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In this work, solution strategies for the optimal design of nonredundant observable linear sensor
networks are discussed. The Greedy algorithm allows the problem only to be tackled for a subset
of optimization criteria. Particular deterministic techniques or general evolutionary strategies
are necessary to solve the problem for more complex objective functions. In this context, a
procedure based on the application of genetic algorithms (GAs) and linear algebra is presented.
Ad hoc operators are designed for the crossover and mutation operations because the classic
genetic operators perform poorly. In contrast to ad hoc deterministic codes, which find the design
solution for each specific criteria, this strategy allows the problem to be solved with different
objective functions using the same implementation. Furthermore, this code is extended to handle
multiobjective problems through a modification of only the selection operator. An industrial
example is provided to show the efficiency of the algorithm.

1. Introduction

Currently, the availability of accurate and complete
process knowledge is crucial for on-line plant optimiza-
tion, control, safety, and environmental issues. For this
reason, new sensors are located in the process, and
measurements are adjusted through the application of
data reconciliation procedures to enhance precision.

The structure of sensor networks is defined by the
type, amount, precision, reliability, and location of their
instruments. This structure has a great effect on the
quality and availability of process knowledge.

Different objectives are fulfilled in the optimal design
of sensor structures, for example, minimization of the
instrumentation costs, maximization of precision, esti-
mation of all or a required set of variables, etc. In any
case, a combinatorial optimization problem subject to
constraints arises that can be solved using either
deterministic or stochastic approaches.

Vaclavek and Loucka1 first addressed the problem of
sensor location using the concepts of graph theory. They
selected sensor structures for observing a set of required
variables for bilinear systems. Later, Madron2 used the
concept of spanning trees to obtain the minimum-cost
linear sensor network that allows for the observability
of all unmeasured variables. For the case of maximizing
the precision of the measurement system as a whole,
this author found suboptimal solutions by inspecting the
spanning trees of distance 1 from an initial structure.

The concept of graph cutsets was applied by Ali and
Narasimhan3,4 to design a nonredundant structure of
instruments for linear and bilinear systems that maxi-
mizes the least reliability of estimation among all
variables. These authors extended the first work to
select instruments for a redundant sensor network with
the same objective function.5

A strategy based on linear algebra was applied by
Kretsovalis and Mah.6 They developed a combinatorial
search to incorporate measurements into an observable
linear system. An objective function made up of a
weighted average of the cost of the measurements and
the precision of the estimates was minimized. Later,
Madron and Veverka7 proposed a methodology for
sensor placement that applies the Gauss-Jordan de-
composition of a matrix. They considered as objective
functions the cost and a measure of the overall inac-
curacy. The procedure gives suboptimal solutions.

Departing from graph theory and linear algebra
approaches, Bagajewicz8 formulated an optimization
problem to obtain cost-optimal network structures for
linear systems subject to constraints on precision and
robustness. In Bagajewicz and Sánchez,9,10 the duality
between the minimum-cost model and a proposed
maximum-precision model was stated for the design and
upgrade of instrumentation. A tree search procedure
with stopping criteria was applied to solve academic
problems in the aforementioned works, which aim at
developing the conceptual aspects of these problems.

Stochastic approaches were introduced recently for
solving sensor network design problems. Sen et al.11

developed an algorithm based on concepts of graph
theory and genetic algorithms (GAs). It allows for the
selection of flowmeters for nonredundant sensor net-
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works that optimize criteria of cost, reliability, or
estimation accuracy.

In this work, we first discuss the application of the
Greedy algorithm12 to tackle a particular type of sensor
network design problem. Then, an evolutionary strategy
is presented to design minimum-number sensor struc-
tures for linear processes that ensure the observability
of all unmeasured variables while optimizing single or
multiple criteria. The solution procedure is developed
using a genetic algorithm whose operators are modified
using linear algebra concepts. The strategy is applied
to locate flowmeters for an industrial steam metering
network.

