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While the ideal solution is an important reference for the thermodynamic modeling of mixtures,
the one-fluid approach for equations of state (EOSs) fails to meet this limit. In this work we
present additional evidence supporting this fact. A conceptually new treatment previously
proposed for EOSs that meets the ideal solution limit at zero values for the interaction parameters
is further developed here. A flexible composition dependence is proposed to cover the entire
spectrum from symmetrical to highly asymmetrical, highly nonideal, mixtures. The new
composition dependence gives the ideal solution limit, and it accounts for the effect of density
on the excess properties of nonideal mixtures. The model treats vapor and liquid phases using
a single formalism. For vapor-liquid equilibrium calculations, the new mixing rule can be
considered as a hybrid between the well-known æ-æ and γ-æ approaches.

Introduction

The one-fluid approach assumes that the equation of
state (EOS) for the mixture is formally identical with
the EOS for the pure compounds and that for a mixture
the EOS parameters depend on the pure compound
parameters, the composition, and additional interaction
parameters. Wilczek-Vera and Vera1 observed that the
extension of equations of state (EOSs) to mixtures, using
the conventional one-fluid approach, gives expressions
which are unable to represent the simple case of an ideal
solution over the entire composition range. In a recent
publication,2 we reinforced such a conclusion through
a rigorous derivation for the case of one of the simplest
forms of the virial EOS. On the other hand, activity
coefficient models, such as the Wilson or the NRTL
equations,3 are applicable to nonideal mixtures and
satisfy the ideal solution limit at particular values of
the interaction parameters. However, these liquid-phase
models can be used only if the effect of density on the
excess properties can be neglected. A conceptually new
approach recently proposed2 accounts for the effect of
density on the excess properties of nonideal mixtures
while keeping the desirable feature of giving the ideal
solution limit for null interaction parameters. However,
phase equilibria calculation results showed2 that for
highly nonideal systems the mixture molar volume
required a more flexible composition dependence. The
purpose of the present study is to propose such a flexible
composition dependence and to present some additional
evidence to support the hypothesis of the impossibility
of representing ideal solutions using the one-fluid
approach.

Ideal Solution

For the ideal solution the mixture molar volume υid.sol.

is a linear mole fraction weighed average of the pure

compound molar volumes υi. Thus, for any composition
x and for any value of the pressure, between zero and
the pressure of the mixture P, at the system tempera-
ture T:

The ith element of vector x is xi, the mole fraction of
component i in the mixture, and N is the number of
components. All expressions for the thermodynamic
properties of the ideal solution can be derived from eq
1, commonly known as Amagat’s law.

From exact thermodynamics, the fugacity coefficient
of component q in a mixture, æ̂q, is given by

where υjq is the partial molar volume of component q in
the mixture and R is the universal gas constant. From
eq 1 it is clear that for an ideal solution the partial molar
volume of component q, υjq

id.sol, is equal to the pure
compound volume υq at any pressure from zero pressure
to the mixture pressure and at any composition x. Thus,
the fugacity coefficient of component q in an ideal
solution is equal to the fugacity coefficient of the pure
compound q, æq, at the same pressure P and tempera-
ture T of the ideal solution.

Because the activity coefficient of component q, in the
Lewis sense, is equal to the fugacity coefficient of
component q in the mixture (æ̂q) divided by the pure
compound fugacity coefficient (æq), eq 3 implies that for
an ideal solution the activity coefficient is unity.1 It is
important to note that, by definition, the ideal solution
at fixed temperature and composition obeys Amagat’s
law at all pressures between zero and the pressure of
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the system. If Amagat’s law is satisfied at a particular
pressure, not necessarily the system is ideal.3

Virial EOS and the Ideal Solution Limit

A simple form of the truncated virial EOS is

where z is the compressibility factor and B is the
mixture (or pure-compound) second virial coefficient. In
a previous publication2 we demonstrated that the
representation of ideal solutions by eq 4 would force the
cross second virial coefficients Bij to depend on pressure.
This clearly violates the restrictions that must be met
by the coefficients of the virial expansion written in
terms of the inverse molar volume. Hence, eq 4 cannot
represent ideal solutions even when its deviation from
Amagat’s law may be rather small. From this result we
inferred2 that commonly used EOSs, such as the cubic
EOSs, cannot represent ideal solutions. These semiem-
pirical models have mathematical forms more complex
than that of eq 4.

The virial EOS, expanded in terms of pressure and
truncated after the second virial coefficient term, is
simpler than eq 4. Because of its extreme simplicity,
this form is able to meet the ideal solution limit.2
However, such simplicity implies a very limited range
of practical applicability.

EOSs of Common Use

In this work we concentrate on the case of the well-
known Peng-Robinson EOS (PR-EOS),4 as a typical
example of a cubic EOS. The PR-EOS and its variants
have found widespread application in practical calcula-
tions. The PR-EOS has the form

where a and b are respectively the energetic and the
covolume parameters for the mixture. For mixtures,
a and b should be functions of composition and tem-
perature only. The original PR-EOS4 uses a conven-
tional quadratic mixing rule for a and a linear mixing
rule for b.

