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Abstract We study the p-spectrum of a locally symmetric space of constant curva-
ture 1"\ X, in connection with the right regular representation of the full isometry
group G of X on LZ(F\G)TP, where 7, is the complexified p-exterior representa-
tion of O(n) on AP (R")c. We give an expression of the multiplicity d; (p, I') of
the eigenvalues of the p-Hodge—Laplace operator in terms of multiplicities n () of
specific irreducible unitary representations of G.

As a consequence, we extend results of Pesce for the spectrum on functions to the
p-spectrum of the Hodge—Laplace operator on p-forms of I"\ X, and we compare p-
isospectrality with 7,-equivalence for 0 < p < n. For spherical space forms, we show
that t-isospectrality implies t-equivalence for a class of t’s that includes the case
T = 1,. Furthermore, we prove that p — 1 and p + 1-isospectral implies p-isospectral.

For nonpositive curvature space forms, we give examples showing that p-
isospectrality is far from implying 7,-equivalence, but a variant of Pesce’s result
remains true. Namely, for each fixed p, g-isospectrality for every 0 < g < p implies
74-equivalence for every 0 < g < p. As a byproduct of the methods we obtain several
results relating p-isospectrality with 7,-equivalence.
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1 Introduction

Let X = G/K be a homogeneous Riemannian manifold where G = Iso(X) is the
full isometry group and where K C G is a compact subgroup. We shall consider
discrete cocompact subgroups I" of G acting on X without fixed points, so that I"\ X
is a compact Riemannian manifold. Under the right regular representation R of G,
L%(I'\G) splits as a direct sum

LAI\G) =) _nr(n)Hz

neG

of closed irreducible subspaces H, with finite multiplicity n (;r). Here G denotes
the unitary dual of G. Let (z, V;) be a finite-dimensional complex unitary represen-
tation of K and consider the associated vector bundle

E. =G xV; — G/K (1.1)
T

endowed with a G-invariant inner product (see Sect. 2.1). Let A denote the
Laplace operator acting on sections of the bundle '\ E; — I'\ X (see Sect. 2.1).

In [15], Pesce considers spectra of Laplace operators on I"\ X, in connection with
the right regular representations R of G on the space

L*(I'\G)r := Y _ np(w)Hy. (1.2)

neGy

where Gr ={r € G: Homg (7, ) # 0}. In the terminology in [15], two sub-
groups 17, I'> of G, are said to be t-representation equivalent or simply t-equivalent,
if the representations L2(1"1\G)r and LZ(I“Z\G)r are equivalent, that is, np (7) =
np, () for any 7w € Gt. In the case when 7 = 1, the trivial representation of K,
Pesce calls such groups K -equivalent. In analogy, I'1\X and I3\ X are said to be
T-isospectral if the spectra of the Laplace operators Ay ;, A, ; are the same.

The question of comparing equivalence (resp., T-equivalence) of representations
with isospectrality (resp., T-isospectrality) has been studied by several authors in re-
cent years (see, for instance, [2, 3, 5, 8, 14, 15, 18]). One has that if two groups I, I>
are t-equivalent, then I'1\X and I>\X are t-isospectral (see [15, App. Prop. 2]
or Proposition 2.5). Furthermore, Pesce has shown for constant sectional curvature
space forms that the converse holds for t = 1, that is, if the manifolds 77\ X and
I\ X are isospectral on functions, then 7 and I are K -equivalent (see [15, Sect. 3,
Prop. 2]).

In this paper, again in the context of spaces of constant sectional curvature, that
is, of compact manifolds covered by S”, R"?, or H", we will study the case when
T = 1), the complexified p-exterior representation of O(n) on AP (R")¢; thus, Ar;
is the Hodge—Laplace operator acting on p-forms. That is, we study the p-spectrum
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of I'\ X in connection with the representation LY \G),p. A main tool will be the
following formula, valid for any compact locally symmetric space I"\ X and any rep-
resentation 7 of K, expressing the multiplicity of an eigenvalue A of A in terms
of the coefficients np(;r) for m € G;:

dy(t.= > np(r)dim(Homg (V;, Hy)).
neazk(c,n)zk

Here A(C, ) denotes a scalar depending only on & (see Sect. 2.1). In the case at
hand this formula reduces to

dy(t.[)= Y nr), (1.3)

meGy

where 61,;\ = 6, N{r e G: MC,m) = X}.Iherefore, Spec, (I"\X) is determined
by the multiplicities n () for 7 in the sets Gy ;.

We will use a general approach that applies to the three cases to be considered. In
light of formula (1.3), the goal is to determine the sets Gf, then compute A(C, 1) in
each case, and then, for each given A € R, to find the set Gr . For general t € K this
can be complicated, but it can be carried out for some choices of t.

As a consequence of the method, by choosing T = 7, we will give a generalization
of results in [15] for the p-spectrum of the Hodge—Laplace operator of I"\ X, compar-
ing p-isospectrality with 7,-equivalence. We shall see that, for nonpositive curvature,
p-isospectrality is far from implying z,-equivalence, but a variant of Pesce’s result
remains true. We shall consider separately the three cases, spherical, flat, and hyper-
bolic space forms, although they will all share common features.

The case when X has positive curvature has been studied by several authors. Most
of the results in this case are included or implicit in the work of Tkeda—Taniguchi [11],
Ikeda [9], Pesce [14, 15], Gornet—-McGowan [8], and others. However, we will give
a comprehensive presentation that allows us to extend the results to other choices
of t (see Proposition 3.3) and illuminates the cases when the curvature is zero and
negative. Let Ny denote the nonnegative integers and, for | < p <n and k € N, set

Ak =k +k(n—D)+(p—-1Dn—p), E =y keN) (1.4)
and & = &y41 = {0}.
Theorem 1.1 Let I" be a finite subgroup of O(n + 1) acting freely on an odd-
dimensional sphere 8" withn =2m — 1 and let 0 < p <n.
If L e Specp(F\S”) then . € £, UEp i1 and &, and &1 are disjoint sets. Fur-
thermore, for each A € £, U Ep 1, we have
nr(mwa, ,5)  ifAesy,
dy(p.T) = b _
nr(Ta .8) ifAE€Ep4.

Here T Ag 8 is a specific irreducible representation of O(n + 1) (see (2.7), (2.8))
where 7TAk_p‘5|S()(n+1) has highest weight Ay p =key + & + -+ + &p, k is given
by (3.6), and § € {0, £1} is uniquely determined by ).
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In particular, if . € Specy(I"\S") then A € {k(k +n — 1) : k € No} with
d (0, I') =np (ke ,8), (1.5)

where Ty, 5 restricted to SO(n + 1) has highest weight ke (see Sect. 2.2).
As a direct consequence:

Corollary 1.2 Let I, I'> be finite subgroups of O(n + 1) acting freely on X = S".
Then

(i) (see [8, 11, 15]) I\ X and I3\X are p-isospectral if and only if I'1 and Iy are
Tp-equivalent.

(1) If N\X and I>\X are p — l-isospectral and p + l-isospectral, then they are
p-isospectral.

We note that both in the theorem and in the corollary, the discrete subgroups
I’ and I}, i = 1,2 act freely on S”; hence, they must necessarily be included in
SO(n + 1); thus, all the manifolds occurring are orientable.

In [9], Ikeda constructed for each p, lens spaces g-isospectral for every 0 <g < p
but not p 4 1-isospectral. More recently, Gornet and McGowan [8] gave a very useful
survey on the results of Pesce and Ikeda and, by computer methods using Ikeda’s
approach, exhibited a rich list of lens spaces that are p-isospectral for some values
of p only. Their list (see p. 274) again shows no simple ‘holes’ in the set of values
of p for which there is p-isospectrality. This is consistent with the assertion in (ii) of
the corollary that shows that this is valid in general for all spherical space forms. As
noted in [8], the examples in [8] are 7,-equivalent for these values of p only.

By following the general method described above we shall prove the following
results for flat and negative curvature compact locally symmetric spaces.

Theorem 1.3 Let I" be a Bieberbach group, that is, I is a discrete, cocompact sub-
group of Iso(R™) >~ O(n) x R" acting without fixed points on R". Let A denote the
translation lattice of I' and let A* be the dual lattice of A. The multiplicity of the
eigenvalue A = 4m?||v||?, v € A*, is given by

nr(ty) = Bp(I'\R") ifr=0,
d;(tp, I) = o (1.6)
nr(, Jipa) T T i) A= 0.

Here o, is the p-exterior representation of O(n — 1) and T, and Tg,,r are certain
unitary irreducible representations of Iso(R") (see (4.2)).