2. Problem Formulation

Let us represent the operation of a process under
steady-state conditions by the following set of linear
equations

where D is the incidence matrix of dimension m × n,
z is the n × 1 vector of mass flowrates, x represents
the vector of measured variables, and u represents the
vector of unmeasured variables; A and B are compatible
submatrices.

The optimal design of nonredundant sensor networks
that ensures the observability of all unmeasured vari-
ables aims at selecting the set of g ) n - m flowrates
that should be measured to estimate the unmeasured
ones while optimizing a certain objective. Accordingly,
matrix D is divided into submatrix A (m × g) and
submatrix B (m × m), and vector z is partitioned into
vector x (g × 1) and vector u (n ×1).

The observability of all unmeasured variables for a
given set of measurements is guaranteed if the rank of
B is m.13 Thus, the aforementioned sensor network
design problem can be formulated as a general discrete
optimization problem

where f stands for a single or multiobjective optimiza-
tion criterion and q represents a binary vector such that
qi ) 1 if the process variable i is measured and qi ) 0
otherwise (i ) 1, ..., n).

Depending on the selected optimization criterion,
different solution strategies of the combinatorial opti-
mization problem are considered in this work. First, the
Greedy algorithm is applied to solve optimal designs
that fulfill special mathematical conditions. Then, evo-
lutionary techniques based on linear algebra and GA
are developed for more complex problems that involve
single and multiple optimization criteria.

3. Greedy Algorithm

Let us consider that a subset system S ) (E, θ) is a
finite set E together with a collection θ of subsets of E
that is closed under inclusion (that is, if N ∈ θ and
N′ ⊆ N, then N′ ∈ θ). The elements of θ are called
independent. A combinatorial optimization problem
associated with a subset system (E, θ) is the following:
Given a fixed weight w(e) g 0 for each e ∈ E, find an
independent subset θ that has the largest possible total
weight.

If S is a subset system in which, for any subset T ∈
E, every maximal independent subset in T has the same
cardinality, then S is a matroid. Consequently, the
Greedy algorithm included in Appendix A correctly
solves any instance of the combinatorial optimization
problem associated with S.14

For our purposes, let us assume that (1) E is the set
of columns of matrix D, that is, the set of columns of an
m × |E| matrix; (2) θ is the collection of linearly
independent sets of columns of D, that is, the collection
of matrices B of full rank; and (3) wi is the cost of each
flowmeter, ci , that can be located to measure the ith
mass flowrate.

The subset system S ) (E, θ) verifies the condition of
a matroid because all maximal linearly independent
subsets of a set of vectors E′ have the same cardinality.
In linear algebra, this cardinality is, in fact, called the
rank of the submatrix B′ defined by E′. Consequently,
the following combinatorial optimization problem can
be efficiently solved using the Greedy algorithm

Problem 3 arises as a particular case of the sensor
network design problem 2 when capital cost C is
considered as the objective function.

The Greedy algorithm is applied to determine the
minimum-cost flowmeter location for the simplified
ammonia network3 depicted in Figure 1, which involves
five units and eight streams. Its incidence matrix is

If the flowmeter cost vector is cT ) [300 350 400 330
270 310 280 370], the procedure builds the matrix of
unmeasured variables, B, by adding to the null matrix
the columns of D corresponding to variables [3 8 2 4 6]
one by one. These variables are associated with the most
expensive flowmeters and form an independent set of
columns of D. This condition is verified by matrix rank
calculations before each column is incorporated to B.
The optimal sensor network cost for this example is
$850.

In previous works,2 it was shown that, to solve
problem 3, sensors should be located on the chords of
the maximum-cost spanning tree of the process graph,

Dz ) Ax + Bu ) 0 (1)

min/max f(q)

s.t. rank(B(q)) ) rB ) m
(2)

Figure 1. Simplified ammonia network.

min
q

C ) ∑
i

n

ciqi

s.t. rB ) m
(3)

D ) [-1 1 1
1 -1

1 -1
1 -1 -1

1 -1 -1
]
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and a deterministic procedure is given to obtain the
solution. As matroid theory14 unifies graph theory and
linear algebra, we consider it valuable to pose the
problem in terms of matroids. The matroids can be
viewed as prototypes of independence systems and 0-1
integer programs with nice properties that allow ef-
ficient algorithms to be developed for the corresponding
optimization problems.

