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Redundancy analysis is an important stage in plant instrumentation design that consists of
classifying the measurements so as to determine the redundant ones. In this work, we propose
a new method based on the symbolic derivation of the equations that constitute the nonlinear
steady-state model of the plant under study. The strategy succeeds in overcoming the limitations
of existing techniques with respect to accuracy as well as model size and complexity. The approach
is nonnumeric, thus allowing independence from the operating point. No linearization is required
because the method works directly on the original model equations. Another advantage is that
there is no need to solve for the observable variables. The prototype was implemented in Matlab,
and its performance was assessed for several academic and industrial case studies with accurate
results.

1. Introduction

The design of a sensor network consists of selecting
the most adequate type, quantity, and location of
instruments to be incorporated into the system so that
the required amount of information about the process
can be obtained. Sensor structure affects the estima-
bility of state variables. For example, the subset of
unmeasured variables that can be estimated from model
equations is determined by the arrangement chosen for
the sensors. In turn, the measurements that can be
involved in a correction procedure to enhance the
precision of the estimation also depend on sensor choice.
Consequently, an adequate selection of measurements
enables the precise estimation of certain variables even
in the event of sensor failures. Thus, it is clear that
sensor structure has a significant effect on both the
quality and the availability of process knowledge.

The classification of process variables is a major task
in the design of sensor structures for complex chemical
plants as it helps in the evaluation of whether a given
design will provide the required process knowledge in
terms of both estimability and precision. According to
the feasibility of calculation, the measurements can be
classified as redundant or nonredundant by analyzing
the mathematical model that represents the plant in
steady state. The redundant measurements are those
whose values can be computed from model equations
and other measured variables. In turn, the unmeasured

variables are called observable when they can be evalu-
ated from the available measurements using model
equations.

The measured values of the redundant variables can
be corrected using data reconciliation procedures. The
data compatibility achieved as a result of this adjust-
ment represents a significant improvement in the
precision of the values for all of the state variables.
Redundancy classifications can be determined through
an observability algorithm, which is applied after each
individual measurement has been deleted. If the re-
cently incorporated unmeasured variable is observable,
then that measurement is redundant. The whole pro-
cedure must be repeated for each measured variable to
yield the complete classification. Two main research
lines have been developed to carry out this task ef-
ficiently. In the first one, called the topology-oriented
approach, the variables are classified by analyzing the
cycles and cutsets that appear in the undirected graph
underlying the process topology. The second, known as
the equation-oriented approach, makes use of different
matrices associated to the system of equations employed
to model the process. Two categories can be distin-
guished in this case: nonstructural and structural
techniques. The former applies numerical procedures
that make use of the model coefficients, whereas the
structural methods consist of rearranging the process’
occurrence matrix appropriately.

In general, the nonstructural equation-oriented tech-
niques, as well as the topology-oriented methods, have
been specifically designed to model linear and bilinear
relationships. Although the procedures are efficient,
their application to linearized versions of nonlinear
models involves the necessity of initializing the state
variables at the plant-design stage. This increases the
inherent loss of rigor of the linearization because only
very rough initial estimates are normally available at
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† Departamento de Matemática, Universidad Nacional del
Sur (UNS).

‡ Departamento de Ciencias e Ingenierı́a de la Computación,
Universidad Nacional del Sur (UNS).

§ Planta Piloto de Ingenierı́a Quı́mica (UNS-CONICET).

5692 Ind. Eng. Chem. Res. 2002, 41, 5692-5701

10.1021/ie011046j CCC: $22.00 © 2002 American Chemical Society
Published on Web 10/17/2002



this stage. In contrast, structural algorithms provide a
better alternative because they allow more indepen-
dence from the degree of nonlinearity in the mathemati-
cal model.

In this work, we present an effective strategy for
performing the classification of measurements that is
based on a structural approach. Section 2 contains a
critical literature review of the existing redundancy-
classification algorithms that points out the need for
improvements in redundancy techniques. The funda-
mentals of our proposal are explained in sections 3 and
4. Simple academic examples that illustrate the proce-
dure are presented in section 5. Next, the performance
of the new algorithm is discussed in section 6 in terms
of an analysis of the results obtained for several
examples of industrial interest. Finally, the main con-
clusions are summarized in section 7.

2. Measurement Classification Strategies

The classification of process variables basically com-
prises two main stages: the observability analysis and
the determination of redundant measurements. Two
major schools of thought have been developed to carry
out this task, the main contributions of which and
ranges of applicability for redundancy categorization are
discussed below.

2.1. Topology-Oriented Approach. Topology-ori-
ented methods employ the undirected graph G underly-
ing the digraph that represents the process topology.
The nodes and edges in G correspond to process units
and streams. G also contains an additional node, which
represents the environment.