Theorem 1.4 Let G =SO(n, 1), K =0(n), I' C G be a discrete subgroup acting
without fixed points on H".
IfO0<p<n,and A =0, then

nrsypp) +10rUs, 1 p,) ifp#5
do(tp, I') = B, (F\H") = PPy p-10p-1 :
2

np(D%'EBD%_) ifp=
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If A #£0, then
nr(mw +np(r i 2
di(zp, ') = re "P*\/Pzzz‘*) re "P—l*\/"’,z)—l_*) Ak
nr(n,, sja=n) tnr(n,, | ga@=) ifp=35=m.

In tlhe expressions above, o, is the p-exterior representation of M ~0O(n — 1), pp :=
n—

5 —min(p,n — 1 — p) and 75, v, Jo, v, and DI ® D, denote specific unitary
2 2
irreducible representations of G (see Sect. 5).

In the proofs of Theorems 1.3 and 1.4 we use the description of the unitary duals of
G in terms of induced representations. It will turn out that, generically, there will be at
most two irreducible representations in G contributing to the multiplicity of a given
eigenvalue A and these multiplicities will be linked to each other for p and p 4 1.
Using this fact, one first shows that O-isospectrality implies 7g-equivalence, then one
realizes that 0- and 1-isospectrality, taken together, imply 79- and tj-equivalence,
taken together. In this way, one can build an interval from O to p and obtain the
assertion in the following theorem that gives a generalization of Pesce’s result for
nonpositive curvature space forms.

Theorem 1.5 Let X = G/K be a simply connected symmetric space of constant
nonpositive curvature where G is the full isometry group of X. Let 17, I> be discrete
cocompact subgroups of G acting without fixed points on X. For each 0 < p <n,
IN\X and I>\X are g-isospectral for every 0 < q < p if and only if I'1 and I, are
T4-equivalent for every 0 < g < p.

From Theorem 1.5 and its proof, one can derive several consequences relating p-
isospectrality and 7,-equivalence (see Proposition 4.5, Corollary 4.6 in the flat case
and in the negative curvature case). Denote by B,(M) the p-th Betti number of M.
If X =R" or X =H", given I, I> discrete cocompact subgroups of G = Iso(X)
acting without fixed points on X, we show

e If I, I are 7y-equivalent, then I\ X and 5\ X are 0- and 1-isospectral.

Example 4.8 gives two 4-dimensional compact flat manifolds that are 1-iso-
spectral but not 0-isospectral; hence, I, I'> are not 71-equivalent.

o If I, I; are 7, 1-equivalent (or 7,,_;-equivalent) and 7\ X and I3\ X are p-iso-
spectral, then I and I are T,-equivalent.

o If I, I; are T, and T, 1-equivalent and B,(I'1\X) = B,(I2\X), then I, I3
are Tp-equivalent. Hence 1\ X and I3\ X are p — 1, p and p + 1-isospectral.

e If I\X and I5\X are p-isospectral for every p € {1,2, ..., k} and they are not
0O-isospectral then I, I are not t,-equivalent for any p € {0,1,2, ...,k + 1}.

In Example 4.10 we give two flat 8-manifolds that are p-isospectral for
p=1,2,3,5,6,7 but not for 0, 4, 8; hence, the corresponding groups cannot be
Tp-equivalent for any p € {0, 1,2, ..., 8}. Similarly, Example 4.9 gives two flat 4-
manifolds that are p-isospectral for p = 1, 3 only. Thus, these pairs of Bieberbach
groups cannot be t,-equivalent for any 0 < p < 4.
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The examples we give in the flat case show that, a priori, the theorems cannot
be improved substantially. In the hyperbolic case, similar examples should exist but
their construction seems much more difficult. In general, little is known about the
multiplicities n ().

The authors wish to thank Peter Gilkey for very useful comments on a first version
of this article and the referees for a careful reading of the paper that allowed us to
correct several minor errors.

2 General Setting and Preliminaries

Let X = G/K be a simply connected Riemannian symmetric space, where G is the
full isometry group of X and K is the isotropy subgroup of a pointin X.Let I' C G
be a discrete cocompact subgroup acting freely on X; thus, the manifold I\ X inherits
a locally G-invariant Riemannian structure. We shall be interested in the cases when
X is a space of constant sectional curvature:

e X=5"(G,K)=(Om+1),0(m);
e X =R",(G,K)=(0(n) xR", 0(n));
e X=H", (G, K)=(SO0(n,1),0(n)).

The embedding of O(n) in SO(n, 1) in the third case is the standard one in S(O(n) x
o(1)).

2.1 Homogeneous Vector Bundles

Given (7, V;), a unitary representation of K, we consider the homogeneous vector
bundle E; = G x; V; of X. This is constructed as the quotient of G x V; under the
right action of K given as (x, v) - k = (xk, 7(k~")v). We denote by [x, v] the class
of (x,v) € G x V; in E; and by (E;)yx = {[x,v] € E; : v € V} the fiber of xK.
The full isometry group G of X acts on E; by g[x, v] =[gx, v] and sends (E;). kg to
(E¢)gxk linearly. We equip E; with the unique unitary structure which, at the fiber
of eK, coincides with the unitary structure of V; and such that the action of G is
unitary. This homogeneous vector bundle is natural in the sense that an isometry g
of X gives an isomorphism of the complex vector spaces (E;)xg and (E;)gyk that
preserves the unitary structure.

Let I"*°(E;) denote the space of smooth sections of E;. Given ¢ € " (E;),
we have that ¥ (xK) = [x, f(x)], with f in C®°(G; 1), the set of smooth functions
f: G — Vg such that f(xk)=t(k~") f(x). Conversely, any f € C*®(G; t) defines
an element v € I"°°(E;). The group G acts on I"*°(E;) on the leftby (g-¢)(xK) :=
gV (g 'xK) =glg”"x, f(g”' 0] =1Ix, f(g”'x)], and hence on C*(G; ) by (g -
N = feg .

Let I" be a discrete cocompact subgroup of G that acts freely on X. We restrict
to I" the left actions of G on X = G/K, E,, '*°(E;), and C*(G; t). The space
I'\ X is a compact Riemannian manifold and I"\ E is a natural homogeneous vector
bundle over I'\ X. The space of smooth sections I"°°(I"\ E;) of this vector bundle
is isomorphic to the space C*°(I"\G; 1) of left I'-invariant functions in C*°(G; 7).
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We denote by L>(I"\E;) the closure of C*°(I"'\G/K; t) with respect to the inner
product

(fi. )= /F \X( fi(0), fo(x))dx.

The Lie algebra g of G acts on C*°(G; 1) by

d
(X Hx)= d_‘ f(exp(—1X)x)
Lo

for X € gand f € C*°(G/K; 7). This action induces a representation of the universal
enveloping algebra U (g) of g. If G is semisimple we let C = ZXl2 € U(g) where
X1, ..., X, is an orthonormal basis of g. In this case, C is called the Casimir element.
When G = Iso(R"), thus X =R”, we let C = Z?:l Xl.2 € U(g), where X1, ..., X,
is an orthonormal basis of R". In both cases, the element C does not depend on the
basis.

The element C defines a differential operator A, on C*°(G; t). This operator
commutes with the left action of G on C*°(G; 1), in particular with elements in I,
thus A; induces a differential operator A, r acting on smooth sections of I'\ E.

Proposition 2.1 Let X = G/K be an irreducible simply connected Riemannian sym-
metric space of constant curvature and denote by (t,, \"(C")) the p-exterior rep-
resentation of K = O(n), for any 0 < p <n. Then A,  coincides with the Hodge—
Laplace operator on complex-valued differential forms of degree p.

We now recall some notions from the Introduction that will be the main object of
this paper.

Definition 2.2 Let t be a unitary representation of K. Let I'; and I, be two cocom-
pact discrete subgroups of G acting freely on X. The spaces I'1\X and I\ X are
said to be t-isospectral if the Laplace type operators A, r, and A; r, have the same
spectrum. Here, we shall just say that the spaces are p-isospectral if T =t,.

Given I" a discrete cocompact subgroup of G acting freely on X, we consider
the right regular representation R = IndIQ(l r) of G on L3I \G). This represen-
tation decomposes as an orthogonal direct sum of closed invariant subspaces of finite
multiplicity

LAI\G)= ) _nr(n)Hy @D

neG

where G is the unitary dual of G and, for each 7w € G , nr () denotes the multiplicity
of 7 in this decomposition. Note that if G is noncompact then, generically, H, will
be infinite dimensional. R N

Following the notation in [15], we let G; = {m € G : Homg (7, ) # 0} and we let
Rr ¢ be the unitary subrepresentation of Ry given by

L(I\G)x = ) nr(n)Hx. 22)

neCGy
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Definition 2.3 (see [15]) Let 7 be an irreducible unitary representation of K. Let I
and 1> be two discrete subgroups of G acting freely on G/K. Then I'] and I» are
said to be t-equivalent if the representations R, ; and R, . are equivalent, that is,
ifnp () =np, () forevery w € 6f.