If the design purpose is now to maximize the sensor
system reliability Rs, defined by Maquin et al.15 as the
probability of estimating all variables, the following
optimization problem arises

where ri(t) ) [1 - pi(t)] is the reliability of a sensor at
time t and pi is its failure probability. Defining E as the
set of columns of matrix D, θ as the collection of linearly
independent sets of columns of D, and wi as the
reliability of each measurement, that is, (1 - pi), the
above design problem can also be solved using the
Greedy algorithm.

Let us consider again the process network illustrated
in Figure 1. The Greedy algorithm is applied to maxi-
mize the system reliability for a nonredundant sensor
structure. The vector of failure probability is fT ) [0.141
0.104 0.07 0.165 0.052 0.17 0.128 0.154]. In this case,
the optimal set of measurements corresponds to streams
[3 5 7], and the maximum system reliability is Rs )
0.769.

Limitations of the Greedy Algorithm. This pro-
cedure allows the optimal solution of the aforementioned
design problems to be obtained in a straightforward
manner, because the objective functions are such that
a constant weight can be associated with each member
of E for the same set of problem constraints. However,
several single and multiobjective criteria exist that do
not verify this condition.

Single Criterion. If among the objective functions we
consider, as an example, the measure of the overall
precision defined by Kretsovalis and Mah,6 the following
optimization problem results

where σ̂i
2 is the variance of the ith variable estimation.

If i is a measured variable (qi ) 1), then σ̂i
2 ) σi

2, where
σi

2 is the standard deviation of the ith measurement
error, but if i is an unmeasured variable (qi ) 0), then
σ̂i

2 depends on the σi
2 values of the measured variables

used to calculate it. In this case, the Greedy algorithm
can not be applied because σ̂i

2 does not represent a set
of constant weights.

In the same way, the maximization of the least
reliability among all variables,3 Rv, cannot be formu-
lated in terms of constant weights. This problem is
stated as follows

To optimize both aforementioned criteria, specific de-
terministic strategies16,3 and a GA approach11 have been
developed based on graph theory.

Multiobjective Criteria. Previously, the optimal selec-
tion of sensor structures that satisfy only one criterion
was formulated. However, as different objective func-
tions can be chosen, the designer should opt for one. To
take into account different optimization criteria simul-
taneously, the problem can be written as follows

where fa(q) (a ) 1, 2, ..., nof) represents each objective
function to be optimized. No solution vector q exists that
simultaneously optimizes all nof objective functions, but
there exists a set of solution vectors q that is superior
to the rest of the solutions in the search space when all
objectives are considered and is inferior to other solu-
tions in one or more objectives. Therefore, it is clear that
the concept of optimality in multicriteria optimization
deals with a set of solutions rather than a single
solution.

Dominated and Nondominated Solutions. A solution
q is said to dominate the other solution p if both of the
following conditions are true: (1) The solution q is no
worse (the operator < denotes worse and > denotes
better) than p in all objectives, or fa(q) </ fa(p) for all
a ) 1, 2, ..., nof. (2) The solution q is strictly better than
p in at least one objective, or fa(q) > fa(p) for at least
one a ∈ {1, 2, ..., nof}.

Considering a set P including nondominated solu-
tions, if there exists no solution in the search space that
dominates any member in the set P, then the solutions
belonging to the set P constitute a global Pareto-optimal
set.

4. An Evolutionary Technique

4.1. Motivation. If Greedy algorithms can not tackle
the design problem, two alternatives emerge to solve
it: (1) applying a deterministic strategy for each specific
criterion and (2) applying a stochastic procedure that
allows optimization of any single or multiple criteria.