For single-component flow networks, a simple clas-
sification procedure1,2 consists of joining all pairs of
nodes connected by means of a stream that contains at
least one unmeasured variable. The resulting reduced
balance scheme involves only redundant measurements.
This technique is adequate only for linear balance
relationships. To consider more complex model formula-
tions, it is necessary to perform the redundancy analysis
by using specific tools that carefully account for non-
linearities. In this respect, Václavek and Loucka3 ex-
tended the method mentioned above so as to take into
account component balance equations, but the method-
ology considers only streams in which either all or none
of the mass fractions are known. Although this algo-
rithm states sufficient conditions for nonredundancy,
some nonredundant measurements can be erroneously
classified as redundant.4 Later, Meyer et al.5 presented
an algorithm without assumptions about composition
measurements. Although efficient, the formulation con-
sidered only component mass balances.

Kretsovalis and Mah6 incorporated energy balances
into the previous model formulations, considering only
a univocal relation between the temperature of a stream
and its specific enthalpy. They studied process flow
sheets made up of reactors, dividers, black boxes (i.e.,
adiabatic units with no chemical reactions), and units
with pure energy flows. The strategy, which consists of
two main phases, does not allow for the direct classifica-
tion of all measurements. First, some measurements are
categorized according to theorems based on graph
theory. Then, the definition of redundancy is employed
together with the observability algorithm for the clas-
sification of the remaining measurements. The tech-
nique was devised for bilinear models, so it is less

rigorous for those pieces of equipment whose function-
alities are strongly nonlinear, such as reactors and
flashes.

2.2. Equation-Oriented Approach. Two main cat-
egories can be distinguished within the equation-
oriented approach: numerical and structural methods.
A pioneering numerical technique is Crowe’s matrix
projection strategy,7 which allows the decomposition of
the linear balance equations by means of the elimina-
tion of the unmeasured variables. This leads to a
reduced system that contains only redundant measured
variables, because the nonredundant ones automatically
disappear. The same concept was later applied to
redundancy classification for bilinear systems.8,9 The
procedure requires the specification of numerical values
for the measurements. Nonlinear problems can be
solved only after linearization around a nominal point,10,11

which implies that nominal values for all of the vari-
ables involved should be provided. Madron12 also dealt
with the matrix of coefficients from the linear/linearized
system of equations that constitutes the mathematical
model. In this numerical method, the columns of the
matrix are permuted so that those associated with the
unmeasured variables appear first. As a result, two
main blocks can be distinguished. Then, the left block
is converted to its canonical form by means of the classic
Gauss-Jordan procedure. In the next step, the columns
corresponding to the measurements are considered.
Elementary operations are performed again, this time
to turn the block on the right into its canonical form.
After that, the resulting matrix reveals the complete
classification. In particular, the measured variables with
zero entries in the redundant equations are classified
as nonredundant.

For nonlinear systems, an estimation of the nominal
operating point is required by numerical strategies. This
requirement constitutes an important drawback at the
stage of plant instrumentation design, i.e., when no
plant data are available. In addition, it is well-known12

that linearization techniques give rise to further com-
plications that deteriorate the quality of the final
results.

Structural techniques are based on rearrangements
of the process occurrence matrix. The pioneering method
in this field was proposed by Romagnoli and Stephan-
opoulos.13 In this technique, the submatrix of unmea-
sured variables is permuted to block lower-triangular
form so that the observable variables can be identified.
Then, the unassigned equations are employed to classify
the measurements according to the following rules. The
redundant variables participate in unassigned equations
that contain (1) all measured variables, (2) observable
unmeasured variables (except unmeasured composition
and temperature for bilinear balances) after they are
replaced by their intervals in terms of measurements,
and (3) balances around disjoint subsets with all exter-
nal measured variables. An improved version of this
methodology was described by Sánchez et al.14 The
classification of measurements is delayed until the set
of redundant equations has been obtained. Symbolic
mathematics is employed to express the observable
variables in terms of the measurements so that they
can be substituted into the redundant equations. Then,
all of the variables contained in this reformulated set
are redundant. Although the method avoids the errone-
ous incorporation of some nonredundant measurements
into the group of redundant variables, it is only ap-

Ind. Eng. Chem. Res., Vol. 41, No. 23, 2002 5693



plicable to simple models that allow for the explicit
formulation of the observable variables.

In turn, Joris and Kalitventzeff15 proposed a different
structural rearrangement that is obtained without
partitioning the observable variables into blocks. By
means of column and row permutations, the measure-
ments necessary to calculate a just computable sub-
system of unmeasured variables are identified; those
measurements are nonredundant. The main drawback
of this method is that it is purely structural, thus being
unable to detect algebraic singularities and cancella-
tions that can seriously affect the classification results.

3. Problem Statement

In this work, a new structural technique for redun-
dancy analysis, which we call symbolic derivation of
implicit functions (SDIF), is presented. The method
makes use of the results from the observability analysis.
In this paper, in particular, the final pattern resulting
from the nonnumeric observability algorithm of Ponzoni
et al.16 provides all of the input information about
dependencies among state variables required by SDIF.
The matrix rearrangement, originally proposed by Ro-
magnoli and Stephanopoulos,13 is shown in Figure 1,
where the shaded blocks are those that contain nonzero
elements. In this pattern, it is clear that the subset of
redundant equations r comprises some that depend on
the observable variables and others that are solely
functions of the measurements.