Proposition 2.4 If A € R, the multiplicity d, (zt, I') of the eigenvalue ) of A, is
given by

dy(t.= > np(r)dim(Homg (V;, Hy)). (2.3)
ne@:k(C,n):k

Proof This result is well known. We sketch the proof for completeness. One has
amap ¢ : C*(I'\G) x V; — C®(I'\G, V;) given by ¢ (f,v) = f(g)v. Thus ¢
induces a homomorphism ¢ : C*(I'\G) ® V; — C>®(I'\G, V;) that is actually an
isomorphism and preserves the K -action. Indeed,

P(Ri f. T (k)v)(g) = f(gk)T(k)(v) = T (k) f (gk)v
=1(k)p(f.v)(gk) = (k- ¢(f.v))(g).
Hence, ¢ sends K -invariants isomorphically onto K -invariants; thus,
(C®(N\G) ® Vi) ¥ = C¥(M\G. Vo)¥ = C®(I\G: 1) = I™®(I'\E).
Now,

(=G @ V2) =3 nrm)(HE @ V)" = np(r) Homg (Vi HE),
7eG 7eG

where H2° denotes the set of smooth elements in H,. Thus, the eigenspace
L*(I'\E;);. of C in L>(I'\ E;) can be written as

L*(I'\E;),~ Y. np(r)Homg (V;, Hy).
7eGAn(C,m)=A O

From formula (2.3) one sees that the only representations in G that can contribute
to the multiplicity of the eigenvalue A are those in G;+. As a direct consequence we
have that:

Proposition 2.5 Let Iy and I, be discrete cocompact subgroups of G acting freely
on X.If I't and I, are t-equivalent then I''\ X and I\ X are t*-isospectral.

2.2 Unitary Dual Group of the Orthogonal Group
If X is a symmetric space of constant curvature, then either X = §”, X = R", or

X = H". In all three cases we have K >~ O(n). We will need some well-known facts
about the irreducible representations of O(n).
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Table 1 Root systems for so(n)

s02m +1) s0(2m)
Roots +e;ite; (i # ) e tej (i #))

+e;
Positive gxej (<)) gxej(i<j)
roots o

l
Simple g —¢&ir1 1<i<m) g —éeip1 1<i<m)
roots em Em_1 -+ Em

We first recall the root system of the complex simple Lie algebra so(n, C). Let

m
h= {H = Zihj(E2j—l,2j —Eyj2j-1):hjeCy,
=

where E; ; denotes the matrix with entries 1 in the (i, j)-th place and O elsewhere.
Then b is a Cartan subalgebra of so(2m, C) and also of so(2m + 1, C) if we add a
zero row and a zero column at the end. For H € b, set¢;(H) =hj for1 < j <m. We
consider the inner product (,) on hr obtained by ﬁ times the restriction of the
Killing form on g, and its dual form on h]’&. The root systems of so(2m + 1, C) and
s0(2m, C) with respect to h and (, ) are of type B,, and D,,, respectively. We list the
roots in Table 1.

The finite-dimensional irreducible representations of a complex simple Lie alge-
bra are characterized by their corresponding highest weights. We will denote them
by P(g).

We have

m

ci € ZViorc e%—l—ZVz’,and

Q== =Cp-1 = ol

P(so(2m)) = i

i=1

P(so@2m + 1)) = {Zciei :
i=1

ci €LV orc,-e%—i—ZVi,and }

6’12022"'26m—126m20-

The irreducible representations of so(n) are in a one-to-one correspondence with
those of the simply connected Lie group Spin(n). In the case of SO(n), the highest
weights of the irreducible representations are given by

m

P(SO(n)) = {Zcisi e P(so(n)) : ¢; eZVi}. (2.4)
i=1

Example 2.6 Set A, = Z?g}(p’n_p) i € P(SO(n)) for 0 < p <n.If p # 3, then

A is the highest weight of the p-exterior representation on /\” C" of SO(n). These

representations are irreducible. The m-exterior power representation A" (C>") of

SO(2m) decomposes as /\"! (C*y @ \"(C?™), where N} (C*™) are irreducible and

have highest weights Z;'-:l] gj £ &m.
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We now describe the irreducible representations of the full orthogonal group O(n)
in terms of the irreducible representations of the special orthogonal group SO(n). Let

—1d, if n is odd,
80 = 2.5)

[fn- ] ifniseven.

Then O(n) = SO(n) U g9 SO(n), thus we will define the representations of O(n) on
each component, SO(n) and go SO(n).

For A € P(SO2m + 1)) and § = %1, let (w4, V) be the representation of
SO(2m + 1) with highest weight A. Then we may define a representation (45, V)
of O(2m + 1) on V by setting, for g € O2m + 1),

if SOQ2 1),
7a5(8)() = {”A(g)(v) g es0em D 2.6)
dma(gog)(v) if g € goSOR2m + 1).

For A = Z'}Ll cjej € P(SO(2m)) (cj € Zforall jand ¢y > -+ > cpu—1 = |cml),

we denote by A= Z';':_ll cjgj — cmém € P(SO(2m)). Let (w4, Va) be the irre-
ducible representation of SO(2n) with highest weight A. If I, (g) = goggo, then
I¢, defines an automorphism of SO(2m) and one can see that (w4 o I,,, V4) has
highest weight A. Thus, there exists a unitary operator Ty : V4 — V% such that
Tho(mpolg)(g) =mz(g)oTy for every g € SO(m). Furthermore, (74 o Iy, V)
is equivalent to (7 4, V) if and only if ¢, = 0.

If A € P(SO(2m)) is such that ¢;,, =0 and § € {£1}, we define a representation
a5 of O(2m) on V4 as

@), if g € SO@m),
7a.5(8)(W) = {“ S e e 27
8T x(wa(gog)(v)), if g€ goSOQ2m).

Note that this definition depends on the choice of T4 since —T, is another intertwin-
ing operator between 74 and . However, we have m4 s ~ w4, s ® det.

If A € P(SO(2m)) is such that ¢,;, > 0, we set § = 0 and define the representation
7,0 of O(2m) on V4 ® V5 as follows.

7.0) (0 ) = (Ta(@) (V). mx ()W), if g € SO2m), 2.8
AV (ra(gog)v malgon)v). if g € g0SO@m).

In particular, 7 4 o(go) (v, v') = (v/, v); thus, (V4 & V1, A 0) is irreducible.
In the next theorem we describe the unitary dual of G = O(n) (see, for in-
stance, [7]).

Theorem 2.7 We have
O@m+1) = {masasin(26): AeP(SOQm+1)),5=+1},

O@m) = {4 asin (2.7): A € P(SOQ2m)), ¢,y =0,8 =+1}
U{ma,0asin(2.8): A€ P(SO@2m)), cpm > 0}.
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Example 2.8 We denote by (7, /\p (C™)) the complexification of the p-exterior rep-
resentation of the canonical representation of O(n) on R". We have that 7, is irre-
ducible for every value of p. Furthermore, 7, >~ 7,_, ® det for any 0 < p < n, where
the intertwining operator is given by the Hodge star operator.

Recall that A, = Zi.n:h;(p’”*p) g € P(SO®)). In the notation of Theorem 2.7, if
n is odd we have 7, ~ A, (—1)P and, for n even, Ta > 7TA%,0- To write 7, € O/(Z\m)
as (2.7) for p # m, we must fix an intertwining operator TAp. For 0 < p <m, we
write A”(C?") = Wy @ W), where Wy (resp., W) is the subspace of A\ (C>™)
generated by e;; A--- Ae;j, where 2m ¢ {iy, ..., ip} (resp., 2m € {ij, ..., ip}). Itis not
hard to check that T, := Idw, @ (—Idw, ) satisfies T4, o (4, 0 Ig,)(8) = T, (g)o
TAp for every g € SO(2m). Finally, one has that 7, >~ A1 for 0 < p <m and
Tp XA, -1 form < p <n.

We conclude this section by stating two branching laws for orthogonal groups that
will be needed in the following sections (see [7], for instance).

Proposition 2.9 Let 1, and o, be the p-exterior representations of O(n) and
O(n — 1), respectively. Then, for any 0 < p < n, we have

Tplom-1) =0p B Op_1, (2.9)

with the understanding that o_1, o, are the zero representations of O(n — 1). That is,
70l0m—1) = 00 and Ty |0(n—1) = On—1.

