02j1 –
all syllables annotated as 2 in the agreement set are mapped
to 0.

These measures were computed on hard decisions. In
order to go from posterior probabilities to decisions, we
used two different procedures:

� Maximum Posterior (maxp): This is the standard proce-
dure used in the literature when the modeling technique
outputs posterior probabilities or likelihoods. The stress
class for which the posterior probability is the largest is
chosen as the system’s output for the syllable. When
results on the 02j1 task are presented, the posterior



Table 2
Percent of syllables labeled with each stress class for natives and non-
natives.

Dataset %0 %1 %2

Natives 48.3 47.2 4.5
Non-natives 21.9 67.1 11.0
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probability for the unstressed class is computed as the
sum of the posterior probabilities for unstressed (0)
and secondary stressed (2).
� False Correction at 5% (fc5): Using the algorithm

described in Section 2.3, we set the threshold on the pos-
terior probabilities to achieve a 5% false correction rate.

For the most important comparisons of two systems, we
report the p-value obtained with the McNemar matched-
pairs significance test.

3.3. Statistics on data

This section presents statistics on the data used for the
experiments.

3.3.1. Annotator agreement

The disagreement between annotators, computed in
terms of error rate (see Section 3.2 for the definition), is
given in Table 1. In the second column, the target task of
labeling each syllable with three levels of stress is consid-
ered. We find an average disagreement rate of 21% for this
task. In the third column, all syllables labeled as 2 have
been relabeled as 0. In the stress detection literature, stan-
dard practice considers secondary stressed and unstressed
syllables as one class. We see that the disagreement is much
smaller for this task. The fourth column shows only the dis-
agreement on samples for which at least one of the annota-
tors thought the pronounced stress was correct for the task
of telling unstressed versus stressed. Pronounced stress is
considered correct if the assigned label coincides with the
canonical one; otherwise, it is incorrect. For the purpose
of this computation, canonical 2s have also been mapped
to 0s. The last column shows only the disagreement on
samples for which at least one of the annotators thought
the pronounced stress was incorrect.

We can see that the disagreement is much smaller on
syllables that were labeled as correctly pronounced by
at least one of the annotators. This indicates that agree-
ment is easier for syllables that are correctly, rather than
incorrectly, pronounced. Correctly pronounced syllables
have a more familiar sound; incorrectly pronounced syl-
lable can be uttered in ways that are not standard for
native speakers and, hence, harder to label as either
correct or incorrect.
Table 1
Percent of disagreement between annotators when all three stress classes
are considered separately (0j1j2) and when class 2 is merged with class 0
(02j1). The last two columns correspond to the disagreement on the 02j1
task when only samples for which at least one annotator labeled the
syllable as correct or incorrect are selected.

Annotators 0j1j2 02j1 02j1 cor 02j1 inc

A1 versus A2 21.3 16.5 19.3 52.8
A1 versus A3 18.2 10.0 11.3 45.7
A2 versus A3 23.6 16.7 19.4 54.5
Average 21.0 14.4 16.7 51.0
3.3.2. Statistics on stress labels

Table 2 shows the proportion of 0s, 1s, and 2s in the
native data and the non-native data on the agreement set.
The distribution of labels on the non-native data is sig-
nificantly different from that in the native data, with a large
increase in the proportion of stressed syllables. Of the 191
words for which the three annotators agreed were incor-
rectly pronounced, 35% of them were labeled as having
at least two primary stressed syllables.

Finally, Table 3 shows the confusion matrix of canoni-
cal stress versus labeled stress for the non-native data. This
table shows that most primary stressed syllables are pro-
nounced correctly. On the other hand, around half of the
unstressed syllables are pronounced with primary or sec-
ondary stress. Secondary stressed syllables are also stressed
with more stress than they should in 32% of the cases.
Clearly, Japanese children tend to overstress syllables when
speaking English, even when this results in more than one
syllable in a word having primary stress.