It would be desirable to find expressions for a and b
such that eq 5 gives a mixture volume matching eq 1
at any temperature, pressure, and composition. We
identify as aid.sol. and bid.sol. the ideal solution expressions
for a and b. The parameters aid.sol. and bid.sol. should
depend at most on composition and temperature but not
on pressure, density, or phase identity. To search for
possible expressions of aid.sol. and bid.sol., we do not impose
an a priori composition dependence on a and b.

As a first step in the search for aid.sol. and bid.sol., we
study a particular case. We impose an ideal solution
behavior on a binary system. Hence, we write eq 1 for
a binary mixture, introduce the result into eq 5, and
obtain a relationship connecting aid.sol. and bid.sol.. Thus,
we write

where υ1 and υ2 are respectively the molar volume of
pure component 1 and the molar volume of pure
component 2 at T and P. At fixed pressure, temperature,
composition, and phase identity, eq 6 defines a curve
aid.sol. vs bid.sol.. Figure 1 shows a set of such curves, for
different pressures and phase identities. Figure 1 cor-
responds to an equimolar mixture of propane (1) and
water (2), at a temperature T ) 340 K. The pure-
compound parameters a1and a2 were obtained from the
DIPPR5 experimental vapor pressures tables using the
method of Soave.6 We used the DIPPR5 critical temper-
atures and pressures to compute the critical values of
a1, a2, b1, and b2. For reference we included in Figure 1
a window defined by the values of b1 and b2 and of a1
and a2 at T ) 340 K. At the scale of Figure 1 it appears
that the curves corresponding to a vapor phase have a
common intersection point inside the pure compounds
a-b window and that the three liquid-phase curves have
a common intersection point outside the a-b window.
However, these common intersection points do not really
exist, as could be seen using proper axis scales. If it were
possible to find a reference ideal solution mixing rule
for the propane (1)-water (2) system, dependent at most
on temperature and composition, a common intersection
point should exist for all six curves of Figure 1. In other
words, Figure 1 tells that the only way to define
reference ideal solution mixing rules for the propane
(1)-water (2) system would be to let the parameters
aid.sol. and bid.sol. be both pressure-dependent and phase-
identity-dependent. Hence, for this system, we conclude
that mixing rules for a and b, depending only on
temperature and composition, cannot satisfy the ideal
solution limit, at all temperatures, pressures, and phase
identities. Although, rigorously, this conclusion is only
valid for the propane (1)-water (2) system, this par-
ticular case also supports the hypothesis of the impos-
sibility of representing ideal solutions, in a range of
conditions, through EOSs using the one-fluid approach.
A clear implication comes from this hypothesis: mixing
rules which combine excess Gibbs energy (gE) models
with EOSs will not, in general, recover the ideal solution
behavior at conditions at which the imported liquid-
phase model gives a zero value for gE.

After presenting the above additional evidence on the
impossibility of representing ideal solutions using EOSs

Figure 1. Relation between the PR-EOS a and b at ideal solution
conditions for the system propane (1)-water (2) at 340 K. x1 ) x2
) 0.5.

z ) Pυ
RT

) 1 + B
υ

(4)

P ) RT
υ - b

- a
υ2 + 2bυ - b2

(5)

aid.sol. ) (-P + RT
υ1x1 + υ2x2 - bid.sol.)[(υ1x1 + υ2x2)

2 +

2bid.sol.(υ1x1 + υ2x2) - (bid.sol.)2] (6)
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in a conventional way, we focus on the formulation of a
flexible composition dependence for a mixing rule for
EOSs. This formulation, based on our previous work,2
is useful for highly nonideal mixtures and meets the
ideal solution limit for zero values of interaction pa-
rameters.

Basic Concepts

From exact thermodynamics for a homogeneous mix-
ture, it can be shown that the partial derivative of the
molar excess Gibbs energy gE with respect to the
absolute pressure P, at constant temperature and
composition, is equal to the excess molar volume υE.
Hence, we write

Here the word “excess” implies the difference between
the properties of the real fluid and the properties of the
ideal solution compared at the same temperature,
pressure, and composition. The fluid can be a vapor
mixture or a liquid mixture.

Excess Gibbs energy models for liquid mixtures, e.g.,
Wilson or NRTL,3 ignore the effect of pressure on gE.
Hence, from eq 7, these models necessarily give zero
excess volume υE; i.e., they consider a nonideal mixture
to have an ideal solution volumetric behavior.