Lemma 2.10 Let 1), be the p-exterior representation of O(2m — 1) and let w4 5 €
O(2m) in the notation of Theorem 2.7. Then [T, : wa sk ] > 0 if and only if

A=key+er+---+ep+Cpri&prl (2.10)

withk € N, cpy1 € {0, 1}, and where § € {0, =1} has a specific value. More precisely,
ifp=m—1,mandcy, >0then § =0whileif p#£m —1,mor p=m—1,m and
cm =0, then 6 = 1 and the sign depends on p and on the choice of the intertwining
operator T . Moreover, [T, 14 slg] = 1.

3 Compact Case

In this section we shall prove the assertions in Theorem 1.1 and Corollary 1.2 for
constant curvature spaces of compact type, that is, for spherical space forms. We fix
the following notation for this section.

G =0(n+1) ~Iso(S"),
K=0n)={geG:g.eny1 =ent1},
X=G/K~S§".
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Since even-dimensional spheres S” cover only S” and R P”, and their spectra are well
known, we will look only at odd-dimensional spheres. Thus, we assume throughout
this section that n = 2m — 1; then G = O(2m) and K = O(2m — 1). We first describe
the set 6Tp, in the notation of Theorem 2.7. Set, for2 < p <n—2and k € N,

Ak,p:kgl + &2+ -+ Emin(p,n—p) 3.D

and Ay p, =key for p=1,n —1 and k € Ny. In particular, Ay , = A, as in Exam-
ple 2.6.

Proposition 3.1 Let t), be the p-exterior representation of K. If 0 < p <m — 1, then

Gy = {916, Tag1s k€ Nwith § € {£1}},

o~

Gr, = {75, Ta 16 -k € Nwith § € (£1}},
Gopy = T ag 1,65 gm0 k € Nwith § € (£1}}.

In each of the sets above, § is uniquely determined by k, p, and Tx. Furthermore,
ifm<p<2m—1=n,then G,p {(mas:ma,—5 € G,nfp} Moreover, for any 0 <
p<nandk €N,y .5 eGTp ﬂ@rwr

Proof From Theorem 2.7 we see that O/(Z\m) is the set of all representations w4 s
where A = Y7L cie; € P(SO(2m)) (see (2.4)), cm € No, and either § ==+1 if
cm =0, or 8 =0 if ¢;, € N. Also, from Example 2.8 we see that, if p > 0, 7, =
TA,x € K asin (2.6), where Ay = Z,;zl gjand k = (—1)”.

Taking this into account, by using the branching law in Lemma 2.10 one checks
that the description of Gy, is as stated in the proposition. g

Now we prove that, for a spherical space form, the multiplicity of each eigenvalue
of the Hodge—Laplace operator on p-forms involves only one specific nr (;r), that is
to say, the sum in (2.3) has only one term. We recall the notation introduced in (1.4):

& = Ent1 = {0}

32
Ep={k+k(n—1)+(p—1(n—p):keN} (3:2)

for]1 < p<n.Notethat £, =&, forevery0< p<n+1.

Proof of Theorem 1.1 By Schur’s lemma, the Casimir element C acts on any ir-
reducible representation w4 s with A = Z _j ¢ci¢i by multiplication by a scalar
A(C, ) given by

MC mas) =(A+p, A+ p) = (p,p) = (A, A) +2(A, p), (3.3

where p =) 7" | (m — i)&;. Note that the scalar A(C, w4 s) does not depend on §.
We first assume that p = 0. By Proposition 3.1, the highest weights of representa-
tions in G, have the form A = ke; with k € Ny and

)L(C,r[kgl,(s)zkz—}—Zk(m— )=k(k+n-—1). 34)
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Proposition 2.4 now implies that if A ¢ & U & then A is not in Specy(1"\S"), that
is, d;.(tp, I') = 0. Moreover, since k > k(k +n — 1) is increasing for k > 0 hence
k = k;_ is clearly determined by A € & U &;. Actually,

n—1 n—1\2
L ( . ) +h=—m—-D+Vm—12+r (35
Thus, in this case d; (1o, ') = n[‘(JTAk}LSl 5)- R

Now assume 0 < p < m. By Proposition 3.1, if 74,5 € G, then A ZAAk’p or
A = Ag py1 and by (2.3), for each A, we must consider T Ag .85 TTAg pi1,8 € G, with
MC,mpy,8) =ror AM(C,ma, ,,,,8) =2 . Since

A(C, ﬂAk’p,(S) = (Ak,py Ak,p> + Z(Ak,ps 0)
=k p—1+42k(m—1)+23F (m—1i)
=k>4+k(n—D+(p—Dn—p)

liesin £, and A(C, T A pi1,8) = K4+kn—D+pn—p—1e€ Epy1, it follows that
A is not an eigenvalue of A; rif A ¢ £, U&py1.

It is clear that for A € £, or A € €41, k is uniquely determined by A. Indeed, we
have

. —m =1+ —1)2+r—(p—D(n—p) ifreé, 56)
Tl D+ VI =102+ h—pi—p—1) ifhe&ppt. '

It remains only to check that £, and £, are disjoint. Thus, let us assume that
AC, ”Ak.p,é) =A(C, ITAh,pH’(s) for some &, k € N. Then

K4+kn—D+(p—-Dn—p)=h*+h(n—1)+pn—p-1),
which implies that
k—hyk+h+n—1)=n—2p. (3.7

Now since n > 2p, then k > h; thus, the left-hand side is at least n + 1 > n — 2p,
hence (3.7) cannot hold. Thus, £, NEpy1 =P for0<p<n+1.

It follows from this that for each A € £, U £,41, the sum in Proposition 3.1 has
only one term; indeed,

nr(w ) ifreé&,,
dmp,F):: T M d ’

n['(JTAk)“p_*_]’g) if A e 5[,+1.

The case when m < p < 2m — 1 follows in the same way since w4 s € 6,,, if

andonlyifmy s € Grn_ , by Proposition 3.1 and C acts by the same scalar on both
representations. g

We can now prove Corollary 1.2, as an application of Theorem 1.1.
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Proof of Corollary 1.2 (i) For each p, Theorem 1.1 yields that the multiplicities of
the eigenvalues of the Hodge—Laplace operator on p-forms determine the multiplicity
nr(m) of every w € G,p; hence, Iy and I are t,-equivalent. The converse follows
from Proposition 2.5.

(i1) Given I"1 and I, assume that 1\ X and >\ X are p — 1-isospectral and p+1-
isospectral. Then, by (i), I' and I’ are 7, and 71 -equivalent.

For 0 < p < n, since G,p C Grp,l U G,p+1 by Proposition 3.1, it follows that
nr(w) =np, () for every w € 6,}) hence Il and I are t,-equivalent, and as a
consequence /"1\X and I2\X are p-isospectral.

For p =0 we have G, C G, U {mo s}; hence, Il and I are tp-equivalent since
nr; (mo,5) = Po(I7\S") = 1. Hence, I'1\ X and >\ X are O-isospectral. For p = n the
argument is completely analogous. g

Remark 3.2 The p-spectrum of spherical space forms has been investigated by many
authors. For instance, in [11], Ikeda and Taniguchi studied the p-spectrum of homo-
geneous spaces G/K from the point of view of representation theory, determining
the eigenvalues and the eigenspaces in the case of S” and CP".

In the 1980s, A. Ikeda constructed several classes of examples of 0-isospectral
spherical space forms, most of them having cyclic fundamental groups. Later,
Gilkey [6] (1985), Ikeda [10] (1997) and Wolf [17] (2001) studied isospectrality
by using the Sunada method as generalized in [5], producing many new examples.
Isospectral manifolds arising from this method are always strongly isospectral; in
particular, they are p-isospectral for all p. Wolf’s construction yields a wealth of
examples of strongly isospectral spherical space forms, which recovers many of the
earlier examples.

In [9], Ikeda gave examples of a different type, finding, for every 0 < p < %,
lens spaces that are g-isospectral for every 0 < g < p but are not p + 1-isospectral.
Note that these examples cannot arise from Sunada’s method. In [15], Pesce con-
sidered the notion of t-equivalent discrete subgroups and showed that t-isospectral
spherical space forms give T-equivalent groups in the case when the real-eigenspaces
in L2(S”; 7) are irreducible. In 2002, by computer methods, Gornet and McGowan
found a rich family of examples of lens spaces that are 7,-equivalent for some values

of p only ([8]).