As the second alternative is more flexible, in this
work, a new evolutionary technique based on GA18 is
presented that applies well-known concepts from linear
algebra. It is successfully applied to solve the non-
redundant sensor network design problem for any
optimization criteria.

4.2. Description of the Strategy. An evolutionary
technique is a probabilistic algorithm that maintains a
population of individuals P(t) ) {p1(t), p2(t), ...} for
iteration t. Each individual represents a potential
solution to the problem. Each solution pi

t is evaluated
to give some measure of its fitness. Then, a new
population (iteration t + 1) is formed by selecting the
individuals that fit better. Some members of the new
population undergo transformations by means of genetic
operators to form new solutions. There are unary trans-
formations (mutations) that produce new individuals by
a small change on a single individual, and higher-order
transformations (crossovers) that form new individuals
by combining parts from several individuals. The pro-
gram converges after some number of generations. The
best individual is considered a near-optimum solution.

max
q

Rs ) ∏
i)1

g

ri(t)qi

s.t. rB ) m
(4)

min
q

GI ) ∑
i)1

n

[σi
2qi + σ̂i

2(q)(1 - qi)]

s.t. rB ) m
(5)

max
q

min
q

Rv(q)

s.t. rB ) m
(6)

min
q

fa(q) a ) 1, 2, ..., nof

s.t. rB ) m
(7)
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For sensor network design, the solution is represented
by a fixed-length binary string, q, as in classical GAs.
Nevertheless, the basic genetic operators cannot be
applied to solve the design problems. The main draw-
back is that the feasibility of new population members
generated using these operators decreases significantly.
To overcome this problem, a new technique based on
linear algebra is proposed. The relevant features of the
new procedure are considered next.

4.2.1. Initial Population. In contrast to classical GAs,
we start with a feasible initial population that is
obtained by the following steps: (a) Any set of unmea-
sured variables is selected that satisfies the condition
that matrix B has full row rank. Thus, one feasible
solution of the problem is generated (q0). (b) Matrix D
is divided accordingly into two submatrices, A and B,
the first of which corresponds to measured variables.
(c) As matrix B has full rank, matrix B-1 exists; thus,
the vector u of unmeasured variables is formulated as

and the ith element of vector u can be evaluated as

(d) Matrix R contains the necessary information to
determine which measured and unmeasured variables
in q0 can be interchanged while preserving system
observability. The members of a feasible population are
defined by applying the following statement: A pair of
variables (ui, xj) can be interchanged if the coefficient
rij * 0.

As an example, let us consider a matrix D of dimen-
sion (3 × 6)

If q0 ) [1 1 1 0 0 0], then R is the following (3 × 3)
matrix

from which vector u is estimated as

where u1 corresponds to flow z4, u2 to z5, and u3 to z6. It
can be seen that feasible interchanges are (x1, u1),
(x2, u1), (x1, u2), (x2, u2), (x2, u3), and (x3, u3). Each
interchange originates a matrix B of dimension 3 × 3
of full rank.

4.2.2. Selection. Selection is based on the value of the
fitness of each member of the population. The roulette-
wheel selection strategy18 is used (proportional selec-
tion).

4.2.3. Crossover. Given two strings of feasible solu-
tions q1 and q2, a crossover operation is performed as

follows: (a) Compute two vectors, pxi and pui, to
store the ordinal position of ones and zeros for each
chromosome qi. (b) Define K ) {k | px1(k) * 0},
L ) {l | px2(l) * 0}, and H ) K , L. If at least one
element k in K and one element l in L do not both belong
to H, then

(c) If r1,i,j * 0 (for R1 associated with chromosome q1)
and r2sb * 0 (for R2 associated with chromosome q2),
then the first offspring adopts the elements of q2 in
positions (k, l); accordingly, the second offspring adopts
the elements of q1 in the same positions.