All of these equations constitute the steady-state
model chosen to represent the plant under analysis. The
system mainly consists of balance equations that de-
scribe the conservation of mass and energy as well as
thermodynamic relationships that define the significant
interrelations between fluid properties. For many prob-
lems, complex formulations are required to model with

the desired accuracy how the thermodynamic properties
are affected by changes in the thermodynamic state of
the process. Moreover, the mathematical expressions
vary greatly depending on the thermodynamic model
chosen to predict these properties. Therefore, for the
sake of simplicity, in principle, we chose to provide
complete algebraic equations solely for the balance
relationships. For the thermodynamic equations, only
the dependencies among variables were defined.

The fundamental problem behind redundancy analy-
sis is to determine which measured variables have an
algebraic influence on the set of redundant equations.
Because the observable variables are functions of the
measurements, some terms in the redundant equations
might cancel out, sometimes leading to the disappear-
ance of measured variables from the redundant equa-
tions. For an equation-oriented classification approach,
a straightforward way to deal with the problem consists
of solving the assigned equations for the observable
variables symbolically and then substituting the observ-
able variables into the redundant equations, canceling
terms whenever possible.17 Nevertheless, this strategy
is ineffective for models containing nonlinear equations
that cannot be symbolically solved for the observable
variables. Moreover, as the problem size increases, the
amount and complexity of the nesting caused by the
successive substitutions becomes prohibitively expensive
in terms of both memory storage and run times, thus
making it practically impossible to obtain many final
symbolic expressions. In view of these limitations, we
designed a new approach that significantly reduces the
computational burden involved in this task. The strat-
egy proposed in this paper is based on the implicit
derivation and symbolic manipulation of model equa-
tions. By the precise identification of zero/nonzero
partial derivatives, the method succeeds in classifying
the measurements.

In this context, detailed thermodynamic formulas are
unnecessary for the classification of variables by means
of structural techniques because, in principle, no nu-
meric calculations are required. The first stage of our
classification procedure, i.e., structural observability
analysis, makes use of only the functionalities for the
thermodynamic variables involved that express the
nonnegligible dependencies between thermodynamic
state variables. For example, it is sufficient to indicate
that the specific enthalpy of a given component depends
only on the temperature, the influence of pressure being
negligible, without specifying any analytic equations at
all. In relation to the method for redundancy analysis
proposed in this paper, these functionalities also provide
enough information because it can be assumed without
loss of generality that all of the partial derivatives with
respect to the state variables involved are always
nonzero. In the example given above, the partial deriva-
tive of the enthalpy with respect to temperature is
regarded as nonzero, whereas the partial derivative
with respect to pressure is considered to be zero. In this
way, plant model definition is greatly simplified, and it
is not necessary to choose a thermodynamic model or
to fit experimental data to approximate functions. In
addition, the amount of symbolic manipulation involved
in the redundancy analysis is significantly reduced
without affecting the quality of the classification results.
Moreover, these results are independent of the thermo-
dynamic model or individual operating points of the
plant under study.

Figure 1. Occurrence matrix partitioning resulting from observ-
ability analysis.
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4. SDIF: A Derivative-Based Strategy for
Redundancy Analysis

Our approach to the problem consists of taking
derivatives of the redundant equations with respect to
the measured variables, considering the observable
variables as functions of the measurements. If a certain
derivative is not zero, then the measurement partici-
pates in the equation under examination. Otherwise, it
does not actually have an influence on this equation,
although it might eventually take an active part on
some other equation.

4.1. Fundamentals. The SDIF redundancy strategy
analyzes the following nonlinear system

where functions f1, ..., fk correspond to the assigned
equations and r1, ..., rn represent the redundant ones.
Variables x1, ..., xk are observable, whereas m1, ..., ml
are measured.

We will only consider functions that verify the fol-
lowing assumptions: (1) All functions are assumed to
be differentiable. (2) If a function is zero on a set with
positive measure, then it is identically zero.

These assumptions include virtually every function
usually found in practice, for example, all analytic
functions.

In system 1, the Jacobian of the subsystem comprising
the functions f1, ..., fk with respect to the variables x1,
..., xk is nonsingular because this was one of the
requirements imposed on the occurrence matrix in the
observability analysis stage. More precisely, the deter-
minant of the Jacobian matrix vanishes only on a set
with measure zero. Then, by the implicit function
theorem, on a neighborhood of each point where the
determinant is not zero, each xi is a function xi(m1,...,ml),
i ) 1, ..., k. Thus, we have

Let us denote x ) (x1, ..., xk), m ) (m1, ..., ml), x(m) )
(x1(m1,...,ml), ..., xk(m1,...,ml)), f ) (f1, ..., fk), and r ) (r1,
..., rn). We define z(m) ) (x(m),m).