As mentioned in the Introduction, Corollary 1.2(i) can be extended to t =17, € K s
for more general choices of the highest weight .

Proposition 3.3 Let I'1, I be finite subgroups of G = O(n + 1) acting freely on S".
Let p = Zlm:_]l b;g; € P(SO(2m)) be such that

2=b1=2by>---2by_1>0

and let k € {£1}. If IT\S" and I>\S" are 1, (-isospectral, then I'y and I's are T, -
equivalent.

Proof As we noted in the proof of Corollary 1.2(i), it is sufficient to show that dif-
ferent representations of G, , have different Casimir eigenvalues. The proof will be
divided into two cases:
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(@ wp:=28+---+2,forsomel <p=<m-—1,
(b) upg:=2¢61+---+2¢p+epr1+---+eggforsomel <p<g=<m-—1.

Case (a). By the branching law (see, for example, [14, Prop. I.5]) we have that [,  :
wa,slk] > 0if and only if

A= Aga),p = key+2er 4+ 2ep +aspy,

where k > 2, 0 < a= 2 and § € {0, £1} has a specific value. Hence, the highest
weights involved in G, . have the form A q),p With 0 < a <2, for every p. We
have

p
MC TGy p8) =k +2m —2) + 3224 2m —2i) +ala+2m —2p —2).
i=2

It remains to prove that T Aay.pr8 = T Ay pd if and only if (k, a) = (h, b). Suppose
0<a<b<2. Then

k(k+2m—-2)+a(@a+2m—-2p—2)=hh+2m—2)+b(b+2m—2p —2)

k—hk+h+2m—-2)=b—-a)b+a+2m—2p—2).

Ifk>h,b>a,sincek+h+2m—2>b+a+2m—2p—2then0<k—h<b—a.
Hence, b —a =2 and k — h = 1; thus, we have a contradiction since the left-hand
side is odd and the right-hand side is even. Therefore, necessarily, k = h and b = a,
as asserted.

Case (b). The proof is very similar to the previous one, so we only give the main
ingredients. The highest weights involved in Guypy have the form

Ak,ay,ar),p =ker +2e0+ -+ 2ep +ajepr1 +eppa+ -+ &g +areqy1,

where k > 2 and 0 < a; <1 <ap <2. In this case,

P
MC. T Ay ) ) = K +2m —2) + Y22+ 2m —2i)
i=2

+ai(a; +2m —2p —2)

q
+ > (1+42m —2i) + ax(ay +2m — 2q = 2).
i=p+2

Suppose )L(C,ﬂA(k’alwaz)’p,(;) = }“(C’T[A(h,bl s) with a» < by, ie., ap = 0 and

by = 1. One can check that

by).p>

k—h)yk+h+2m—-2)=((b;—a))br+a+2m—-2p—-2)+14+2m —2q — 2.

In case by = a; we arrive at a contradiction as above. If a; = 1 and b; = 2, then the
right-hand side is equal to 4m — 2(p + q); hence, k — h is an even positive integer,
thus the right-hand side is greater than the left-hand side. If a; = 2 and b1 = 1, the
right-hand side is equal to —2(¢ — p + 1) and again we arrive at a contradiction as
before. O



Representation Equivalence and p-Spectrum 579

Remark 3.4 Note that Proposition 3.3 follows again from the fact that, for any A € R,
in formula (2.3) at most one irreducible representation in @rM gives a contribution.
This is not true generically for t € K. For instance, for T = Ty« With = 3e; and
Kk ==%1,set A=2mej and A" = 2m —1)e; + 36z, thus wp 5, a5 € Gr for a single
value of § and we have

MC,mas) = (A, A+2p)=2m(2m +2(m — 1)) =2n(n + 1),
MC,ma5)=@2m—1)(2m —142(m — 1)) +3(3 +2(m — 2))
=nn+n—1)+3n=2nn+1).

Therefore, the eigenspace of A;,  p for the eigenvalue A = 2n(n + 1) is equal to
A5 B a5, Which is not irreducible.

Remark 3.5 Let £2,(M) denote the space of differential forms of degree p on a
Riemannian compact manifold M. By the Hodge decomposition at degree p,

2,(M) = H,(M) ® 2),(M) & (M), (3.8)

where H,(M) denotes the p-harmonic forms and .Q;,(M ) and .Qg (M) denote
the subspace of exact (d§2,-1(M)) and coexact forms (d*$2,4+1(M)), respectively.
A subscript A € R in these sets will denote the restriction to the eigenspace associ-
ated with the eigenvalue A. Clearly $2,(M)o = H,(M) and 2,(M);. = .Q;,(M);L ®
.QZ(M)A for any A # 0.

In this case, Theorem 1.1 ensures that the sets .Q;,(M ) and QZ (M), cannot both
be nonempty. Moreover, the p-eigenspace associated with A € £, (resp., £,41) is
contained in .QI’,(M);L (resp., .Q;)’(M))\) forevery 0 < p < n.

Gornet and McGowan introduced the notion of half-isospectrality (see [8,
Rmk. 4.5]) meaning isospectrality with respect to A,  restricted to exact or co-
exact p-forms. They also showed several examples of half-isospectral lens spaces. In
a way similar to Corollary 1.2(i), we can give an equivalent formulation in terms of
representations as follows.

I''\S" and I\ S" are isospectral on exact (resp., coexact) p-forms if and only if

nry (jTAk,p,(S) =npr, (n/\jﬂp,é) (reSPw nrn (ﬂAk.er],B) = nF2(7TAk,p+1,8)) for every
k eN.

The examples of p-isospectral and not p 4 1-isospectral lens spaces given in [9]
and [8] are examples of manifolds p + 1-isospectral on exact forms but not on coexact
forms.

4 Flat Case

‘We now consider the flat case X = R". Then

G=00n)x R" ~ Iso(R”), 4.1)
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and K = O(n). Let I" be a discrete cocompact subgroup of G acting freely on R",
i.e., a Bieberbach group. Any element y € I' C G decomposes uniquely as y = BLy,
with B € K and b € R". The matrix B is called the rotational part of y and Ly is
called the translational part. The subgroup L 4 of pure translations in I” is called the
translation lattice of I' and F := A\ 1is the point group (or the holonomy group)
of I'.

We need a description of the unitary dual of G. We will use Mackey’s method (see
[16, Sect. 5.4]). We identify R" with R" via the correspondence o« — &¢(.) = e2mifen.)
for « € R". The group G acts on Rn by (g - £&¢)(b) = £,(g~'b). For « € R" we
consider Ky = {k € K : k - §o = &4}, the stabilizer of §, in K.

For « € R" and (o, V,;) € K, we consider the induced representation of G given
by

(Toa- Woa) 1= Indjg "5, (0 ® Ea). (4.2)

Here, the space Wy o is the completion of the space
Cou= {f :G — V, cont. : f((k, b)g) =0o(k)éy(D)f(g), YVke Ky, b € ]R"}

with respect to a canonical inner product. The action of G on W, 4 is by right trans-
lations. Since (o0 ® &4, V;) is unitary, (4.« » Ws o) 1s a unitary representation of G. It
is well known that 7, o is irreducible and, furthermore, every unitary representation
of G is unitarily equivalent to one of this form.

Note that if « =0, then K, = K = O(n). Furthermore, for (7, V) € I/(\, we have
Ti=m,0~1®Id, ie., T(v) =t (v) for v € V; therefore, (T, V) € G is finite dimen-
sional.

On the other hand, if « # 0 and o € I/(\a, then 7y,¢ > 75 e, Where r = |la|. We
shall abbreviate 7, ., by writing m, , for r > 0. In this case, Ky = [O(”fl) 1] >~
O(n —1), whenr > 0.

Summing up, a full set of representatives of G is given by

G={r,:0€0m—1),r>0U{T:TcOm). (4.3)

Now we determine G T that is, the representations in G such that its restriction to
O(n) contains the p-exterior representations 7, of O(n). Recall that o}, denotes the
complexified p-exterior representations of O(n — 1).

Lemma 4.1 We have
Gy = {Toprs 7oy yr 17> 0} U (T)

forall p. Moreover [t :m|g] =1 for every w € éfp.

Proof Let 75, € G with o € O(n — 1) and r > 0. Since 7, |x = Ind§ (o) and
[Tp: Indg (0)] =0 : 1|k, ] by Frobenius reciprocity, we have that [t : 75 [g ] > 0
if and only if o =op, 0p—1 by Proposition 2.9.