The conceptually new approach we previously pro-
posed2 considers nonzero values for υE, thus making the
excess Gibbs energy gE pressure-dependent according
to eq 7. This approach2 accounts for pressure, temper-
ature, and composition effects on υE. The fundamental
concept of this approach2 consists of the formulation of
an expression for the excess volume in terms of compo-
sition and of the pure-compound molar volumes υi. The
excess volume υE depends on pressure indirectly, i.e.,
through the pressure dependence of the molar volumes
of the pure compounds. A particular υi is related to
temperature and pressure according to a particular
EOS. Different pure compounds may be represented
using different EOSs. The most important feature of this
approach2 is that it recovers the ideal solution behavior
when the binary parameters are set equal to zero.

New Form of the Ideal-Solution-Based EOS
Approach (ISB-EOS)

For highly asymmetric nonideal mixtures, treated
with the new ISB-EOS approach, we propose the fol-
lowing expression for the excess molar volume υE:

where υ is the molar volume of the mixture and εij,
which depends on pressure through volumetric informa-
tion of the pure compounds i and j, has units of molar
volume and relates linearly to the excess molar volume
υE. The binary parameter Λji is dimensionless and
characteristic of the ji pair. If the values of all Λji
parameters are equal to unity, the excess volume given
by eq 8 becomes quadratic in composition:

For values of Λji different from unity, the composition
dependence of eq 8 is more flexible than a quadratic
dependence. Equation 8 is a pair-based model and
overcomes the limitations of a quadratic dependence
without resorting to ternary parameters. It is conve-
nient to define Λji as the exponential of the parameter
λji. Hence, we write

The parameter λij is also dimensionless and sets the
value of Λij. The convenience of using λij as the inde-
pendent variable, instead of Λij, is that for any finite
value of λij the variable Λij is positive. Thus, the right-
hand side of eq 8 cannot become undefined because of
a null denominator when adjusting the parameters λij.
The appearance of the variable Λmn in both the numera-
tor and denominator of eq 8 reduces the instabilities
associated with the exponential function of eq 10 when
adjusting λmn. Although not explored in this work, Λij
might be considered to be temperature-dependent with
λij proportional to (RT)-1.

Integrating eq 7, between zero pressure and the
system pressure P, using eq 8 for the excess volume,
we obtain the following expression of the excess Gibbs
energy gE:

where τij is the value of the integral of εij from zero
pressure up to the pressure of the system, over the
product RT:

To obtain eq 11, we have used the boundary condition
gE ) 0 at the limit of infinite volume or, equivalently, P
) 0. Notably, eq 11 can also be written as

Equation 13 has the same formal composition depen-
dence as the NRTL model3 for gE. The essential differ-
ence with the NRTL model is that in eq 13 τji is not
only a function of temperature but also a function of
pressure. Hence, while the original NRTL model3 gives
a zero excess volume, because of the fact that it
considers that the excess Gibbs energy is independent
of pressure in eq 7, when eq 13 is combined with eq 7,
a nonzero excess volume, given by eq 8, is obtained.

Definition of the Variable Eij

The next step is to define the dependence of εij on
pressure through pure compound volumes and binary

(∂gE

∂P )
T,x

) υE (7)

υE ) ∑
i)1

N ∑
j)1

N

xixjεjiΛji

∑
l)1

N

Λlixl

) υ - υid.sol. (8)

υE ) ∑
i)1

N

∑
j)1

N

xixjεji for all Λlk ) 1 (9)

Λij ) exp(-λij) (10)

gE

RT
) ∑

i)1

N ∑
j)1

N

xixjτjiΛji

∑
l)1

N

Λlixl

(11)

τlk ) 1
RT∫0

P
εlk dP (12)

gE

RT
) ∑

i)1

N

xi

∑
j)1

N

xjτjiΛji

∑
l)1

N

Λlixl

(13)
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parameters. In this work we set εij to have the following
form:

where Aij is a dimensionless binary parameter which
may depend on temperature but not on pressure or
composition and υi

B is the virial molar volume of pure
compound i, at the temperature T and pressure P of the
system, calculated as explained below. The pure com-
pound i molar volume, υi, at T and P, is calculated from
a pure compound EOS; F is a variable that controls the
behavior of the model at low density, and its value can
be either zero or unity. By construction, the relationship
between the mixture volume and any of the pure
compound υi’s or υi

B’s is linear. In fact, eq 14 is simpler
and has a better pressure dependence than the expres-
sion used in our previous work.2

Calculation of Pure Compound Virial Molar
Volumes

We calculate the virial molar volume υi
B for pure

compound i, at the T and P of the system, using the
simplest form of the virial EOS expanded in terms of
pressure and truncated after the second virial coefficient
term:

For consistency, the value of Bi that we use in eq 15 is
not the experimental value of the second virial coef-
ficient at T but the value predicted by the EOS used
for the pure compound i. For the purposes of evaluating
the second virial coefficient from volumetric data, it is
preferable to use its definition as the infinite volume
limit of the product υ(z - 1). For the purposes of this
work, in which the analytical form of the EOS is known,
we use the equivalent exact definition of the second
virial coefficient B:

where z is the compressibility factor obtained from the
EOS chosen for representing the particular pure com-
pound. For the PR-EOS,4 for example, eq 16 results in
the following expression for Bi:

For noncubic EOSs, the EOS of compound i also sets
the value of B through eq 16. In any case, using the
value of the particular EOS second virial coefficient in
eq 15, instead of the experimental value, guarantees
that all υi tend to υi

B as the density is reduced. Hence,
for F ) 1, εij (eq 14) tends to zero at low density, forcing
υE to be zero at low pressure (eq 8). For F ) 0 such a
restriction is not imposed.