Then, eq 2 becomes

This last equation is simply the subsystem of assigned
equations regarding x1, ..., xk as functions instead of
independent variables.

Let us introduce the following notation

It is important to note that, in general, the entries in
all vector and matrices mentioned in this work are
functions, not constants.

Taking derivatives in eq 3 with respect to a measured
variable mj, we get, by the chain rule

We solve this linear system to find the vector Dmjx,
because Dxf and Dmjf are known. The fact that Dxf is
nonsingular guarantees that the system can be solved.
Solving the systems for j ) 1, ..., l, we find Dmjx for every
j. Note that the coefficient matrix Dxf is the same for
all of the systems.

Then, we proceed to take derivatives of the functions
r1 o z, ..., rn o z (which correspond to redundant equa-
tions) with respect to the measured variables. The
derivative of r o z with respect to mj is the vector

For example, the ith component of Rj is

If the expression in eq 6 is 0, then ri o z does not really
depend on mj. Hence, if the derivatives of all of the
functions r1 o z, ..., rn o z with respect to mj are 0, then
we classify mj as a nonredundant variable. If at least
one of these derivatives is nonzero, then we classify mj
as a redundant variable. That is, mj is classified as
nonredundant if and only if Rj is the zero vector.

Determining whether the expressions that are the
components of Rj are identically zero is nontrivial and
is the crucial task in this method for redundancy
analysis. The zero-check strategy and algorithm will be
explained in sections 4.3 and 4.4, respectively.

This technique can be performed on an individual
measured variable mj as above, and it can also be
simultaneously applied to any number of measure-
ments. For example, if we consider all of the measure-
ments, we have to solve the linear system

to find the matrix Dmx and then compute

The jth column of the redundancy matrix R is
precisely the vector Rj defined above, corresponding to
the measured variable mj. Therefore, the entry in row
i, column j of R is the partial derivative of ri o z with
respect to mj.

4.2. Consistency. The method presented above treats
assigned and redundant equations differently. The
observability analysis, however, can determine which
equations are to be considered as assigned in a nonu-
nique way. More specifically, for a given plant model,
the vector of observable variables is always the same,
but there might be several possible outputs from the
observability analysis with different subsets of assigned
and redundant equations. In this section, we show that
the redundancy-classification results obtained by the
proposed method do not change regardless of the equa-
tion assignment. Moreover, the results do not even
depend on the observability algorithm chosen, as long

Dxf(z(m))Dmj
x(m) + Dmj

f(z(m)) ) 0 (4)

Dxr(z(m))Dmj
x(m) + Dmj

r(z(m)) ) Rj (5)

Rj,i )
∂ri

∂x1

∂x1

∂mj
+

∂ri

∂x2

∂x2

∂mj
+ ... +

∂ri

∂xk

∂xk

∂mj
+

∂ri

∂mj
(6)

DxfDmx + Dmf ) 0 (7)

DxrDmx + Dmr ) R (8)

{fi(x1,...,xk,m1,...,ml) ) 0 i ) 1, ..., k
rj(x1,...,xk,m1,...,ml) ) 0 j ) 1, ..., n

(1)

fi(x1(m1,...,ml),...,xk(m1,...,ml),m1,...,ml) ) 0
for i ) 1, ..., k (2)

f(x(m),m) ) (f o z)(m) ) 0 (3)

Dxf ) [∂f1

∂x1
‚‚‚

∂f1

∂xk

l ‚‚‚ l
∂fk

∂x1
‚‚‚

∂fk

∂xk

],
Dmj

x ) [∂x1

∂mj

l
∂xk

∂mj

], Dmj
f ) [ ∂f1

∂mj

l
∂fk

∂mj

], etc.
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as it satisfies the following conditions: (a) The equations
labeled as “assigned” have a structurally nonsingular
Jacobian with respect to the observable variables. (b)
The nonobservable variables and the corresponding
unassigned equations are consistently identified, i.e.,
they are the same regardless of the algorithm used. This
implies that the vector of observable variables and the
union of the subsets of assigned and redundant equa-
tions are unique.

These conditions are nonrestrictive and are men-
tioned here only for the purpose of setting the working
hypotheses for the proof below. Any observability algo-
rithm that is based on the identification of assigned/
redundant/unassigned equations and observable/unob-
servable variables should comply with these requirements
to yield a correct classification of unmeasured variables.
In particular, all of the structural observability methods
proposed in Ponzoni18 satisfy these conditions.

Theorem. The redundancy classification obtained
through SDIF is independent of the choice of the
assigned equations and the observability algorithm
preceding the analysis under the conditions mentioned
above.

Proof. Let us consider the nonlinear system

First, the partition into assigned and redundant
equations shown in eqs 1 is obtained using the observ-
ability algorithm O. Then, the method presented in this
work is employed. Because the method can be applied
individually to each measured variable, we will consider
a certain measurement mj. The linear system

is solved to obtain Dmjx. The solution exists and is
unique because Dxf is nonsingular.