Nowif T € G with 7 € K then T|x = t; it follows that [Tp, T|kx] > 0 if and only
ift=r1p. Il
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If e, ..., e, is the canonical basis of R", the operator C = Z:': 1 el.2 € U(g) de-
scends to the Hodge-Laplace operator A, - on p-forms of I"\R" >~ I"\ Iso(R")/
O(n) (see Sect. 2.1). The following lemma tells us how Ay, r operatesonany 7 € G.

Lemma 4.2 The element C € U(g) acts on w € G by multiplication by a scalar
A(C, ) given as follows.

0 =T,
MC.m) = { form=T1

—47?a|? form = Toa, @ #0.

Proof In the first case T(k,v) = t(k), forany k € K, v e R". If X e R",

(k) =0.

d
Tk, v) = —
dt 0

d
T(k, tX)=—
Of( v+1X) T

If 7 =7m54 witha #0and f € Cy 4, then

d
na,a(X)f(ka v) = E

d
k tX)=—
0f(,er ) 7

(At - X) - (k, v))

0
d .
= A& X)) p vy =2milk™ - o, X) f (K, v).
0
n
Thus 75,4 (C) f (k, v) = —47> Y (k™" t, ;)" f (k, v) = =4 > |et||” £ (k, v). O

i=1
Now we are in a condition to prove the results in the Introduction in the flat case.

Proof of Theorem 1.3 By Proposition 2.4, given an eigenvalue A € R of the Hodge—
Laplace operator on p-forms A, r on I'\R", the multiplicity d, (zp, I") is given by
> np(m) [tp : |k ], where the sum is over every 7 € 6,17 such that —A(C, ) = A.
Now, by using Lemmas 4.1 and 4.2 we obtain that

dy(ty, T) nr @) =0 (4.4)
2 (Tp, = . .
”F(”op,ﬁ/zn) +”F(”a,,,1,ﬁ/2n) if A >0,

and thus Theorem 1.3 follows. O

We will use the following lemma to prove Theorem 1.5 in the flat case and other
consequences in Corollary 4.6.

Lemma 4.3 If Il and I, are T,_1-equivalent (or T, 1-equivalent) and I''\R" and
D\R" are p-isospectral, then I' and I are t,-equivalent.
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Proof Since Iy and I are T, 1-equivalent we have thatn (n(,pf L) =0 (JTUIH )
for every r > 0 by Proposition 3.1. On the other hand, since I'1\R" and I3\R" are
p-isospectral we have that np, (7,) =nr,(7,) and

nr (T[ap,r) +npn (nap_l,r) =nr, (nap,r) + ”Fz(nap_1,r)

for any r > 0, by (4.4). These three facts taken together clearly imply 7,-equivalence.
The assertion assuming 7,1 1-equivalence follows in a similar way. O

Proof of Theorem 1.5 (flat case) The fact that 7,-equivalence implies p-isospectra-
lity is clear in light of Proposition 2.5. For the converse assertion, we proceed by
induction. Lemma 4.3 for p = 0 says that 0-isospectrality implies tp-equivalence.
Now assume that the manifolds are g-isospectral for every 0 < g < p; thus, we have
that the groups are 7,-equivalent for every 0 < ¢ < p — 1 by the induction hypothe-
sis. In particular, we have t,_1-equivalence and p-isospectrality; hence, Lemma 4.3
implies 7,-equivalence, which completes the proof. g

Remark 4.4 One can also prove the above result for intervals decreasing from n,
that is, g-isospectrality for every p < q < n is equivalent to t,-equivalence for every
p=q=n

We can also obtain from Theorem 1.3 several other consequences relating p-
isospectrality and 7,-equivalence. Given a compact n-manifold M, 8,(M) denotes
the p-th Betti number of M and one has that 8, (M) = dy(z),, M), the multiplicity of
the eigenvalue O of the Hodge—Laplace operator on p-forms of M.

Proposition 4.5 Let I'| and I, be Bieberbach groups and let I''\R" and I''\R" be
the corresponding flat Riemannian manifolds. Then the following assertions hold.

(1) If Il and I are T1-equivalent, then I''\R" and I\R" are 0- and 1-isospectral.
(i) If Il and Iy are t,_1-equivalent and B, (I'\R") = B,(I5\R"), then I''\R"
and IL\R" are n- and n — 1-isospectral.
(iii) If I'l and I'> are T,y and tpy1-equivalent and B,(I'N\R") = B,(I2\R"), then
I'y and I are also t,-equivalent; hence, IN\R" and I>\R" are p — 1, p and
p + l-isospectral.

Proof We will use repeatedly the facts

Gr, = (7o Tay_r 17> 0} U (T}, ()
nr; (Tp) if A =0,
dy(tp. I}) = (%)

nﬂ(”op,ﬁ/2n)+”ﬂ(”ap,l,ﬁ/2n) ifA>0

from Lemma 4.1 and Theorem 1.3.
We first prove (i). Suppose that I7 and I» are tj-equivalent; then I1\R" and
I>\R" are 1-isospectral by Proposition 2.5. Since 74, » € G+, for r > 0, () and ()



Representation Equivalence and p-Spectrum 583

imply that d; (1o, I'1) = d,. (10, I») for every A > 0; hence, I'1\R” and I5\R” are also
0-isospectral, since dy(tg, 1) = do(70, [2) = 1.

Assertion (ii) follows in a similar way by using that do(t,,, I7) = B, (I;\R").

Relative to (iii) if Iy and I are 7,1 and 7,11-equivalent, then on the one hand,
nr (770,)71,0 =np (”a,)fl,r) for every r > 0 since Mo, 1,r € G\Tpfl and, on the other
hand, since To,r € 6%, then np (ngp,,) =np, (ngl,,r) for every r > 0. Finally, the
equality of the p-th Betti numbers implies that nr, (T,) = nr, (7)) by (xx); thus, Iy
and I are t,-equivalent. O

Note that the condition 8, (I7\R") = B,(I>\R") in Proposition 4.5(ii) is equiva-
lent to I7\R" and I3\R" being both orientable or both non-orientable. A flat mani-
fold I'\R" is orientable if and only if I" C SO(n) x R".

The next result follows immediately from Lemma 4.3 and will be applied in ex-
plicit examples.

Corollary 4.6 Let I'y and I, be Bieberbach groups. If I'\R" and I»\R" are p-
isospectral for every p € {1,2,...,k} and are not O-isospectral, then Il and I
are not ty-equivalent for any p € {0,1,2,...,k + 1}. Similarly, if B,(IN1\R") =
B (IL\R™) and I'\R", IL\R" are p-isospectral for every p € {n —k,...,n — 2,
n — 1} and are not n-isospectral, then I't and Iy are not t,-equivalent for any
pefn—k—1,n—k,...,n}

Remark 4.7 We now study the Hodge decomposition of a compact flat manifold as
in Remark 3.5. In this case, Theorem 1.3 implies that H ,(M)¢ is the O-eigenspace
associated with ), and for A # 0, again we have £2,(M); = .Q;,(M)A @ .QZ(M)A,
where both can be nonempty at the same time.

Unlike the notion of p-isospectrality, we have an equivalent definition of com-
pact flat manifolds p-isospectral on exact forms (resp., coexact forms) in terms of
representations. Namely, from Lemma 4.1 one can see that

I''\R" and I;\IR" are isospectral on exact (resp., coexact) p-forms if and only
ifnp (7o, ) =nn (s, . r) tesp.,nr (7o, r) =nr, (s, r)) forevery r > 0.

It would be of interest to find a pair of compact flat manifolds that are half-
isospectral but not isospectral, that is, manifolds isospectral on exact or coexact p-
forms (for some fixed p) but not on both at the same time. There are several known
examples that come close to this. In particular, manifolds that are O-isospectral and
not 1-isospectral (see [13, Examples 5.1, 5.5, 5.9]) are isospectral on exact 1-forms;
however, one cannot claim that they are not isospectral on coexact 1-forms, since they
have different first Betti number.

In the rest of this section we give several examples of compact flat manifolds
satisfying some p-isospectralities or t,-equivalences for some values of p only. We
denote by {eq, ..., e, } the canonical basis of R".
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We recall from [13, Thm. 3.1] that the multiplicity of the eigenvalue 472 of
Az, r is given by

dyp2, (1o D)= FI70 3 trp(Bhepy (), (4.5)
y=BL,eA\I"

where .. (I') = 3, c s v= e 2vh A% = {v e A* 1 ||v||* = u} (A* the dual
lattice of A), and tr,(B) :=tr(t,(B)). If p =0, (4.5) reads

dymrp (0, DY =1FI7" Y7 Y e 4.6)

y=BLpeA\I" UGAT‘_ZBU:U

Example 4.8 We first show a pair of non-isometric Klein bottles that are 1-isospectral
but not O-isospectral; hence, the corresponding Bieberbach groups cannot be 7-
equivalent by Proposition 4.5(i).