Overall, the agreement set contains 1240 syllables, 78%
of the syllables labeled as correctly pronounced (that is,
labeled with the canonical stress label) and 22% labeled
as incorrectly pronounced. While the percent of syllables
labeled as correct for each individual annotator is between
63% and 67%, for the agreement set it is 78%, coinciding
with the observation made for Table 1 that the agreement
is higher for syllables that were labeled as correct by at least
one annotator.

Note that these statistics tell us that the agreement set is
somewhat biased with respect to the prior probabilities of
the stress levels. That is, our evaluation set contains a larg-
er percent of correctly pronounced syllables that would be
found in the original set. This will also affect the systems
that use prior probabilities computed on the non-native
data. Unfortunately, this is an inherent issue in this data,
which cannot be easily solved. One possible way to avoid
this bias would be to ask annotators to discuss every single
Table 3
Percent of syllables labeled with each stress class on the agreement set for
non-native speakers for each canonical stress class (diagonal highlighted in
bold). The total amount of syllable with each canonical stress class is
shown in the last column.

Can Lab Count

0 2 1

0 54.00 17.66 28.34 487
2 3.23 64.52 32.26 31
1 1.11 4.16 94.74 722
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case of disagreement until they come to an agreement,
assigning a single consensus label to each syllable. This
would be a difficult and costly process. Section 3.4.5 pre-
sents an analysis of the effect of this selection by computing
results on the set of syllables for which 2 of the 3 annota-
tors agreed on the same stress level.
3.4. System performance

Results in this section were obtained using (1) CART-
style decision trees; (2) neural networks; (3) a set of “big”

models of 2048 Gaussian components for MFCC modeling
and a 512-component GMM for segmental feature model-
ing; and (4) a set of “small” models of sizes 256 and 64,
respectively. All models were trained on the native data
Table 4
Error rate for the maximum posterior probability decisions (maxp) for native
native data and the 0j1j2 task, we also show the miss rate when setting the thres
systems: decision trees (DT), neural networks (NN), and big and small GMMs
the full set of words; on a subset of words that was labeled as correctly pronou
pronounced (inc words). The GMM systems are: native p, sep trn, in which na
class-dependent GMMs are trained independently; native p, in which native pri
adaptation to a class-independent model; non-nat p, a system identical to th
posterior probability computation instead of native prior probabilities; and non

an additional step of adaptation to non-native data is done on the class-depende
non-native prior probabilities. For DT, we also show results without using th
performance for each dataset and each task. For the first two columns we show
in the previous line within the same block.

Task System Setup

Native

0j1j2 DT Native p, no bagging 14.1
Native p 13.7***

Non-nat p

NN Native p 14.4
Non-nat p

GMM Small Native p, sep trn 13.8
Native p 13.3***

Non-nat p
Non-nat p, adapt to non-nat

GMM Big Native p, sep trn 12.5
Native p 11.5***

Non-nat p
Non-nat p, adapt to non-nat

02j1 DT Native p 11.8
Non-nat p

NN Native p 12.5
Non-nat p

GMM Small Native p 11.3
Non-nat p
Non-nat p, adapt to non-nat

GMM Big Native p 9.8

Non-nat p
Non-nat p, adapt to non-nat

* Indicates a p-value smaller than 0.05, respectively.
** Indicates a p-value smaller than 0.01, respectively.
*** Indicates a p-value smaller than 0.001, respectively.
An absent symbol indicates a p-value larger than 0.05.
described above. The big GMMs were tuned to minimize
error rate on 10-fold cross-validation experiments on
native data. While these GMM sizes might seem very large
compared to those used in ASR and other tasks, they are
comparable to the sizes used in state-of-the-art speaker
recognition (see, for example, (Ferrer et al., 2013)), in
which, like this task, many phones are modeled with a sin-
gle GMM. Nevertheless, as we will see, these big sizes were
unnecessary for optimal performance on non-native data.
We show results on the smaller models for comparison.
3.4.1. System comparison