Next, we have to analyze the vector

and determine whether it is zero. Suppose that mj is
nonredundant, that is, Rj ) 0. Then, Dmjx satisfies the
system

Now suppose that the observability algorithm O′ is
applied to the original system 9. We obtain another
partition into assigned and redundant equations, which
will be denoted by f ′ and r′. By condition b, this
corresponds to exchanging rows between the upper and
lower blocks of eq 11. The right-hand side of eq 11 does
not change because it is 0. Then, Dmjx also satisfies

and in particular

Equation 13 has one and only one solution because
Dxf ′ is nonsingular, so the solution is the same vector

Dmjx satisfying eq 10. Note that this holds because Rj )
0; in general, Dmjx need not be the same vector as in eq
10.

Then, the lower block of eq 12 is

Therefore, if our technique is employed after the
observability algorithm O′, then the measured variable
mj is also classified as nonredundant.

It is clear that, reciprocally, if a measured variable
mj is classified as nonredundant after application of
observability algorithm O′, then it is nonredundant after
O. Therefore

This implies

4.3. The Zero-Check Strategy The methodology for
zero checking proposed in this paper is focused on the
structure of the algebraic expression. The classification
of the measured variable mj undergoing examination
is performed by checking whether expression 6, which
is a function æ ) æ(x,m), is identically zero. More
specifically, we need to determine whether æ o z is
identically zero, because observable variables are to be
considered as functions of the measurements.

This seemingly simple operation presents some major
difficulties. The expressions obtained often require
algebraic simplifications, and in some cases, the lengths
of the formulas exceed the capabilities of the software
package used for symbolic manipulations. In addition,
the expressions sometimes involve observable variables
as well as measured ones, and we do not explicitly know
the functions xi ) xi(m1,...,ml), i ) 1, ..., k, only their
derivatives.

On the other hand, the analysis does not require
complete detail. We do not need to know an exact,
simplified form of the formula considered; we only need
to determine whether it is identically zero.

Definition. Let æ ) æ(x,m) be an algebraic expression.
We will denote by Z(æ) the statement “æ o z is identically
zero”. Its negation will be indicated by ∼Z(æ). The
statement Z(æ) will also be written as æ o z ≡ 0.

For the sake of simplicity, we shall often write “æ is
zero”, instead of “æ o z is identically zero”. This should
cause no confusion.

Propositions. If æ and φ are expressions, then the
following statements are true:

(i) If for some measured variable mj we have ∼Z(∂(æ
o z)/∂mj), then ∼Z(æ). That is, if any derivative is not
zero, considering x as a function of m, then the expres-
sion æ is not zero.

(ii) Z(æ) or Z(φ) implies Z(æ‚φ). That is, if a factor is
zero, then the product is zero.

(iii) ∼Z(æ) and ∼Z(φ) implies ∼Z(æ‚φ).
(iv) If ∼Z(φ), then Z(æ/φ) S Z(æ). That is, a fraction

is zero if and only if its numerator is zero.
(v) ∼Z(exp(æ)).
(vi) If æ has only one variable v (observable or

measured), then ∼Z(dæ/dv) w ∼Z(æ). That is, if æ
actually depends on v, then æ is nonzero.

(vii) If æ does not have any observable variables and
æ is not the constant expression 0, then ∼Z(æ).

gi(x1,...,xk,m1,...,ml) ) 0 i ) 1, ..., N (9)

DxfDmj
x + Dmj

f ) 0 (10)

Rj ) DxrDmj
x + Dmj

r

[Dxf
Dxr ]Dmj

x + [Dmj
f

Dmj
r ] ) [0Rj ] ) [00 ] (11)

[Dxf′
Dxr′ ]Dmj

x + [Dmj
f′

Dmj
r′ ] ) [00 ] (12)

Dxf ′Dmj
x + Dmj

f ′ ) 0 (13)

R′j ) Dxr′Dmj
x + Dmj

r′ ) 0

mj is nonredundant after O S mj is nonredundant
after O′

mj is redundant after O S mj is redundant after O′
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Proofs. (i) Suppose that Z(æ) is true. This would mean
that æ o z is identically zero. Then, if mj is a measured
variable, we would have

for any vector m. This would mean that Z(∂(æ o z)/∂mj)
is true, contradicting the hypothesis. Therefore, our
assertion holds.

(ii) Obviously, if æ o z ≡ 0 or φ o z ≡ 0, then the product
(æ‚φ) o z ) (æ o z)‚(æ o z) ≡ 0. This equality holds because
the product of functions is defined pointwise.

(iii) Let Zeros æ o z be the set where æ o z vanishes,
i.e., Zeros æ o z ) {m ∈ Rl: æ(z(m)) ) 0}, and let Zeros
φ o z be defined similarly. By assumption 2, Zeros æ o z
and Zeros φ o z have measure zero. Thus, the measure
of the set Zeros (æ‚φ) o z ) Zeros (æ o z)‚(φ o z) ) Zeros
(æ o z) ∪ Zeros (φ o z) is zero. However, this implies that
(æ‚φ) o z is not identically zero, that is, ∼Z(æ‚φ).