Let us suppose that two feasible parents are obtained
for the example presented in section 4.1. They are
represented by the strings q1 ) (1 1 1 0 0 0) and q2 )
(1 0 0 0 1 1). The corresponding Ri matrices are

The ordinal positions of the ones and zeros for each
chromosome are contained in the vectors

from which sets K, L, and H are obtained as K ) {1,2,3},
L ) {1,5,6}, and H ) {1}. The intersection set H
contains a variable only in position 1; thus, variables
in position 2 and 3 from q1 and in position 5 and 6 from
q2 can be considered for interchange. If the pair (2, 5)
is selected, then i ) pu1(5) ) 2, j ) px1(2) ) 2, s )
pu2(2) ) 1, and b ) px2(5) ) 2.

The coefficients r22 of R1 and r12 of R2 are inspected.
As they are not zero, the following offspring result:
o1 ) (1 0 1 0 1 1) and o2 ) (1 1 0 0 0 1).

4.2.4. Mutation. The mutation operation is performed
on a population member if its mutation probability
exceeds the value of the mutation probability parameter.
In this case, a measurement selected randomly is
replaced by the unmeasured variable of lower cost that
preserves the observability of the system, as explained
in section 4.1.

For the example in the aforementioned section, let us
consider the chromosome q0 ) (1 1 1 0 0 0); the
measured variable x1 is selected for the mutation
operation. It can be swapped with u1 or u2. If u1 is the
variable of lower cost, then the mutated chromosome is
q0
/ ) (0 1 1 1 0 0).
4.3. Design of Redundant Networks. The preced-

ing algorithm can be extended to the design of redun-
dant sensor networks, when a number s of sensors,
greater than the minimum number (g), is used to ensure
the observability of all unmeasured variables.

In this case, submatrices A and B corresponding to
measured and unmeasured variables are of sizes m × s
and m × (n - s), respectively. The constraint on
observability is verified if the rectangular matrix B has
exactly n - s linearly independent columns.

This fact guarantees that B has a left inverse B*
given by

u ) -B-1Ax ) Rx (8)

ui ) ∑
j)1

j)g

rijxj ∀i ) 1, ..., m; ∀j ) 1, ..., g (9)

D ) [1 -1 0 -1 0 0
0 1 -1 0 0 1
0 0 0 1 -1 0 ]

R )[1 -1 0
1 -1 0
0 -1 1 ]

[u1
u2
u3

]) [x1 - x2 + 0.x3
x1 - x2 + 0.x3
0.x1 - x2 + x3

]

set i ) pu1(l), j ) px1(k), s ) pu2(k), b ) px2(l)

R1 ) [1 -1 0
1 -1 0
0 -1 1 ] R2 ) [1 -1 0

1 -1 1
0 1 0 ]

px1 ) [1 2 3 0 0 0] pu1 ) [0 0 0 1 2 3]

px2 ) [1 0 0 0 2 3] pu2 ) [0 1 2 3 0 0]

B* ) (BTB)-1BT (10)
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which allows us to rewrite eq 8 as

If B is a square matrix (nonredundant case), then the
full row range also implies a full column range, and the
left inverse coincides with B-1.

In this way, R1 again contains the necessary informa-
tion to determine the measured and unmeasured vari-
ables that can be exchanged to preserve the feasibility
of the solutions.

4.4. Multiobjective Optimization. Several methods
based on a stochastic approach are available for solving
multiobjective optimization problems. Srinivas19 pro-
posed the NSGA (nondominated sorting genetic algo-
rithm). In this procedure, the solutions are ranked into
nondominated order, and a niche method is used to
maintain stable subpopulations of good points.

The selection method of the aforementioned evolu-
tionary algorithm is replaced by a nondominated sorting
procedure in conjunction with a sharing technique that
avoids the bias toward some Pareto-optimal solutions.
Before the selection is performed, the population is
ranked on the basis on an individual’s nondomination
level, which is found by mean of successive classifica-
tions in fronts. A front is a set of nondominated
solutions.