Liquid-Volume Sensitivity with Respect to
Pressure

The mixture molar volume is a function of the binary
variables εij, as dictated by eq 8. In turn, the binary
variables εij are a function of the pure compound molar
volumes and virial volumes according to eq 14. For the
liquid mixture, the pure compound liquid molar volumes

are quite insensitive to pressure while the virial volumes
depend on pressure according to eq 15. Thus, to see the
effect of pressure on the εij variables and on the liquid
mixture molar volume, from eq 15, we write

Because the pure compound second virial coefficients
depend only on temperature, eq 18 shows that the
difference υi

B - υj
B is independent from pressure. This

is a major advantage of the present treatment with
respect to the form used in our previous work.2 In some
cases, the form used previously resulted in a strong
pressure dependence for the mixture liquid molar
volume and limited the variation of the binary param-
eter to a narrow range, beyond which negative values
for the mixture volume were obtained. The new formu-
lation represented by eq 14 removes the problem of high
sensitivity of the mixture liquid volume with respect to
pressure.

Expression for Variable τrj

From eqs 2, 12, and 14, we obtain

where æj is the fugacity coefficient of the pure compound
j at the temperature and pressure of the system and
æj

B is the pure compound virial fugacity coefficient
arising from eqs 2 and 15, i.e.,

To obtain eq 19, we added and subtracted the term RT/
P, where necessary in eq 14, to obtain expressions in
terms of pure compound fugacity coefficients. As shown
below, this leads to an expression for the fugacity
coefficient of a given component in the mixture æ̂q (or
for the activity coefficient), which is a function of the
pure compound fugacity coefficients.

The particular form we have adopted for the relation-
ship between εij and the pure volumes υi, υj, υi

B, and
υj

B (eq 14) is somewhat arbitrary. However, to obtain a
solution for the integral of eq 12 in terms of pure
compound fugacity coefficients, εij must depend linearly
on differences between pure compound molar volumes
as we propose in eq 14.

Binary Parameters and Limits

The binary parameters of the model are Aij and λij.
Both parameters are dimensionless and may be consid-
ered to be functions of temperature but not a function
of pressure or composition. We observe that eq 8 meets
the following limits:

(a) The molar volume of the mixture gives a total
volume, which is a homogeneous function of first degree
in the numbers of moles.

(b) For zero values of all binary parameters Aij, the
excess volume is zero and hence the ideal solution
behavior is recovered. If the binary parameter Aij is
made temperature-dependent, then it should vanish as
the temperature tends to infinity, so that the ideal
solution is recovered at high temperature.

εij ) Aij[(υi - υj) - F(υi
B - υj

B)] (14)

υB ) RT
P

+ B (15)

B ) lim
υf∞ [-υ2 ∂z

∂υ]T
(16)

Bi ) bi - ai/RT (17)

υi
B - υj

B ) (RT
P

+ Bi) - (RT
P

+ Bj) ) Bi - Bj (18)

τrj ) Arj ln[ær

æj(æj
B

ær
B)F] (19)

æj
B ) exp(BjP/RT) (20)
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(c) If all λij values are set to zero, then the excess
volume has a quadratic composition dependence.

(d) The proper limit of the pure compound is met
independently of the values of Aii and λii used. We set
then

and

(e) Equation 8 satisfies the restriction of invariance
of the molar volume of the mixture.7

(f) Virial conditions are defined here as the conditions
of temperature and pressure for which all pure com-
pound EOSs, of the components of the mixture, tend to
the virial EOS (eq 15). At virial conditions, for F ) 1,
all variables εij tend to zero, giving a zero excess volume;
i.e., the volume of the mixture is given by eq 1.
Combining eq 1 with eq 15 for the pure compound virial
volumes, it can be shown that the mixture also behaves
according to eq 15, giving the following expression for
the mixture second virial coefficient, which thus corre-
sponds to an ideal virial mixture:

with

Although for F ) 0, and for nonzero λij values, the
mixture at low density does not behave as a virial
mixture, it properly approaches the ideal gas limit, as
discussed below. If all λij values are zero and F )0, then,
at virial conditions, the mixture behaves according to
eq 15 with a mixture second virial coefficient given by
eq 23 with the following expression for Bij:

In this case the expression for the mixture second virial
coefficient, i.e., eq 23 coupled with eq 25, corresponds
to a nonideal virial mixture.