(iv) If ∼Z(φ), then φ o z is not identically zero, and
neither is 1/(φ o z). We have Z(æ/φ), which means that
(æ/φ) o z ) (æ o z)‚1/(φ o z) ≡ 0. Because 1/(φ o z) is not
identically zero, we must have æ o z ≡ 0, that is, Z(æ).
Otherwise, we would get ∼Z(æ/φ) by proposition iii.
Thus, Z(æ) w Z(æ‚1/φ) w Z(æ/φ) by proposition ii.

(v) This is obvious because the exponential function
never vanishes.

(vi) If v is a measured variable, then proposition i
implies our statement directly.

If v is an observable variable, then, by definition, it
depends nontrivially on a certain measured variable mj.
Thus, ∼Z(dæ/dv) means that dæ/dv o z is not zero. That
is, dæ/dv(v(m)) is not identically zero. Therefore

which is not identically zero by proposition iii. Then,
by i, we obtain ∼Z(æ).

(vii) In this case, æ is an expression involving only
measured variables, if any. All variables are indepen-
dent, and æ o z ) æ. Because æ is a fully simplified,
nonzero expression and no extra cancellations due to
observable variables can take place, we conclude that
æ o z is not zero.

Applying proposition i repeatedly, we have, for ex-
ample

and similar statements. We then have the tree sketched
in Figure 2, where the “nonzero” property is propagated
backward up to the root node: ∼Z(some node) w ∼Z(all

of the parent nodes). In this scheme, subindices mean
derivatives. We sketch the tree considering only two
measured variables for the sake of simplicity.

4.4. The Zero-Check Algorithm. This is a recursive
algorithm employed to determine whether a given
expression æ is identically zero in the sense explained
at the beginning of section 4.3. In this context, the
partial derivative of each redundant equation with
respect to each measured variable is analyzed through
this program, which returns the following labels: “Zero”
if the expression is identically zero, “Nonzero” if the
expression is not zero, and “Unknown” if the algorithm
cannot draw a definitive conclusion about the expres-
sion.

In brief, the algorithm builds a tree-like search space
T whose nodes are algebraic expressions branching from
æ (root node). As it is built, T is simultaneously explored
node by node following a breadth-first search order. This
tree has the following two kinds of edges: (a) zero-length
edges that connect the expression at each node with its
factors and (b) unity-length edges that link the expres-
sion at each node with its derivatives with respect to
each measured variable, with the chain rule always
being applied to account for the fact that the observable
variables depend on the measurements.

Only one kind of edge can branch from each node.
First, the algorithm always attempts to generate zero-
length edges. If the expression can be factorized, its
derivatives are not calculated. Otherwise, unity-length
edges are obtained.

As the algorithm builds the tree, it simplifies the
expressions using a symbolic manipulation tool. If the
expression cannot be handled because of its size or
complexity, it is labeled Unknown, and no further
analysis is performed down that branch. The branching
rules, as well as the rules for individual expression
analysis and label information flow propagated upward
along the branches, are based on the propositions stated
in the previous section.

Each node is first checked to account for cases where
an immediate conclusion can be drawn. If the straight-
forward analysis is inconclusive, new nodes are spawned
and recursively analyzed. Further algorithmic details
are given in the Appendix.

5. Academic Examples

5.1. The Zero-Check Strategy. By way of illustra-
tion, let us consider how to determine whether a
particular algebraic nonlinear expression is identically
zero by means of the zero-check algorithm. Consider the
expression æ(x1,m1,m2) ) (m1 + x1)x1m2

2 + m1m2 + m1
2.

Also, assume that eq 7 yields ∂x1/∂m1 ) 1, ∂x1/∂m2 ) 0.
The corresponding search space is shown in Figure 3.
Zero-length edges are indicated by dashed arrows,
whereas solid arrows represent unity-length edges. Only
the significant derivatives are indicated. The expres-
sions enclosed in boxes are those the straightforward
analysis would declare Nonzero.

In level 2 of the tree, the expression 4m2
2 + 2 is

identified as Nonzero. This label is propagated upward
by the repeated application of proposition i. Then, the
root node æ is Nonzero, and the zero-check algorithm
ends.

It is interesting to note that there are different ways
of drawing the same conclusion. For example, in level
3, the expressions 8m2 are Nonzero, and so are the
expressions 8 in level 4. Any one of these labels would

Figure 2. Partial derivatives in a tree-like representation.