Table 4 shows results for several different systems and
setups for the task of classifying stress into three levels: 0
(unstressed), 1 (primary stress) or 2 (secondary stress).
and non-native children’s data on two tasks: 0j1j2 and 02j1. For the non-
hold for a false correction rate of 5% (fc5). We show results on four sets of
for MFCC and segmental modeling. For non-natives we show results on

nced (cor words); and on a subset of words that was labeled as incorrectly
tive prior probabilities are used for posterior probability computation and
or probabilities are used and class-dependent GMMs are obtained through
e previous one, but in which non-native prior probabilities are used for
-nat p, adapt to non-nat, a system identical to the previous one, but in which
nt GMMs. For the DT and NN systems, we compare the use of native and

e bagging approach. The bolded numbers correspond to the best all-word
significance level between the system corresponding to the line and the one

Maxp %Error fc5 %Miss

Non-native Non-native

All words cor words inc words All words

23.6 14.2 44.4 73.3
23.2 12.5 45.4 64.5
21.0** 16.8 38.9 52.0

22.6 12.7 44.4 64.8
21.0 20.1 36.7 52.4

24.3 14.4 44.9 70.0
22.9* 11.8 46.4 63.7
20.3** 18.6 35.7 52.8
20.2 19.0 35.7 52.0

25.7 14.4 47.6 70.7
22.5*** 11.6 43.6 65.9
21.3 18.6 37.9 54.2
20.3 17.9 36.4 48.4

16.8 10.3 28.4
16.6 12.9 28.9

16.5 9.6 28.4
15.4 13.8 25.9

16.2 8.5 29.2
15.0 12.5 25.7
14.6 12.9 24.9

16.8 8.8 28.9
15.0** 10.9 26.4
14.5 11.4 25.7
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We call this task 0j1j2. We also show results for the task of
classifying syllables into unstressed (0 or 2) or stressed (1)
for a subset of the system setups. We call this task 02j1.

Different setups for each of the models (decision trees,
neural networks, small GMMs and big GMMs) are com-
pared. In all cases, systems using prior probabilities com-
puted on native data (“native p”) and non-native data
(“non-nat p”) are compared. For the GMMs, a baseline
system in which GMMs for the different classes were
trained separately without the adaptation technique
described in Section 2.2.1 is presented (“sep trn”). The
three GMM systems without the “sep trn” label use the
proposed adaptation technique with a relevance factor of
0, which gave optimal performance on native data. A
fourth system is presented for the GMM approach, in
which the class-dependent models were adapted to the
non-native data (“adapt to non-nat”) in a second step of
adaptation. This was done with the MAP approach
described in Section 2.2.1. In this case, though, given the
small amount of non-native data available, only means
and weights were adapted.

Since MFCC GMMs were trained on the native data
which were then used again to learn the segmental models,
we used a 10-fold cross-validation procedure to create the
log-posterior probabilities from the MFCCs. The MFCC
GMM models were trained on 9/10th of the data and used
to create the MFCC log-posterior probabilities for the
remaining 1/10th of the data; the sets were rotated until
MFCC log-posterior probabilities had been computed for
all data.

Table 4 shows error rate results for native and non-na-
tive speakers using the maximum posterior probability
algorithm for making decisions. For the non-nat p systems,
we only show results on non-native data, since these sys-
tems are only meant to optimize performance on those
data. For the native results we did 10-fold cross-validation,
training the system on 9/10th of the speakers and testing it
on the held-out 1/10th of the speakers; finally, we collected
posterior probabilities from all subsets to compute the
shown performance. The prior probabilities used for poste-
rior probability computation were computed on the subsets
used for training and applied on the test subset.

When using non-native prior probabilities and when
doing adaptation to non-native data, we used the same
10-fold cross-validation approach. The relevance factor
used for adaptation to non-native data, on the other hand,
was selected to optimize the performance on the full set,
which means these results are somewhat optimistic. The
optimal relevance factor was 80 for the small models and
5 for the big models. For non-native data, Table 4 shows
results for two additional subsets of data consisting of only
the words that were labeled as correctly or incorrectly pro-
nounced by the three annotators. The number of words
labeled as correct and incorrect is 220 and 191, respectively.