(g) The study of eq 8 for a binary system for which λij
) λji ) 0, i.e., a mixture for which the volume shows a
quadratic composition dependence, shows that it is
convenient to set

If for a given binary either λij or λji are different from
zero or both parameters are different from zero, then
Aij and Aji can be independent, because the composition
dependence for the binary ij is not quadratic. The
maximum possible number of adjustable parameters to
represent a binary mixture is then four: Aij, Aji, λij, and
λji.

(h) Ideal gas conditions are those at which all pure
compound EOSs tend to the ideal gas law. At ideal gas
conditions all εij variables tend to zero, regardless of the
value of F, and hence the mixture also behaves as an
ideal gas. In fact, at ideal gas conditions the virial EOS,
eq 15, also tends to the ideal gas law.

In the present work we do not impose any special
limit at infinite pressure. This makes it possible to
remove the restriction of the existence of a strictly
positive covolume bi for each of the pure compound
EOSs and the covolume may be zero, as in the case of
some EOSs. The boundary condition at infinite volume
and the effect of the potential existence of finite volume
roots at a pressure equal to zero are discussed further
in the appendix.

Within the context of the present work, for each pure
compound, the method requires having an EOS able to
represent the liquid-vapor transition at subcritical
temperatures. However, the method could also be used
for modeling the volumetric behavior of gas mixtures.
For instance, the pure compounds could be represented
using eq 4, and eq 8 can be used for the mixture. For
pure compounds, eq 4 gives more accurate pure com-
pound volumes and fugacities than eq 15. In this case,
the modeling of the gas mixture would be based on a
reference term, which corresponds to the (reasonable)
isometric mixing of the pure gaseous components, in
contrast with the conventional use of eq 4 for mixtures.

Fugacity and Activity Coefficients

The activity coefficient of component q, in the Lewis
convention, is obtained through differentiation of gE (eq
11) with respect to the number of moles of compound q.

Using the fact that the activity coefficient of component
q is equal to the fugacity coefficient of component q in
the mixture (æ̂q) divided by the pure compound fugacity
coefficient (æi), we write

From eqs 19 and 28, we see that æ̂q depends on the
composition, binary parameters, pure compound fugac-
ity coefficients, æi, and pure compound virial fugacity
coefficients, æi

B. For zero values of all Aij’s, the ideal
values of the partial molar volume and of the fugacity
coefficient of component q in the mixture (eq 3) are
obtained, because εij and τij vanish when Aij is equal to
zero. In this latter case the activity coefficient γq is equal
to unity for each component.

Note that, in contrast with conventional theories for
liquid solutions, the activity coefficient γq given by eq
27 depends not only on temperature, composition, and
binary parameters but also on pressure and phase

Aii ) 0 (21)

λii ) 0 (22)

Bmix ) ∑
i)1

N

∑
j)1

N

xixjBij (23)

Bij )
Bi + Bj

2
(24)

Bij )
Bi + Bj

2
+ Aij(Bi - Bj) (25)

Aij ) -Aji if λij ) λji ) 0 (26)

ln γq )

∑
j)1

N

xjτjqΛjq

∑
l)1

N

Λlqxl

+ ∑
j)1

N xjΛqj

∑
l)1

N

Λljxl
(τqj -

∑
r)1

N

xrτrjΛrj

∑
l)1

N

Λljxl
) (27)

ln æ̂q ) ln æq +

∑
j)1

N

xjτjqΛjq

∑
l)1

N

Λlqxl

+

∑
j)1

N xjΛqj

∑
l)1

N

Λljxl
(τqj -

∑
r)1

N

xrτrjΛrj

∑
l)1

N

Λljxl
) (28)
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identity, through the pure compound fugacity coef-
ficients and pure compound virial fugacity coefficients
(eq 19).

Equations 27 and 28 can be used for phase equilib-
rium calculations. For the case of vapor-liquid equi-
librium, the necessary condition of equilibrium is

For calculating a vapor-liquid equilibrium at given
temperature T and pressure P, the liquidlike and
vaporlike fugacity coefficients and virial fugacity coef-
ficients of the pure compounds at T and P are calculated
first. Then, the remaining iteration variables are only
the phase compositions. For a particular assumption of
the liquid-phase composition, æ̂i

L is calculated using the
liquidlike pure compound fugacity coefficients computed
in the previous step. Similarly, for a particular assump-
tion of the vapor-phase composition, æ̂i

V is calculated
using the vaporlike pure compound fugacity coefficients
calculated previously. There is no need to calculate the
mixture volume (eq 8) during the iterative solution of
the set of eq 29. However, when the calculation con-
verges, it is advisable to calculate the molar volumes of
the phases, using eq 8, to make sure that they are not
negative.

Results

For this discussion we identify our previously pro-
posed model2 as the ZBV1 model. The simplest possible
form of the present model is obtained by setting F ) 0
and λij ) λji ) 0. In such a case the composition
dependence is quadratic (eq 9) and the condition Aij )
-Aji (eq 26) is used. The variable εij then becomes

The choice of F ) 0, λij ) λji ) 0, and Aij ) -Aji makes
the present model different from the ZBV1 model only
in the expression for εij. The ZBV1 εij expression had a
more complex form than eq 30 because of an additional
term. Such a term depended on the pure compound
volumes, virial molar volumes, second virial coefficients,
and covolume parameters. The ZBV1 model did not
allow cancellation of the virial contribution.