Once the first front is obtained, the solutions belong-
ing to it are ignored, and the next front is formed with
the solutions dominated by the first one. All solutions
in each front are assigned the same dummy fitness
value. Then, to maintain diversity in the population,
these nondominated solutions are shared with their
dummy fitness.

Sharing is achieved by dividing the dummy fitness
value of an individual by a quantity proportional to the
number of individuals around it. The population is then
reproduced with the shared fitness values. Crossover
and mutation remain without changes.

In this work, the sharing method is carried out by
means of the following sharing function20

where dij is the Hamming distance between a solution
i and another solution j.

The sharing function is then used to calculate the
degradation factor mi ) ∑j)1

nk Shij (where nk is the
number of individuals in the kth front).

Finally, the shared fitness is and this new shared

fitness is used to perform the selection procedure.
4.5. Examples and Results. The evolutionary tech-

nique is first applied to solve problem 5 for the case of
a steam metering network of a methanol synthesis
unit.21 The process flowsheet is illustrated in Figure 2.
It involves 11 units and 28 streams. From Sen et al.,11

data for costs, failure probabilities, and standard devia-
tions for measurement error are obtained and repro-
duced in Table 1. The evolutionary technique is run
using the parameters indicated in Table 2 for the GA.
The optimal set of measured variables and the objective
function value are presented in Table 3; they are in
agreement with those obtained using a graph-oriented
approach.11

Then, the optimization criterion is changed. The same
code and parameters are applied to maximize the least
variable reliability among all variables, Rv. Five differ-
ent optimal solutions arise for this design problem,
which are verified using complete inspection.

Furthermore, the procedure is applied to minimize the
instrumentation costs and to maximize system reli-
ability. Although these problems can be satisfactorily
solved by the Greedy algorithm, they are addressed
using the new approach to show its usefulness with
different objective functions. All results are included in
Table 3; they correspond to the global optimum, as was
verified by complete inspection and deterministic meth-
ods.

Figure 2. Steam metering network.

u ) -B*Ax ) R1x (11)

Sh(i,j) ) {1 - (dij/σshare)
2 if dij e σshare

0 otherwise
(12)

fi-sh )
fk

mi
(13)
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In Table 4, all objective functions values for each
optimization criterion are shown. For this particular set
of instrumentation data, it can be seen that a conflict
exists between the different objectives, except for the
cost and overall precision case.

For example, for a nonredundant network, the opti-
mum design corresponds to a cost of 555.5, with a

reliability Rs of 0.141, whereas the system reliability
value is 0.235, almost double, for the most reliable
network, which has a cost of 1178.2. The same analysis
can be done for cost versus Rv.

If combinations of cost (C) and system reliability (Rs)
criteria are considered simultaneously, then a multi-
objective optimization is performed with the NSGA code.
The set of Pareto-optimal solutions is shown in Table
5. As can be observed, the cost is higher than that
corresponding to a single objective, whereas the reli-
ability of the network decreases as compared with that
of the most reliable network.

The genetic algorithm parameters are shown in
Table 6.

5. Conclusions

In this paper, strategies for the design of nonredun-
dant sensor networks are discussed. The Greedy algo-
rithm allows specific types of problems to be solved, for
instance, when cost and system reliability are consid-
ered as the objective functions. To perform instrumen-
tation design efficiently for any optimization criteria,
an evolutionary technique based on GA is presented.
The classical genetic operators are modified to avoid
finding many infeasible solutions. New crossover and
mutation operators are designed using concepts from
linear algebra. A nondominated sorting procedure in
conjunction with a niche formation technique are imple-
mented to solve multicriteria sensor design problems
in which a set of multiple Pareto-optimal solutions must
be found. Application results are provided for an indus-
trial steam metering network.

The main advantage of the evolutionary approach is
that optimal or near-optimal solutions can be found in
polynomial time, independently of the computational
complexity of the problem. The methodology is very
flexible, and alternative objectives or multiojectives
functions can be easily used.