Finally, for non-native data we also show the miss rate
obtained when setting the posterior probability thresholds
at a 5% false correction rate. The threshold was trained
on all the test data to ensure that exactly a 5% false correc-
tion rate was achieved. Thresholds could be determined
using the cross-validation approach, but this would result
in biased thresholds when the data are also used for adap-
tation of the models. Nevertheless, we found that, except
for this last system in which thresholds cannot be deter-
mined through cross-validation, in all other cases, miss
rates and false correction rates with thresholds determined
through cross-validation or on the full test data were very
close. The absolute difference in miss rates and false correc-
tion rates when using the thresholds obtained with cross-
validation or on the full test data was smaller than 1%
and 0.1%, respectively.

Results for the DT and the NN approaches are also
shown in Table 4. For DTs we show results with and with-
out bagging. For NNs, we show results using two hidden
layers with 400 nodes each. This architecture was optimal
on the native data and also on the non-native data when
using the non-native priors. We can see that DTs and
NNs are somewhat competitive with the small GMM sys-
tems for the 0j1j2 task, but significantly worse than the
big GMM systems for native speakers. This suggests that
GMMs are better models than the other two when matched
training data are available. Hence, if a large amount of
non-native data was available to directly train models for
non-native speech, the GMM approach would probably
be preferable. Furthermore, for the 02j1 task, even the
small GMMs significantly outperformed decision trees.

For the GMM systems, we can see that the proposed
adaptation technique for training class-dependent models
gives significant reductions in error rate, especially on
non-native data and when using big models. The latter is
expected, since training big models is more prone to over-
fitting than training small models. Using prior probabilities
calculated from non-native data gives modest gains on the-
se data. These gains are also expected given the big differ-
ence in prior probabilities between native and non-native
data shown in Table 2. Finally, adapting the segmental
GMM parameters to the non-native data gives some fur-
ther gain, though not a statistically significant one. Note
that the last two systems require some amount of labeled
non-native data, while the first two only use native data
for model creation.

Overall, we see that big models give significantly better
performance than small models for native data but not
for non-native data. This implies that the details modeled
by the big system are too specific to the native data and
do not generalize well to non-native data.

We also see that the performance on non-native speak-
ers is significantly worse than on native speakers. This
degradation comes from the incorrectly pronounced words,
since performance on correctly pronounced words when
using native prior probabilities is comparable to the one
obtained on native speakers. This suggests that the system
has more difficulty classifying mispronounced words. This
can be due to both issues with the ASR alignments
(although even correctly stressed words might be
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misaligned due to phonetic mispronunciations) and to the
fact that incorrectly pronounced stress might be labeled
as such because it was pronounced in a non-native manner
with an unusual combination of duration, energy and pitch
patterns. These patterns would not have been seen under
any stress class in the native data. This could suggest that
using non-native data for training or adaptation should
improve performance on these words. Nevertheless, the
table shows that adapting models to non-native data does
not bring large improvements. Furthermore, training the
models directly on this data results in significant degrada-
tions for all modeling approaches, NN, DT and GMM
(results not shown). We believe that the lack of a significant
gain from training models on or adapting models to non-
native data is due both to the small amount of data avail-
able and to the high disagreement between annotators on
incorrectly pronounced syllables that results in very noisy
data.

As expected, results on the simpler task of classifying
stressed versus unstressed syllables were significantly better
than those on the 3-way classification task. Note that these
results are only approximations, since they were obtained
by mapping any syllable annotated as a 2 to a 0. A label
of 0 might not have been the preferred choice for all these
syllables if annotators had been forced to label each sylla-
ble as either 0 or 1. Hence, these numbers should be seen as
an approximation for the accuracy we would obtain with
this system on a database labeled with only unstressed
and primary stressed syllables. This approximation is likely
to be pessimistic since, while new errors would appear if
some of the 2s were labeled as 1 instead of 0, more errors
would probably disappear, given that the system is correct
more times than not.

Finally, conclusions drawn from miss rates for fc5 deci-
sions are consistent with those drawn from error rates for
maximum posterior probability decisions.