Let I' ={(y,La) and I'" = {y’, L 4), where A = Ze| @ Zce, with ¢ > 1 and in
column notation

/

14

and |—1 |. 4.7
1

2

B —

14
1
-1

That means that y = BL; and y’ = B'L;y where B = [1 LB = [*1 1], b= Jel,
and b = %cez, i.e., the column in (4.7) gives the rotation part of y, y’ and the
subindices indicate their translation vectors.

The manifolds I'\R" and I""\R" are 1-isospectral in light of (4.5) since tr;(B) =
tr; (B’) = 0. However, they are not O-isospectral since, by using (4.6), one can see
that the smallest eigenvalue for I"'\R”, A = 47%¢~2, has multiplicity 2 while A is not
an eigenvalue for I""\R".

The Klein bottles just defined are homeomorphic. However, it is not hard to give
a pair of non-homeomorphic compact flat 4-manifolds that are 1-isospectral but not
0-isospectral. We define I" = (y, L;4) and I"" = (y’, L) where, in column notation,

Y V'
1% 1,
1 and 2].
-1 J
-1 —1

Here J =[%!] and y' = B'L, with B’ = diag(l,J,—1) € GL(4,R) and b’ =
(1/2,0,0,0) € R*.

These manifolds are 1-isospectral because, again, tr; (B) = tr;(B’) = 0. They are
not 0-isospectral. Indeed, it follows easily from (4.6) that the smallest nonzero eigen-
value is 4772 for both manifolds, but it has multiplicity %(8 + 0) = 2 for the first one
and %(8 — 2) = 3 for the second one.
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One can show, by using the theory of Bieberbach groups, that these manifolds
cannot be homeomorphic since the holonomy representations are not semiequivalent.

Example 4.9 We now give a pair of 4-dimensional compact flat manifolds that are
p-isospectral for p = 1, 3 and they are not p-isospectral for p =0, 2, 4. The corre-
sponding Bieberbach groups cannot be 7,-equivalent for any p, by Proposition 2.5,
for p even and by Proposition 4.5(i)—(ii), for p odd.

The manifolds mentioned are called M»4 and M55 in the notation in [4, Exam-
ple 4.8], and can be described as I" = (y1, y2, Lzs) and I'" = (y{, 3, L4) where

12T %) non
—1 ] 1 -1 1
2
—1 _ll -1 |—1:
2 3
1 |-1 1 |—1
Li| 1 1] 1
2 2 5

The manifolds I'\R* and I""\R* are non-homeomorphic since they have differ-

ent homology over Z,. Indeed, one has that ﬁlzz (M) = 4 £ ,BIZZ (M35) = 3 and
zZ z

By7 (M2g) =6 # 5% (Mas) =4.

Example 4.10 This is a peculiar example of two 8-dimensional flat manifolds which
are p-isospectral for every p € {1,2,3,5, 6,7} but not for p € {0, 4, 8}. According
to Corollary 4.6, the corresponding Bieberbach groups cannot be t,-equivalent for
any p.

We define I = (y, Lyg) and I'" = (y’, L), where

y )/2 ]/3 J// 7//2 J//3
J =1 |=T T -1 |-T
J |=1 |-T J -1 -7
11| 11| 13 11| 11| 13
Fs 2 1 3 2 7
1] 1] 1 Ll v
I A -1 1|-1
ot 0 R O et —1 | 1]-1

Here J = [_01 (1)] and I is the 2 x 2 identity matrix. The elements y and y’ have
order 4; thus, the manifolds I"\R® y I""\R® have holonomy group isomorphic to Z4.
We also include the elements y2, 33, y’z, and y’3 to facilitate the computation of the
multiplicities of the eigenvalues. Note that the only difference between their genera-
tors lies in the sixth coordinate of the translational part; in particular, we have B = B’
and y2 = 2.

We shall compare the spectra of I'\R® and I'"\R® by using the formula (4.5)
for the multiplicities of the eigenvalues of the Hodge—Laplace operator on p-forms.
The manifolds are 1-isospectral since tr; (Bk) =0 for k =1, 2, 3. One also has that
tro(B) = try(B3) = 0 (resp., tr3(B) = tr3(B>) = 0), which implies that the manifolds
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are 2-isospectral (resp., 3-isospectral) since the equality in (4.5) follows from the fact
that y2 = y/2. We will carry out the verification for tr(B); the vanishing of tro(B?)
is entirely similar.

Fix a basis fi, f2,..., fg of C8 such that B diagonalizes in this basis with
Bf; =ifj for j =1,3, Bfj = —ifj for j =2,4, Bf; = —f; for j =5,6, and
Bfj = fj for j =7,8. Then, on A2((C8), B diagonalizes with respect to the basis
fi~ fj,with 1 <i < j <8.1Itis easy to see that the eigenvalues &i both have mul-
tiplicity 8. Indeed, the i-eigenspace (resp., —i-eigenspace) is spanned by f; A f;
with (7, j) equal to (1,7), (1, 8), (3,7), (3, 8), (2,5), (2,6), (4,5), and (4, 6) (resp.,
(1,5), (1,6), (2,7), (2,8), (3,5), (3,6), (4,7), and (4, 8)). On the other hand, one
checks that the eigenvalues 1, —1 both have multiplicity 6. Indeed, the eigenspace
of eigenvalue 1 (resp., —1) is spanned by f; A f; with (i, j) equal to (1,2), (3,4),
(1,4), (2,3), (5,6), and (7, 8) (resp., (1,3), (2,4), (5,7), (5, 8), (6,7), and (6, 8)).
This clearly implies that trp (B) = 0. The vanishing of tr3(B) and tr3(B3) follow bya
similar argument.

The manifolds cannot be O-isospectral since the first nonzero eigenvalue A = 472
has different multiplicity in both cases. Indeed, d; (o, ') = 6 # 4 = d; (10, I').
Since det(B) = 1 the manifolds are orientable and then the previous reasoning is
valid for p =5, 6,7, 8. Finally, they cannot be 4-isospectral since one checks that
trs(B) = tra(B3) = =2, trs(B%) = 6 and then, by (4.5), we obtain that the first
nonzero eigenvalue A = 4772 has multiplicities d; (zo, I") = 284 # 288 = d; (vo, I'"’).

These two compact flat manifolds are homeomorphic to each other, but it is not
difficult to obtain a similar example with non-homeomorphic groups. Namely, we
take

y yr 3 Y/ )/2 y/3
L= =L J -1 -7
J -1 |—-J Tlr |=7
1:| 1. 13| and 1 1
HEHEE J3 1; J‘i
BN B B .

-1 ] 1 |- L N

5 Negative Curvature Case

The goal of this section is to consider the p-spectrum of compact hyperbolic mani-
folds in connection with 7, -isospectrality. We set G = SO(n, 1), K = O(n), X ~H",
and Xy >~ I'\SO(n, 1)/K; thus, X = H" the n-dimensional hyperbolic space. Let
I' € SO(n, 1) be a discrete cocompact subgroup acting without fixed points on X.
We recall that SO(n, 1) is the group of linear transformations on R"*! preserving the
Lorentzian form of signature (n, 1) and determinant one.

We will need a description of G. We will first introduce the principal series rep-
resentation of G. The group G has an Iwasawa decomposition G = NAK, with a
corresponding decomposition g = £ ® a @ n at the Lie algebra level, where N is
nilpotent and A is Abelian of dimension one. Let M be the centralizer of A in K.
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One has M ~ O(n — 1). The Lie subgroup P = M AN of G is a minimal parabolic
subgroup of G.

If v € ag, then &, (a) = a” = exp(vlog(a)) defines a character of A. We set pq =
%(dimga)oe = %a where « is the simple root of the pair (g, a). If (o, Vi) € M and
VE az’é, then we let C,;,, be the space

{f cont.: G — V, : f(mang) =a" "o (m)f(g),Yme M,ac A,neN}.

If {, ) is an M-invariant inner product on Vy, for fi, f> € Cy,, set

(fl»fZ):/ (f1k), fa(k))dk
M\K

Then (Cqs,v, (,)) is a pre-Hilbert space and the Hilbert space completion is denoted
by Hy,,. The action of G by right translations on C,,, extends to H,, defining a
continuous series of representations of G, (7., Hy,,), Which is unitary if v € ia*. It
is called the principal series representations of G. They are generically irreducible
and play a main role in the description of the irreducible representations of G.

One usually identifies af, with C via the map v — v(Hp), where Hy € a satisfies
«(Hp) =1, in such a way that « — 1 and pq — % In this way, ng,, is unitary if
v € iR, as mentioned above.