In this study we tested first the effect of the simpli-
fication that the choice of F ) 0, λij ) λji ) 0, and Aij )
-Aji introduces with respect to the ZBV1 model,2 for the
cases where the ZBV1 model gives a very good correla-
tion of vapor-liquid equilibrium data. Those cases
correspond to Figures 1-7 of ref 2, i.e., to the systems
1-propanol (1)-2-methyl-1-propanol (2), benzene (1)-
octane (2), n-hexane (1)-benzene (2), propylene (1)-
propane (2), and ethylene (1)-ethane (2). The experi-
mental database and the EOS for the pure compounds
used here are the same than those used in a previous
work.2 For these cases, the new model produces a

correlation of results with a quality indistinguishable
from that obtained with the ZBV1 model. The pressure
vs composition graphs or the relative volatility vs com-
position graphs are not reproduced here because they
are practically identical with Figures 1-7 of the previ-
ous publication.2 For this test, we adjusted one param-
eter per isotherm. The resulting A12 values differ only
slightly from those previously reported for the ZBV1
model, as illustrated for some systems in Table 1, where
we also report for both cases the corresponding average
error in the calculated bubble pressure. As can be seen
in Table 1, both models represent equally well the
bubble pressure.

As shown in Table 1, the parameter A12 equals zero
for the system 1-propanol (1)-2-methyl-1-propanol (2).
Hence, the liquid and vapor phases are considered to
be ideal. In this case the experimental information used
by the model was only the pure compound critical
temperatures and pressures and the pure compound
saturation pressures at the system temperature.

Figure 2 shows the predicted activity coefficients as
a function of the liquid-phase composition x1, for the
saturated liquid phase of the system benzene (1)-octane
(2) at 348.15 K, using F ) 0, λij ) λji ) 0, and Aij ) -Aji.
Figure 2 illustrates that the simplest form of this model
is normally associated with a symmetrical pattern for
the activity coefficients of the saturated phases. The
ZBV1 model representation of the vapor-liquid equi-
librium of the system n-hexane (1)-ethanol (2) at 313.15
K was not satisfactory.2 Figure 3 compares the results
obtained with the ZBV1 model and with the present
model for this system. In comparison with the ZBV1
model, the present model represents better the data, at

Table 1. Sample Values of Parameter A12 for the Simplest Variant of the Present Model

ref 2 this work

system pressure range (atm) temp (K) A12 valuea AAD %a,b A12 valuec AAD %c

1-propanol (1)-2-methyl-1-propanol (2) 0.207-0.326 343.15 0 0.29 0 0.29
benzene (1)-octane (2) 0.191-0.853 348.15 0.1025 1.19 0.1162 0.96
n-hexane (1)-benzene (2) 0.515-0.758 333.15 0.6224 0.65 0.6308 0.60
propylene (1)-propane (2) 23.3-27.8 338.71 0.1441 0.04 0.1440 0.03

a A21 ) -A12. b AAD % ) average absolute value percent relative deviation in the calculated bubble pressure. c F ) 0, λ12 ) λ21 ) 0, and
A21 ) -A12.

æ̂i
Vyi ) æ̂i

Lxi i ) 1, N (29)

εij|F)0 ) Aij(υi - υj) (30)

Figure 2. Predicted activity coefficients for the saturated liquid
phase of the system benzene (1)-octane (2) at 348.15 K as a
function of the liquid-phase composition. A12 ) -A21 ) 0.1162, F
) 0, and λ12 ) λ21 ) 0.
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the cost of using two additional parameters. Because F
) 1, the correlation presented in Figure 3 satisfies the
virial limit for the mixture.

Figure 4 shows the predicted saturated liquid-phase
activity coefficients, as a function of the liquid-phase
composition, for the system hexane (1)-ethanol (2) at
313.15 K. These activity coefficients correspond to the
hexane (1)-ethanol (2) liquid at its bubble pressure. The
low correlation error shown in Figure 3 could only be
achieved with the high asymmetry of the activity
coefficients depicted in Figure 4. In fact, the present
work was motivated by the search for a modification of
the ZBV1 model,2 to make possible the representation
of highly asymmetric systems such as hexane (1)-
ethanol (2).

Figures 5 and 6 show results for the vapor-liquid
equilibrium of the high-pressure azeotropic system
carbon dioxide (1)-ethane (2) at 250 K. The model
produces the results shown in Figures 5 and 6 using a
single binary parameter. In this case the excess volume
composition dependence is quadratic, and hence the
activity coefficients of the saturated phases show sym-
metry. The results can be improved using more param-
eters, i.e., a nonquadratic composition dependence. In
such a case the resulting activity coefficients show
asymmetry.