3.4.2. Feature design decisions

Many choices were made during feature design. The
most important ones were: (1) the normalization procedure
for the duration feature (whether to do syllable-type nor-
malization, or to do speech rate normalization); (2) the
use of the logarithm of normalized duration instead of
raw normalized duration; (3) the normalization procedure
for the pitch, energy, and spectral tilt features (whether
to normalize the signals with the frame-level mean over
the vowels before polynomial approximation occurs, or
to normalize the 0th-order Legendre polynomial coefficient
with its mean over the vowels); (4) the polynomial degree
for modeling these signals (values from 0 to 5 were tried);
(5) the use of geometric mean instead of arithmetic mean
to compute the MFCC segmental likelihoods; (6) the use
of uniform prior probabilities to convert the MFCC likeli-
hoods into posterior probabilities; and (7) the use of loga-
rithm of the MFCC posterior probabilities, rather than the
raw posterior probabilities, as segmental features. Each of
these decisions was made by running comparison results on
the native data and, in some cases, on a separate dataset of
adult Japanese speakers where some preliminary experi-
ments were run.

Decisions 2, 3, 5, 6, and 7 did not make a significant dif-
ference in performance that would warrant a detailed com-
parison in this paper. The polynomial degree of 1 (decision
4) gives around 5% relative improvement in error rate with
respect to using an order of 0. Higher orders do not lead to
further gains; they also make the system more complex.
The duration normalization procedure (decision 1) also
has a significant effect in performance. The absence of
any type of normalization increases the error rate on native
speakers by around 12% relative to the use of both types of
normalization. The use of speech rate normalization with-
out syllable-type normalization increases the error rate by
around 7%; conversely, the use of syllable-type normaliza-
tion without speech rate normalization increases the error
rate by around 10%. For the non-native data, a lack of syl-
lable-type normalization results in a 9% degradation, and a
lack of speech rate normalization does not result in a sig-
nificant difference in results. Feature selection results will
be shown in Section 3.4.3 to justify the inclusion of all five
types of features in the model.

Different procedures were also tried for the integration
of spectral and segmental information. The frame-level
pitch, energy, and spectral tilt signals and their deltas were
appended to the MFCC features and the duration feature
was replicated and appended to the resulting vector for
all frames in a vowel. The problem with this approach is
that unvoiced frames (which happen sometimes even with-
in vowels) have meaningless pitch values. As another alter-
native, pitch, energy, spectral tilt, and duration segmental
features computed as described in Section 2.1 were replicat-
ed for all frames in a vowel and appended to MFCCs. In
these two options, a single set of frame-level GMMs were
trained and used to generate segment-level posterior prob-
abilities as explained in Section 2.1.4. As a final alternative,
the 13 static MFCCs were taken as separate signals and
modeled using polynomial approximations as for the other
frame-level signals. The resulting segment-level coefficients
were appended to the other segment-level features and
modeled with GMMs. All of these approaches proved to
be significantly worse than the approach described in
Section 2.

3.4.3. Feature selection results

The proposed system uses five types of features based on
pitch, energy, spectral tilt, duration and MFCC informa-
tion. Fig. 3 shows results using all possible combinations
of feature types. The system setup is kept identical to the
one used for the small “native p” system in Table 4. The
results shown correspond to the error rate for natives
and non-natives for the maxp decisions.

For natives, we see that the best result for each value of
N is always better than the best result for N�1. This is true
even for the 5-feature result (13.26%) which is better than
the best 4-feature result (13.58%) at a significance level
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smaller than 0.001. From this, we can conclude that all five
feature types are needed to achieve the best performance.
Interestingly, the best N-feature combination always
includes the best N�1-feature combination: the single best
feature type is MFCC; the best 2-feature combination adds
duration to that; the best 3-feature combination adds ener-
gy to those two; the best 4-feature combination adds pitch;
and, finally, the 5-feature combination adds spectral tilt,
still giving a statistically significant gain. Given this, one
could order the features in terms of importance for stress
Fig. 3. Native and non-native error rates for all possible feature
combinations. For each N, systems are sorted based on their native
performance. The two vertical lines indicates the all-feature performance
for natives and non-natives.