0 ≡ ∂(æ o z)
∂mj

) Dxæ(z(m))Dmj
x(m) + Dmj

æ(z(m)) )

((∂(æ o z)
∂mj

) o z)(m)

∂(æ o z)
∂mj

)
∂(æ(v(m)))

∂mj
) dæ

dv
(v(m)) ∂v

∂mj
(m)

∼Z( ∂
3æ

∂m3∂m2∂m1
) w ∼Z( ∂

2æ
∂m2∂m1

) w ∼Z( ∂æ
∂m1

) w

∼Z(æ) (14)
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be propagated upward as before. In level 2, two out of
the three factors in 2(m1 + x1)x1 are Nonzero. The factor
m1 + x1 is seen to be Nonzero by the analysis of its
derivative with respect to m1 in level 3. Thus, 2(m1 +
x1)x1 is Nonzero, which implies that the root node is
Nonzero. In this context, the zero-check algorithm tends
to achieve maximum efficiency by means of a breadth-
first search procedure that draws a conclusion at the
lowest possible level, thus minimizing the number of
derivatives required.

5.2. General Procedure. To illustrate the complete
method, let us consider the elementary linear system
shown in Figure 4, where nodes A-F represent items
of equipment. All of the variables are mass flow rates:
m1, ..., m6 are measurements, and x1, ..., x4 are observ-
able variables.

The equations of the system are

We could solve for x1, ..., x4 using, for example, the
equations for nodes B, C, E, and F, which then become
assigned equations. In the notation employed earlier,
the left-hand sides correspond to f1, f2, f3, and f4. Then,
A and D remain as redundant equations, corresponding
to r1 and r2. Thus, eq 7 becomes

which yields

Then, we write eq 8 as

For each entry of R, the zero-check analysis is carried
out, with obvious results for this example. Because m1,
m2, m3, and m5 have nonzero derivatives in at least one
equation, they are classified as redundant. Actually, the
algorithm stops analyzing each of these measured
variables as soon as the first nonzero derivative appears
in the corresponding column of R, because this is enough
to draw a definitive conclusion. In contrast, m4 and m6
have null derivatives in all of the redundant equations
and are therefore classified as nonredundant.

It is interesting to note that any other method that
examines the occurrence matrix from a purely struc-
tural viewpoint, i.e., without considering the actual
algebraic form of the equations, would fail in the
analysis of this simple example. For instance, let us

Figure 3. Search space T: its significant branches for zero-check purposes.

Figure 4. Linear example

{ m1 -m2 -m3 ) 0 (A)
-x1 +m2 +m3 ) 0 (B)
x1 -x2 -m4 ) 0 (C)

x2 +m4 -m5 ) 0 (D)
-x3 -x4 +m5 ) 0 (E)

x4 -m6 ) 0 (F)
(15)

DxfDmx + Dmf ) [-1 0 0 0
1 -1 0 0
0 0 -1 -1
0 0 0 1

]Dmx +

[0 1 1 0 0 0
0 0 0 -1 0 0
0 0 0 0 1 0
0 0 0 0 0 -1

] ) 0

Dmx ) [0 1 1 0 0 0
0 1 1 -1 0 0
0 0 0 0 1 -1
0 0 0 0 0 1

]
R ) DxrDmx + Dmr ) [0 1 0 0

0 0 0 0 ]Dmx +

[0 0 0 1 -1 0
1 -1 -1 0 0 0 ] ) [0 1 1 0 -1 0

1 -1 -1 0 0 0 ]
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consider a method that automatically classifies all of
the measured variables that appear in redundant equa-
tions as redundant variables. In this example, equations
D and A, which contain measurements m1-m5, are
redundant. Then, m4 would be erroneously classified as
a redundant variable. The key issue is the fact that one
equation contains both direct and indirect dependencies
that produce cancellation. By writing down x2 explicitly,
one would obtain x2 ) m2 + m3 - m4. Then, the
substitution of x2 into eq D would lead to the cancella-
tion of m4. Obviously, this effect cannot be predicted just
by analyzing the occurrence matrix.

It is clear that the occurrence matrix does not
always contain all of the information required for an
accurate redundancy analysis. In other words, the
correct classification might differ for two systems with
the same occurrence matrix. For example, equation D
in system 15 could be modified without structural
changes by introducing slight alterations that avoid
cancellation. For instance, if m4 is multiplied by 2 in
equation D, it does not cancel, thus becoming genuinely
redundant.

6. Prototype Implementation and Industrial
Results

A Matlab prototype of the new method was developed
to assess the algorithmic performance on realistic
problems. The implementation corresponds to the al-
gorithms detailed in the Appendix. The input informa-
tion was provided by the GS-FLCN observability
algorithm by Ponzoni et al.16 Because this procedure
rearranges equations and variables so that a block
lower-triangular pattern is generated for the submatrix
of size f × x (see Figure 1), the corresponding Jacobian
matrix Dx f keeps the same sparsity pattern. The SDIF
implementation takes advantage of this structure when
solving eq 4. For the subroutines for symbolic simplifi-
cation and factorization, built-in procedures from Maple
were used.