A Hilbert representation (7, H) of G is said to be square integrable if any K -finite
matrix coefficient lies in L2(G). These representations were classified by Harish—
Chandra and form the so-called discrete series representations of G, denoted éd.

The determination of the irreducible unitary representations of a general noncom-
pact semisimple Lie group is an open problem, but is known in the particular case of
Lie groups of real rank one (see [1] and also [12]). In the case at hand of G = SO(n, 1)
one has:

Theorem 5.1 The unitary dual of G = SO(n, 1) consists of

(1) the unitary principal series m,,, for v € iR>g, 0 € M,
(ii) the complementary series my ., for 0 <v < pg, where ps = p — q with q € N,
q < p, depending only on the highest weight of o,
(iii) umtarlzable Langlands quotients Js 5, ,
@iv) Gd, the discrete series representations of G. For n odd one has Gd =0.

The following theorem gives a description of the subset @p of G, which is all we
need for the purpose of this paper.

Proposition 5.2 Let T, and o, be the complexified p-exterior representations of
K >~ 0O(n) and M = O(n — 1), respectively. If 0 < p <n and p # 7, then

-~

th = {ﬂap,v v eiR5oU (0"017)}

U{to, v €iR20U 0, pp- 1)} Ulo, 0y Jopiippy }-
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Here p, = pg —min(p,n — 1 — p) and ps = % In particular,
(A?To = 61 = {711", v eiRsoU (0, pa)} U {1}.

In the case n =2m and p = m, one has

-~

G

m

) 1
= {namfl,,, v eiRsoU (0, E)}
1
U{7o,. 1V €iR0 U (0, E)} u{D,; ® D, }.

Here DY @ D), is the sum of the two discrete series Dﬂi of SO(n, 1)o having lowest
2 2 2

K -types tﬂi.
2

Proof The spherical case, p =0, is well known, so we assume p > 0. As mentioned,
the unitarizable Langlands quotients J, ,, occur only at the endpoints of complemen-
tary series v = pg .

Since t,|p = 0p ® 0p—1 by Proposition 2.9, Frobenius reciprocity implies that
To,v| g contains 7, if and only if 0 =0, or 0 =0 1.

Now for n =2m + 1 and 0 < p < m we have complementary series To,v for 0 <
v < pp =m — p (see [12, Prop. 49]) and a Langlands quotient J5;, ,, containing 7).
For the M-type 0,1 we have the same description.

We note that in the extreme cases p =0 and p = n, one gets Jy, », = 1 and
Jop,pa = det.

For p > m, 75, has complementary series for 0 <v < p, = p —m and a Lang-
lands quotient J,, ,, at the endpoint, with lowest K-type 7). Since 6,1 = (), the
description of éfp for n odd is complete.

We now assume n =2m. If 0 < p <m — 1 we have complementary series 75,y
again for 0 <v < pp, =m — % — p (see [12, Prop. 50]) and a Langlands quo-
tient Jy, p,, both containing 7, with a similar description for o)1 in place of op.
For p > m + 1, again T, has complementary series for 0 < v < Pp= —(m— )
and a Langlands quotlent at the endpoint. Furthermore, G NGy = (ZJ if p#m;
hence, the description of G-, is complete in this case.

Finally, if p =m, then G, N 507 = {D;} ® D,,} and the unitary representations
that contain T, are the unitary principal series and the complementary series 74, for
0 =0y,_-1,0m and v € iRU (0, %). Furthermore, at the endpoint %, the representations

.} and Wy} AT€ reducible and the K-type t,, is a K-type of the irreducible

subrepresentation D;} @ D,, with multiplicity 1. This completes the proof. U

Proposition 5.3 For v € C, the Casimir eigenvalue for the representation 7,y is
given by

. 2
MC, 7, 0) ==V + p2 = =% + (pg —min(p,n — 1 — p))°. 5.1

In particular, A(C, J(,p,pp) =0 for every p. Furthermore, L(C, Dﬂi) =0
2
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Proof It is well known that the Casimir eigenvalue for the principal series is given by
MC, 7o) ==V + py — o (5.2)
where ¢, = (Ag + pp, Ao + pM) — (PMm, PM), Ao is the highest weight of o and

ZT:](’”—]')% ifn=2m+1,

M = m—1 . .
Yo m—j—3ej ifn=2m.
min(p,n—1—p)

Furthermore, for 0 =0, € O(/ntl) we have Ay, = Zj:]

ple 2.6).
Assume first that 0 < p < [5] =m and p # 7. By a calculation one can see that

&; (see Exam-

p+2Y0_(m—j)=p+2mp—pp+1) if n is odd,

Ca-p =

p +22f=1(m - % —j)=p+2m-— %)p —p(p+1) ifniseven.
Thus, in light of (5.2),

—v? 4+ (m — p)? ifn=2m+1,

—\zz—i-(m—p—%)2 ifn=2m,

A(C, 7Tcr],,v) =
which establishes the formula.
On the other hand, in the cases when p > [%], one has that A(C, ngp,,,) =
A(C, nan—l—]JvV) and for n =2m, A(C, D;f) =A(C, T, %) =0, as asserted. O

After all this preparation, we can prove the results in the Introduction for nega-
tively curved manifolds.

Proof of Theorem 1.4 For iach A, set f}\rl,’,\ ={7r € Gy, : AMC,m) =2} If p=0,
then the representations in Gy ; for any fixed A have the form 7y, with v € iR5q U
(0, pq) and the equality A(C, 71,) = -2 ,og = )\ determines v = \/,og — A, where
v eiRsgif A > p2 and v € (0, pq] otherwise.

Assume now that 0 < p < [%]. For A =0 we have

{‘Io'p»pp’ JUp—lst—l} lfp 7é %’
{Di®D,} if p=
2 2

7,0 =

(ST

Therefore,

nF(Jcrp,pp) +n1"(-]c7p_|,pp_1) ifp #*
nr(Df @® D) if p=4%.
2 2

’

do(t,, ') = (5.3)

1= IS
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Now, let A > 0. Since A(C, 75,,,) = —? 4 ,01% = A, then v = /,o% — A where
v e (0, pp) UiR5( and similarly for A(C, m,pfl,v) = X. Thus, we get

G v={m b4 }
T Upa,/pﬁf)“’ (TP*I’\/ p§71,A

and
nr(w )+nr(T y ifp#£L,
d(tp, ') = Tpoy/ Pp—A (fp—l,\/p,z,,j 2 (5.4)
nr(ty, sa=) +nr(@, | gaa=) ifp=5=m.
This completes the proof for p < [%]. The case p > [%] is similar. =

The following lemma is the analogue of Lemma 4.3 in the flat case.

Lemma 5.4 Let Iy and I» be discrete cocompact subgroups of SO(n, 1) acting
freely on H". If I't and I'> are t,_1-equivalent (or T, 1-equivalent) and the man-
ifolds M\II" and D\H" are p-isospectral, then Iy and I are tp-equivalent. In
particular, 0-isospectrality implies ty-equivalence.

Proof Assume that p & {5, 5 + 1}. Since I'| and I'; are 7,_|-equivalent, we have

nry (Jo—pflvppfl) = nr2(']‘7p71appfl)
nry (”Up_|,v) =np (770,,_1,1))

for every v € iR>o U (0, pp—1) by Proposition 5.2. Now, by p-isospectrality we
have that d, (tp, I) = d.(tp, I2) for every A, thus (5.3) implies that nry (Jo,,p,) =
nr,(Js,.p,) and (5.4) implies np, (75,.v) = nr,(7s,,v) forevery v € iR>o U (0, p)).
By Proposition 5.2, these equations imply t,,-equivalence.

The remaining cases are proved similarly. g

Proof of Theorem 1.5 (noncompact case) The proof is exactly as in the flat case,
since Lemmas 4.3 and 5.4 have exactly the same statements. d

Remark 5.5 One can also prove the above result for intervals decreasing from n,
that is, g-isospectrality for every p < q < n is equivalent to t,-equivalence for every
p=q=n

Remark 5.6 We now consider the Hodge decomposition of compact hyperbolic man-
ifolds as in Remarks 3.5 and 4.7. One obtains here results that are very similar to
those in the flat case. Namely,

I''\H" and I>\H" are isospectral on exact (resp., coexact) p-forms if and only
if nry (77:(71,,1,\)) =np (T[O'p,l,v) (resp'a nr (T[GP,\)) = an(T[Up,U)) for every v €
iR>0U (0, pp_1) (resp., v € iR5o U (0, pp)).
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