Table 5
Error rate, false correction rate and miss rate for non-native children’s data on
We show results on the full set of words (all words); on a subset of words that
that was labeled as incorrectly pronounced (inc words). We compare two a
proposed algorithm, fc5. In the case of correct words, the error rate coincides w
that can be missed.

Decision algorithm All words

%error %fc %miss %erro

maxp 20.3 11.9 28.6 17.9
fc5 17.7 5.1 48.3 7.9
classification on native speakers as follows: (1) MFCCs,
(2) duration, (3) energy, (4) pitch, and (5) spectral tilt.

Feature types can also be ordered based on the perfor-
mance loss that occurs when that single type is taken out
of the combination (that is, looking at the combinations
of four feature types). Taking out MFCCs gives the largest
loss, followed by duration, energy, pitch and spectral tilt,
coinciding exactly with the order obtained by the cumula-
tive nature of the N-feature results.

The order of importance of feature types is slightly dif-
ferent for non-native data. The same cumulative nature of
the best N-feature combination is observed for non-natives,
except that the best single feature is energy, the best 2-fea-
ture combination adds MFCCs to the energy, and the best
3-feature combination adds duration. In this case, pitch
and spectral tilt give a non-significant degradation when
added. As with the native data, this same order can be
obtained by looking at the 4-feature results. Nevertheless,
unlike for the native data, only the performance loss when
discarding energy and MFCCs are statistically significant,
with p-values smaller than 0.005.

We chose to present feature selection results using native
prior probabilities because we believe that this approach
gives a more direct assessment of the usefulness of the fea-
ture itself. The non-native prior probabilities bias all sys-
tems toward detecting more primary stressed syllables,
thus washing out differences across feature types. Despite
this, using non-native prior probabilities for the non-native
data still results in energy being the single best feature, now
followed by duration and then MFCCs, with all three of
them giving gains over the all-feature result.
3.4.4. Controlling false correction rate

As described in Section 2.3 we propose an approach for
decision making that allows us to control the amount of
false corrections made to the user. While we show fc5
results in Section 3.4.1, in this section we give a more
detailed comparison of the results obtained with the maxp
approach and the fc5 approach. Table 5 compares error
rates, false correction rates and miss rates for the maximum
posterior probability decisions and the decisions based on
the proposed algorithm, with the aim of achieving no more
than 5% false correction. Results correspond to the big
“non-nat p, adapt to non-nat” system from Table 4. The
threshold for the fc5 decisions was determined on the full
task 0j1j2 using the big “non-nat p, adapt to non-nat” system from Table 4.
was labeled as correctly pronounced (cor words); and on a subset of words
lgorithms for decision making: maximum posterior probability and the
ith the false correction rate and the miss rate is 0, since there are no errors

Corr words inc words

r %fc %miss %error %fc %miss

17.9 0.0 36.4 8.2 31.7
7.9 0.0 41.4 3.5 53.0
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non-native data, as in Section 3.4.1. Native results are not
shown here because false correction and misses are only
meaningful when pronunciation errors are made.

Giving the canonical stress label the benefit of the doubt
results in the correct labeling of more of the correctly pro-
nounced syllables. This is clearly shown in the results for
the correct words, which see a decrease in error rate of
56%. On the other hand, incorrectly pronounced words
see an increase in error rate, though a rather small one.
While the fc5 algorithm achieves the desired goal of con-
trolling the false correction rate, it also results in a much
larger rate of misses than the maximum posterior probabil-
ity algorithm: around half of the incorrect syllables (48.3%)
go unnoticed by the system, compared to less than one
third (28.6%) for the maximum posterior probability algo-
rithm. Nevertheless, we believe this type of error is of much
less importance than the false correction error, and we pre-
fer to work at this operating point.

Interestingly, we see that the proposed algorithm,
besides keeping the false correction rate at the desired 5%
value, also decreases the overall error rate around 13%
relative. That is, the proposed algorithm helps approximate
the decisions made by the annotators better than the stan-
dard algorithm. This simply reflects the fact that 78% of the
syllables are labeled as correctly pronounced (all the sylla-
bles in the correctly pronounced words and around half of
the syllables in the incorrectly pronounced words are cor-
rectly pronounced) and these are the samples for which
the proposed algorithm is designed to work better than
the maximum posterior probability algorithm.

