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Abstract

The spanning-tree approximation model is one of the models used for polymerizations with intramolecular reaction regardless of the size
of the ring formed. We present a modification of this model that uses more accurate internal estimates of the probabilities of intramolecular
reaction. This requires limited Monte Carlo simulations of some molecular structures, resulting in a hybrid probability model (a combined
analytic and Monte Carlo model). We then extend the spanning-tree model so that it may be used in the post-gel region. We show three
possible extensions of varying degrees of complexity. The resulting models for stepwise Af homopolymerizations have been coded into
programs that run on desktop PCs in a few seconds. The models calculate the amount of intramolecular conversion, the weight-average
molecular weight, the gel point, the weight fraction of soluble material, and the weight-average molecular weight of the sol fraction. We
discuss the relative merits of the modified spanning-tree model and its three post-gel extensions and show sample calculations for arbitrary
homopolymerization systems.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The presence of intramolecular reactions in polymeriza-
tions introduces a number of defects in the resulting
polymer. When two reactive sites that happen to belong to
the same molecule react with each other, a cycle or loop
forms. Conversion advances but the molecular weight
remains unchanged. The reactive sites are in that sense
“wasted”. As a consequence of these intramolecular reac-
tions, the molecular weight of the system at any given
conversion is lower than what would be expected from the
“ideal” classical formulae, such as those given by Flory [1]
and Stockmayer [2,3]. The gel point is delayed, and after
that the network that forms is imperfect, with more solubles
and more dangling chains than would be expected in an
ideal polymerization. It has been observed experimentally
that some conditions tend to favor the presence of intra-
molecular reactions [4–6]: more diluted systems, more
flexible chains, and stoichiometrically balanced systems.

Several efforts have been made in the past to be able to
model intramolecular reactions in irreversible stepwise
systems [5–10]. Modeling irreversible systems is a very

challenging problem, since the resulting distribution of
degrees of polymerization is not known beforehand, and
the exact solution of the problem requires simultaneous
knowledge of the relative positions of all unreacted sites
that belong to the same molecules. Several approaches are
possible, but they all involve adopting approximations [11].

One approach is the Spanning-Tree Approximation, due
to Gordon and coworkers [6,7,12]. The spanning-tree
approximation models a branched polymerization contain-
ing intramolecular reactions, which create cycles. The
bonds formed by intramolecular reactions are cut and the
intramolecularly reacting groups are labeled with “s ”. This
transforms a molecular structure with cycles into a tree-like
(no cycles) structure: a spanning tree. The structure of a
spanning tree can be modeled approximately using a
stochastic branching process. The reactive groups are
labeled: unreacted groups are labeled “v ”, intermolecularly
reacted groups are labeled “a ” (tree forming), and intra-
molecularly reacted groups are labeled “s ” (cycle forming).
An example is shown in Fig. 1. One advantage of this model
is that it requires very few differential equations to account
for all the intramolecularly reacted sites in a system. A
disadvantage is that it does not keep track of the size of
the loops formed, and that could lead to problems in the
predictions. It has been noted [13] that it is not possible to
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fit gel point data and molecular weight data with the same
adjustable parameter. If the parameter is adjusted so that
molecular weight predictions are good over most of the
pre-gel region, then the gel point delay is larger than the
experimentally observed one [13]. A second problem with
the model is that in its original form it may not be used
beyond the gel point, because the equations that account
for intramolecular reaction diverge. The post-gel region is
very important for those working with thermosets or elasto-
mers; therefore, it would be useful to extend the model to
that region, especially in view of the low computational cost
involved in a model with so few differential equations. As
with any mean field theory, it should be applied with caution
to systems with severe steric hindrances. It is however an
attractive option for flexible systems where polymerization
is not diffusion-controlled, provided its known short-
comings could be somehow alleviated.

In this work, we investigate the spanning-tree model and
propose a modification and extensions that have two
benefits: improvement of predictions in the pre-gel region,
and validity of the model beyond the gel point. This modi-
fication results in a hybrid model that is in part analytic, and
in part numerical Monte Carlo modeling.

There are different ways to implement a branching
process model of the spanning tree. We can find the fraction
of labeled reactive groups�v;a;s� by an approximate
kinetic analysis, then randomly assign labels to the indi-
vidual groups on monomers, and then, using the branching
process model, randomly construct and analyze the
molecular structure. Alternatively, it is possible to perform
an approximate kinetic analysis of the simultaneous labeling
of all groups on individual monomers, and then randomly
combine these labeled monomers using a more compli-
cated branching process model. This is the approach
generally taken by Gordon and Scantlebury [6] who
introduced the spanning-tree approximation model. It
is also possible to perform a kinetic analysis on even
larger structures, labeling reactive groups withv , a , or
s , and then building up the molecular structure as a
branching process; Sarmoria et al. [8] used larger frag-
ments in modeling Af 1 B2 copolymerizations with unit
cycles. All these approaches are approximations, but the
second and third avoid such glaring impossibilities as a
three-functional monomer labeled with twovs and ones .
Here, we shall use the first approach which is simpler (and
perhaps, no worse an approximation than the other
approaches); we believe that it illustrates the general points
that we wish to make concerning spanning tree-approxima-
tion models.