Of special interest is the system diethylamine (1)-
methanol (2), which presents two azeotropes at 398.58
K.8 Figure 7 shows the experimental and the present
model bubble pressure as a function of the liquid-phase

composition. This system shows minimum and maxi-
mum pressure azeotropes. The correlation is satisfactory
using three parameters. Figure 8 shows the distribution
coefficient of diethylamine (1) as a function of its liquid-
phase mole fraction. The curve intersects the unity line
twice at nontrivial composition values. The fit of the
distribution coefficient is also satisfactory. Figure 9
shows the predicted saturated liquid-phase activity
coefficients for diethylamine (1)-methanol (2) at 398.58
K. Although the system does not follow a quadratic
mixing rule, this does not imply a high degree of non-
ideality; i.e., the activity coefficients differ moderately
from unity. From Figure 9, the system diethylamine
(1)-methanol (2) shows a special type of symmetry: the
curves seem to be symmetrical with respect to the point

Figure 3. Vapor-Liquid equilibrium for the system hexane (1)-
ethanol (2) at 313.15 K. Experimental data are as in ref 2. Thick
line: present model with A12 ) 0.7006, A21 ) -1.284, F ) 1, and
λ12 ) λ21 ) -1.107. Thin line: ZBV1 model.2

Figure 4. Predicted saturated liquid-phase activity coefficients
for the system hexane (1)-ethanol (2) at 313.15 K.

Figure 5. Relative volatility for the system carbon dioxide (1)-
ethane (2) at 250 K as a function of the liquid-phase composition.
Experimental data are as in ref 2. Solid line: present model with
F ) 0, A12 ) -A21 ) 1.855, and λ12 ) λ21 ) 0.

Figure 6. Bubble pressure for the system carbon dioxide (1)-
ethane (2) at 250 K as a function of the liquid-phase composition.
Experimental data are as in ref 2. Solid line: present model with
A12 ) -A21 ) 1.855, F ) 0, and λ12 ) λ21 ) 0.

Figure 7. Bubble pressure for the diazeotropic system diethyl-
amine (1)-methanol (2) at 398.58 K. 9: experimental data.8 Solid
line: present model with A12 ) -4.951, A21 ) -5.274, F ) 1, and
λ12 ) λ21 ) 1.
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located at x1 ) 0.5 and γ ) 1. Polyazeotropy does not
necessarily imply high nonideality.

For all systems studied it was possible to find a
liquidlike volume and a vaporlike volume for each pure
compound at the system temperature and pressure,
using the PR-EOS4 with the energy parameter adjusted
to give an exact reproduction of the pure compound
experimental vapor pressure. When one of these roots
does not exist, an extrapolation scheme has to be used
to obtain acceptable values of the fugacity coefficients.
This problem has not been addressed in the present
work.

In this work we have made no attempt to predict the
binary parameters from pure compound properties. The
present approach should be seen as a method to extend
to higher pressures the use of the ideal solution as a
reference system for the calculation of thermodynamic
properties that can normally be obtained with the
conventional one-fluid approach for EOSs. In its present
state of development, the model presented here is not
continuous in the vicinity of the gas-liquid critical point
of a mixture, and hence it should not be used at
conditions close to those of the critical gas-liquid state.
This discontinuity seems to be present even in the event
of having available extrapolation schemes to find proper
values of the phase volumes when necessary. However,
the calculation of liquid-liquid critical points as well
as the representation of gas-gas equilibria seems
possible.

Conclusions

In this work we have presented additional evidence
supporting the hypothesis of the impossibility to rep-
resent ideal solutions for EOSs using the one-fluid
approach. If this hypothesis is generally true, the clear
conclusion is that approaches that combine EOSs and
models of the excess Gibbs energy (gE) for liquids cannot
give the ideal solution limit when gE ) 0 for the
imported liquid model. To overcome such a drawback,
we have proposed here a modeling approach that, as in
a previous work,2 uses EOSs and meets the ideal
solution limit at zero values for the interaction param-
eters. In this work we have introduced a more flexible
composition dependence into the model, making it
possible to treat from symmetrical to highly asym-
metrical systems, without ignoring the effect of density
on the excess properties. The representation of the
binary vapor-liquid equilibrium we have obtained here
is satisfactory for all systems studied.