3.4.5. Analysis on syllables with annotator disagreement

As mentioned in Section 3.1 the full set of non-native
data contains 1776 syllables, out of which only 1240 were
given the same label by all three annotators. All results
above are presented on this agreement set. The remaining
536 syllables can be considered gray-area cases: syllables
which are hard to label consistently because they contain
some combination of characteristics that confuse the anno-
tators. We would like to know how our system performs on
those syllables.

To this end, we ran our best system without adaptation
(“GMM big, non-nat p”) on all syllables for which at least
two annotators agreed on the same label. This set contains
1727 syllables. We reran the system using the non-native
priors computed on this set (using a 10-fold cross-valida-
tion procedure as described in Section 3.4.1). This change
in priors did not change the performance on the agreement
set, where all three annotators agreed, indicating that the
system is robust to small changes in the priors.

On the remaining 487 syllables for which exactly two
annotators agreed on the same label, we find that the sys-
tem’s accuracy with the fc5 decisions is greatly degraded,
reaching a 55% error rate (compared to 18.5% on the
agreement set). Of those 55% samples that are not labeled
with the stress level given by the majority of annotators,
42% are labeled with the stress level given by the annotator
that disagreed with the other two. Finally, from the
remaining mislabeled 58% of the 55%, 90% are labeled with
the canonical stress.

In summary, only 3% of the samples for which exactly
two annotators agreed on the same label are labeled with
a stress level that was not chosen by one of the annotators
and is not the canonical stress level for that syllable. We
believe this indicates that, whatever the system is doing
for these ambiguous syllables will not be bothersome to
the user, since, if a mistake is pointed out, it is likely to
be one (at least according to some annotator) and, other-
wise, the user is given the benefit of the doubt.

3.4.6. Agreement with individual annotators on non-native

data
We computed the error rate of the system’s output using

the labels from each individual annotator on the full set of
labeled data (as opposed to the set in which the three agree)
as a measure of the disagreement between an automatic
annotator (the system) and a human annotator. The error
rate of the big “non-nat p” system (with prior probabilities
computed on the agreement set) using fc5 decisions on the
0j1j2 task ranges from 30.2% to 33.22% for the different
annotators. Comparing the numbers in Table 1, we see that
the system is still not at the level of human performance.
We believe this is very likely due in the most part to the
error-prone alignments provided by the ASR system. While
automatic alignments are always error-prone, this is espe-
cially true for non-native speech in our system, since it
was trained with more native than non-native data.
Deshmukh and Verma (2009) showed a significant effect
of ASR quality in their stress classification system, going
from 79% accuracy to 89.9% when using an improved
ASR system. In agreement with these results, a careful
review of our system’s output by a highly trained phoneti-
cian indicated that a large proportion of the errors made by
the system occurred in syllables in which automatic align-
ments were significantly off. This suggests that a key focus
for improving stress classification performance should be
the improvement of ASR performance.

3.4.7. Comparison of results with previous work

Deshmukh and Verma (2009) show 81.9–90.9% accuracy
on their per-syllable experiments on Indian speakers of
English when using different modeling methods. The best
performing system uses nucleus-dependent modeling. Their
results are computed only on words that were labeled as
correctly pronounced, since they only label at the word level
for correctness; transferal of labels to the syllables can be
done only for correctly pronounced words. Words are con-
sidered correctly pronounced when their three annotators
agreed on it. These results can then only be compared to
the “corr words” column in Table 4 for the 02j1 task, since
they do not label secondary stress. We see that our system
performs similarly to their best configuration with an accu-
racy of 91.5% (8.5% error rate) when native prior probabil-
ities are used. A significant improvement to the system
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presented by Deshmukh and Verma (2009) is shown by
Doddala et al. (2011) where information about phonetic
context as well as the nucleus identity is included in their
models, reaching accuracies of around 96% on bilingual
Spanish/English children including only correctly stressed
words. As mentioned above, our experiments showed no
gains from doing nucleus-dependent modeling or normal-
ization. We believe this is due to the high rate of phonetic
mispronunciations present in our database, even when
stress is pronounced correctly.