Appendix A: Greedy Algorithm12

The solution procedure of this algorithm is as follows:

Table 1. Data for Steam Metering Network

variable pi σi ci

1 0.141 0.0215 3.7
2 0.174 0.025 4.5
3 0.104 2.8 132.2
4 0.07 2.749 129.2
5 0.174 1.332 65.3
6 0.096 2.807 132.4
7 0.164 0.058 5.0
8 0.165 4.101 193.9
9 0.055 0.0215 2.06

10 0.099 1.31 62.8
11 0.153 0.3715 20.2
12 0.092 1.682 80.0
13 0.052 2.782 130.4
14 0.154 2.296 109.8
15 0.095 1.5 71.6
16 0.116 0.591 29.7
17 0.077 0.8182 39.5
18 0.08 0.4057 20.4
19 0.099 0.1987 11.1
20 0.074 0.2625 13.6
21 0.071 2.182 102.9
22 0.094 0.1362 8.1
23 0.170 0.0648 6.3
24 0.066 1.166 55.5
25 0.088 2.136 101.0
26 0.143 2.033 93.7
27 0.128 1.769 84.7
28 0.075 1.806 85.4

Table 2. Genetic Algorithm Parameters for the Single
Criterion Optimization

parameter value

population size 50
crossover probability 0.99
mutation probability 0.50
number of generations 20

Table 3. Single Criterion Optimization Results

objective
criterion

objective
function

value measured variables

GI 85.00 1, 2, 7, 9, 10, 11, 16-24, 27, 28
Rv 0.5282 3, 4, 5, 8, 9, 10, 13, 15, 16, 17, 22-28

3, 4, 6, 8, 9, 10, 11, 13, 15, 17, 22-28
3, 4, 6, 8, 9, 10, 12, 13, 15, 17, 22-28
3, 4, 6, 8, 9, 10, 13, 15, 16, 17, 22-28
1, 3, 4, 8, 9, 10, 11, 13, 15, 17, 22-28

C 555.5 1, 2, 7, 9, 10, 11, 16-24, 27, 28
Rs 0.235 3, 4, 6, 9, 10, 12, 13, 15, 17-22, 24, 25, 28

Table 4. Objectives Values for Each Optimization
Criterion

GI Rv C Rs

GI 85 0.265 555.5 0.141
Rv 245.9 0.528 1291.3 0.151

278.8 1349.0 0.116
285.2 1408.8 0.124
282.3 1358.5 0.137
231.8 1220.3 0.110

C 85 0.265 555.5 0.141
Rs 268 0.376 1178.2 0.235

Table 5. Pareto Optimal Set

reliability cost measure variables

0.1672 741.96 1, 4, 7, 9, 10, 11, 13, 15, 16-23, 28
0.1681 773.66 1, 2, 4, 7, 9, 10, 13, 15-24, 28
0.1457 616.06 1, 2, 4, 7, 9, 10, 11, 15-23, 28
0.1780 790.16 1, 4, 7, 9, 11, 12, 13, 15-20, 22, 24, 27, 28
0.1671 666.46 1, 2, 7, 9, 10, 11, 13, 15-22, 24, 28
0.1539 647.06 1, 2, 4, 7, 9, 10, 11, 15-20, 22, 24, 27, 28
0.1386 564.46 1, 2, 7, 9, 10, 11, 16-24, 26, 28
0.1551 664.26 1, 2, 4, 7, 9, 11, 12, 15-20, 22, 24, 27, 28

Table 6. NSGA Parameters

parameter value

population size 50
crossover probability 0.7
mutation probability 0.10
number of generations 300
σsh 0.4
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; I set with final solution

; E set of columns of matrix D (m x |E|)
; e any element of E

; θ collection of linearly independent sets of
columns of D

begin

I : ) L

while E * L do

begin

let e be the element of E that has the
largest/smallest weight

remove e from E

if I + e ∈ θ, then I :) I + e

end

end
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