Appendix: Discussion of the Boundary
Condition for gE at Infinite Volume (P ) 0)

In the limiting condition of very large volume, at
constant temperature, the pressure decreases toward
zero as the system approaches ideal gas behavior at
infinite volume. Because the ideal gas mixture is an
ideal solution, all of the excess properties of the system
tend toward zero. This limiting behavior, used to obtain
eq 11 of the text, should not be confused with the
evaluation of excess functions at P ) 0 for liquid
mixtures using a pressure-explicit EOS able to repre-
sent the liquid and vapor properties. These EOSs
usually exhibit liquid-type volume roots at subcritical
temperatures at P )0. For the sake of discussion, we
consider the case that the temperature is such that for
every pure compound the corresponding EOS gives a
liquidlike root at zero pressure. From eqs 19 and 20 it
can be shown that as pressure tends to zero the liquid
τrj tends to

The ratio Pær/Pæj is equal to the ratio of the fugacity of
the liquid pure compound r over the fugacity of the
liquid pure compound j, both computed at zero pressure.
It can be shown9 that this ratio has a finite value which
generally leads to a nonzero excess energy at zero
pressure for the (liquid) mixture using eq 11. Hence, as
is the case for EOSs coupled to one-fluid mixing rules,
eq 11 is able to generate a nonzero excess Gibbs energy
at zero pressure, if pure compound zero-pressure liquid
roots exist either naturally or because of extrapolation
schemes. However, the mixing rule gives a zero excess
Gibbs energy for zero pressure at infinite volume, as
required. Following standard pure compound EOS
thermodynamics, we use the equivalence between the
fugacity coefficients calculated with volume-explicit or
pressure-explicit EOSs9, i.e.,

For pressure-explicit EOSs, the calculation of the fugac-
ity coefficient using the right-hand side of eq A-2 avoids

Figure 8. Distribution coefficient for the diazeotropic system
diethylamine (1)-methanol (2) at 398.58 K. 9: experimental data.8
Solid line: present model with A12 ) -4.951, A21 ) -5.274, F )
1, and λ12 ) λ21 ) 1.

Figure 9. Predicted saturated liquid-phase activity coefficients
for the diazeotropic system diethylamine (1)-methanol (2) at
398.58 K. A12 ) -4.951, A21 ) -5.274, F ) 1, and λ12 ) λ21 ) 1.

τrj|liq,Pf0 ) Arj ln[Pær/Pæj] (A-1)

ln æq ) 1
RT∫0

P(υq - RT
P ) dP )

∫υq

∞(zq - 1)
υq

dυq + (zq - 1) - ln zq (A-2)
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any confusion with respect to liquidlike volume roots.
At infinite volume, the pure compound fugacity coef-
ficients are all unity and, according to eq 19 of the text,
the τrj factors are all zero and eq 13 gives a zero excess
Gibbs energy.

A related topic, which is normally associated with the
departure from ideal gas behavior at low pressures, is
the deviation from ideal behavior caused either by self-
association or by cross-association (solvation) of the
molecules. Self-association should be taken into account
by the pure compound EOS that is used for the self-
associating component. Thus, the mixing rule is not
related to this effect. Cross-association in nonideal
mixtures, on the other hand, is accounted for by the
interaction parameters. However, cross-association in
ideal mixtures does not require interaction parameters
(e.g., first system of Table 1). An interesting case is that
of a mixture of carboxylic acids. These substances are
known to strongly self-associate even in the gas phase
at very low pressure. The present model takes this effect
into account first by the EOSs chosen for the pure
carboxylic acids. Such EOSs should be able to represent
well not only the vapor pressure curve but also the
important departure from the ideal gas law, for the pure
compound volume, at very low pressure and density.
The use of proper EOSs for the pure carboxylic acids
implies that the gaslike mixture volume, given by eq 8
of the text, will differ considerably from the ideal gas
volume at low pressures. This will be so even if the
computed values of εij (eq 14) are small for the pairs of
carboxylic acids. Hence, at gaslike densities and at
nonzero very low pressures, the model is able to
represent the departure from the ideal gas law. If the
interactions in the mixture of carboxylic acids are
similar to those in the pure fluids, the mixture will be
ideal and will depart from the ideal gas law at densities
where nonassociating systems do not. However, because
of the ideality of the mixture, the boundary condition
gE ) 0 will still be appropriate. For the case of carboxylic
acids forming nonideal mixtures, the association effects
will be accounted for by the pure compound EOSs and
by the interaction parameters. In this case the system
has nonideal mixture and nonideal gas nature up to very
low densities. However, even systems of carboxylic acids
reach full dissociation at extremely low densities, and
hence, even for such systems, the boundary condition
gE ) 0 is adequate.
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List of Symbols

a ) energetic parameter
Aij ) binary parameter
b ) covolume parameter
B ) second virial coefficient

g ) molar Gibbs energy
F ) factor to control the low-density behavior
n ) number of moles
N ) number of components
P ) absolute pressure
R ) universal gas constant
T ) absolute temperature
xi ) liquid mole fraction of component i
yi ) vapor mole fraction of component i
z ) compressibility factor

Greek Letters

Rij ) relative volatility of component i with respect to
component j ) yixjxi

-1yj
-1

λij ) binary parameter
γ ) activity coefficient
υ ) molar volume
æ ) fugacity coefficient

Superscripts

B ) virial
E ) excess property
id.sol. ) ideal solution
L ) liquid phase
V ) vapor phase
∧ ) in the mixture
- ) partial molar property

Subscripts

mix ) mixture
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