It is important to note that rigorous models of
industrial plants consist of a large number of equations,
some of which are strongly nonlinear. The occurrence
matrices are always sparse, but the equations are
usually coupled, and long dependence chains normally
arise. In view of the characteristics of the expressions
to be processed, several implementation details should
be taken into account. In the first stage of the zero-check
algorithm, the nodes are factorized because the factor-
ization reduces the length and complexity of the indi-
vidual expressions, thus leading to a more efficient
analysis. Checking the length of the expressions before
processing them with the symbolic manipulation tool
is also necessary to avoid the limitations of the symbolic
solver.

The algorithmic performance was first tested by
analyzing a classical example from Kretsovalis and
Mah6 that consists of 75 equations and 72 variables,
involving only linear and bilinear relations. Our clas-
sification procedure involves two successive stages:
observability and redundancy analyses. All of the final
results coincided with those reported by Kretsovalis and
Mah6 (see Table 1), revealing the compatibility of the
two approaches.

Next, an industrial example adapted from the
plant sector presented by Joris and Kaliventzeff 15

was considered. This problem includes mass and
energy balances, as well as strongly nonlinear equations

for the two reactors involved in the process. Because
of the complexity of the formulation, it was not conve-
nient to choose classical techniques. The application
of GS-FLCN’s method for structural observability
analysis,16 followed by the redundancy strategy pre-
sented in this work, yielded the results shown in Table
1. Our approach provided an efficient way to solve this
difficult problem. Therefore, we can infer that it con-
stitutes a promising alternative with a wide applicabil-
ity range.

7. Conclusions

A new approach for redundancy analysis that is
based on the symbolic derivation of implicit func-
tions is proposed in this work. The method over-
comes deficiencies of existing techniques in terms of
applicability range and classification accuracy. Its per-
formance was assessed for a variety of academic and
industrial case studies with satisfactory results. One of
the main features of the strategy is that it works directly
on the original model equations, thus allowing the use
of rigorous nonlinear formulations. Another advantage
is that, because of its nonnumeric nature, the method
does not require the definition of an operating point.

Nomenclature

Dxf ) Jacobian matrix of f with respect to x
f ) (f1, ..., fk) ) assigned equations
k ) number of assigned equations ) number of observable

variables
l ) number of measured variables
m ) (m1, ..., ml) ) measured variables
n ) number of redundant equations
O ) observability algorithm
R ) redundancy matrix
Rj ) jth column of R
r ) (r1, ..., rn) ) redundant equations
rm ) redundant equations without observable variables
rxm ) redundant equations with observable variables
ua ) unassigned equations
um ) unmeasured variables
uo ) unobservable variables
x ) (x1, ..., xk) ) observable variables
Z(æ) ) æ o z is identically zero
z(m) ) (x(m),m)
æ ) algebraic expression
∼ ) negation

Appendix: Zero-Check Algorithms

1. Zero Check(æ, maxdepth, result). The purpose
of this algorithm is to check whether an expression is
identically zero, considering the observable variables
as functions of the measurements. The input param-
eters are æ, the symbolic expression under study,
and maxdepth, the maximum number of levels
allowed for the breadth-first search procedure, starting
from the current node. The output parameter is
result, a logical variable valued as Zero if æ is identically
zero, as Nonzero if æ is definitely not zero, or as
Unknown if no conclusion can be drawn. Finally, the

Table 1. Classification Results

equations variables
example a r ua o uo m

redundant
measurements

Mah 43 32 0 43 0 29 24
Joris 51 27 0 51 0 21 18
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main internal datum is depth, the number of genera-
tions of descendants to be explored from the current
node.

2. Check Length(æ, success). The purpose of this
algorithm is to verify that an expression is short enough
for Maple to handle. The input parameter is æ, the
symbolic expression under study, and the output pa-
rameter is success, a logical variable valued as false if
æ is too long and true otherwise.

3. Perform Straightforward Analysis(æ, result).
The purpose of this algorithm is to test whether an
immediate conclusion can be drawn for a given expres-
sion. The input parameter is æ, the symbolic expression
under study, and the output parameter is result, a
logical variable valued as Zero if æ is identically zero,
as Nonzero if æ is definitely not zero, or as Unknown if
no conclusion can be drawn.

4. Analyze Factors(æ, maxdepth, result). The
purpose of this algorithm is to build zero-length edges
to determine whether æ is Nonzero through the analysis
of its factors. The input parameters are æ, the symbolic
expression under study, and maxdepth, the maximum
number of levels allowed for the breadth-first search
procedure, starting from the current node. The output
parameter is result, a logical variable valued as Zero if
æ is identically zero, as Nonzero if æ is definitely not
zero, or as Unknown if no conclusion can be drawn.

5. Analyze Derivatives(æ, maxdepth, result). The
purpose of this algorithm is to build unity-length edges
to determine whether æ is nonzero or unknown through
the analysis of its derivatives. The input parameters are
æ, the symbolic expression under study, and maxdepth,
the maximum number of levels allowed for the breadth-
first search procedure, starting from the current node.
The output parameter is result, a logical variable valued
as Nonzero if æ is definitely not zero or as Unknown if
no conclusion can be drawn.
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