Tepperman and Narayanan (2005) show accuracies
between 82.6% and 85.6% at the syllable level for Italian
and German learners of English. Their labels enforce a sin-
gle primary stress per word and no secondary stress.
Results for this simplified task can be compared to our
results on non-native speakers for the 02j1 task in Table 4,
corresponding to 85.5% accuracy (14.5% error rate), except
for the fact that their alignments are not automatic but
manual, which should result in a significant advantage.

Li et al. (2013) present, to our knowledge, the only stress
classification system that attempts to detect three levels of
stress (primary and secondary stressed, and unstressed).
They use deep belief networks trained on prosodic features
from a large amount of matched non-native data. Their
system reaches an accuracy of 80% on the three-way classi-
fication task, a performance comparable to ours for this
same task, except that they only test on 3-syllable words
while we test mostly on 2-syllable words.

The only other work we have found that uses native Eng-
lish data to train models that are then applied to non-native
English data is presented by Chen and Wang (2010). They
show a large degradation in performance of around 12%
absolute, when testing on non-native data from Chinese
learners of English compared to testing on native English
data, with a word-level accuracy on non-natives of around
77%. Since decisions are made at the word-level, these
results are not comparable to ours. Nevertheless, for 2-syl-
lable words, the word-level accuracy should coincide with
the syllable-level accuracy if a single stressed syllable is
enforced as is the case in their work. Their reported result
for 2-syllable words on non-native data is 80%. This result
can be compared to our non-native results for the 02j1 task
in Table 4 which is significantly better (85.5% accuracy).

4. Conclusions

We propose a system for lexical stress classification at
the syllable level that uses both prosodic (pitch, energy
and duration) and spectral (tilt and MFCC) features. Pitch,
energy and spectral tilt features are first extracted at the
frame level and converted to syllable-level features using
Legendre polynomial approximations. MFCCs, also
extracted at the frame level, are converted to syllable-level
features by computing log-posterior probabilities, given a
set of class-dependent GMMs. All syllable-level features
are concatenated into a single vector and modeled using
one GMM for each stress class.
We test the proposed system and compare different set-
ups on a database of L1-Japanese children and a database
of L1-English children. In both cases the children read Eng-
lish phrases. Our algorithm results in an error rate of around
11% on L1-English data and around 20% on L1-Japanese
data. We show that all features, both spectral and prosodic,
are necessary for the achievement of optimal performance
on the L1-English data, with the MFCC log-posterior prob-
ability features being the single best set of features, followed
by duration, energy, pitch and finally, spectral tilt features.
For L1-Japanese speakers, energy, MFCC log-posterior
probabilities and duration are the most important features.

Given our review of results in the literature and the fact
that our proposed method outperforms the more standard
decision tree and neural network modeling approaches, we
believe our system is competitive in terms of performance.
Furthermore, it provides more detailed information than
most systems in the literature, allowing for multiple
stressed syllables in a word and giving syllable-level feed-
back with three levels of stress. Finally, one of our pro-
posed systems, the one we call “native p”, does not
require labeled data from speakers with the same L1 as
the test data. This makes it cheap to train (requiring only
L1-English data for which labels can be automatically
derived) and portable to any population of English learn-
ers. We have shown that this system performs only around
10% worse in terms of error rate relative to a system that
takes advantage of matched non-native L1-Japanese data
for prior probability computation and model adaptation.

Finally, since the system was developed as a pedagogical
tool for language learners, we propose a new method for
decision-making based on posterior probabilities of stress
classes that allows developers to adjust the system’s operat-
ing point to a certain maximum level of false corrections.
We believe this kind of error is the most bothersome to a
learner and should be minimized, even at the cost of
increased missed corrections. This approach is not only
able to control the false correction rate but also results in
a reduction in overall error rate of around 13% relative
to using the maximum posterior probability decisions that
are standard in the literature.
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