2. Model A: the spanning-tree model of Af

homopolymerization (stars)

In this paper, we will consider homopolymerizations of
stars with f equal arms. Each arm contains exactly one reac-
tive group at its end. The reactive site is denoted as “A”,
while the f-functional star monomer is denoted as Af.
Suppose that an Af star-monomer homopolymerization in
which cyclization is permitted has reacted to conversionb
(counting both inter- and intramolecular reaction), where
0 # b # 1: A-groups may be unreacted (v), intramolecu-
larly reacted (s ), or intermolecularly reacted (a ); denote
these groups as Av , As , and Aa , respectively. At conversion
b , let the fractions (or probabilities) of A-groups in different
states bev �b�; s�b�; and a �b�; respectively, sob �
a �b�1 s �b�: At conversionb , we will use a branching
process model to construct and analyze an approximation
to the spanning-tree description of the polymer molecules.
In the next increment of conversion,�b;b 1 Db�; we would
like to model the changes inv�b�; s �b�; and a �b�: We
know that the change inv �b� equals2Db and the change
in a �b�1 s �b� equals1Db; so it suffices to calculate the
fractions (or probabilities) of reactions that are intramole-
cular or intermolecular.

Consider a randomly chosen unreacted A-group, Av
p ;

which we shall denote as the “root” unreacted A-group.
Suppose that the background concentration of Av groups
on other molecules isCinter�b�: This is the concentration of
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Fig. 1. An A3 star-homopolymer molecule with cycles is transformed into a
spanning-tree approximation of molecule by cutting the intramolecular
bonds (and labeling them withs).



intermolecular-bonding candidates. So,

Cinter�b� � �1 2 b�f �A�0; �1�
where [A]0 is the initial concentration of Af-monomers.
Furthermore, suppose that the mean (over different confor-
mations of the molecule) concentration of additional Av

groups on the same molecule in the neighborhood of the
unreacted root A-group isCintra�b�: This is the concentration
of intramolecular-bonding candidates. We shall calculate an
approximation toE�Cintra�b��; the average concentration of
intramolecular-bonding candidates about a randomly
chosen unreacted A-group. Then, we will use as prob-
abilities of intramolecular and intermolecular bonding:

P�intraub� � E�Cintra�b��
E�Cintra�b��1 Cinter�b� �2�

P�interub� � Cinter�b�
E�Cintra�b��1 Cinter�b� �3�

Note that this assumes second-order reactions. For small
Db , we get the difference scheme:

v�b 1 Db� � v�b�2 Db �4�

s �b 1 Db� � s �b�1 P�intraub�Db �5�

a�b 1 Db� � a�b�1 P�interub�Db �6�
or, for infinitesimal db , we get the system of differential
equations:

dv�b�
db

� 21 �7�

ds �b�
db

� P�intraub� �8�

da�b�
db

� P�interub� �9�

The initial values for both systems of equations are:v�0� �
1; s �0� � 0; a�0� � 0: The above difference scheme can be
implemented using Euler’s method for 0# b # 1: The
differential equations can be solved using a numerical
differential equation solver. Both approaches require that

we calculate a value ofE�Cintra�b�� from the current values
of b , s �b �; anda �b�:

To derive a formula forE�Cintra�b��; we use a branching
process model of molecular structure about a randomly
chosen root unreacted A-group, Av

p : We use the shell and
generation structure around Av

p ; as illustrated in Fig. 2.
(Burchard [14] gives a description of this modeling para-
digm.) The molecule is organized as a family tree, with the
chosen Avp ; in the 0th generation or shell. That position is
indicated withi � 0 in Fig. 2. The remaining A-groups on
the root monomer are placed on the first generation or first
shell, i � 1 in Fig. 2. If these sites reacted, as is the case in
the example in Fig. 2, they have “descendants” that are
placed on the second shell,i � 2; and so on.

We require the following notation: LetM�i� be the
number of A-monomers in theith shell about the root Avp ;
i � 0;1; 2;… Using this definition,M(0) always equals
unity, since it is the monomer with Avp : In the example in
Fig. 2,M�1� � 2 andM�2� � 1: Let Nv�i�; Ns�i�; andNa�i�
equal the number of Av-groups, As -groups, and Aa-groups,
respectively, exactlyi generations from the root Avp ; i �
1; 2;3;… This notation is somewhat redundant, but hope-
fully it will make the presentation clearer. The redundant
relationships are:

M�i� � Na�i� �10�

� f 2 1�M�i� � Nv�i 1 1�1 Ns�i 1 1�1 Na�i 1 1� �11�
which equals the number of A-groups in thei 1 1st
generation from Avp :

Consider the random displacement of a particular Av
i -

group in theith generation about the root group Av
p : If we

put Av
p at (0,0,0) and denote the position of Av

i as�X;Y;Z�;
then for long chains the random variablesX, Y, andZ will be
independent Gaussian random variables with zero means
and variances Var�X� � Var�Y� � Var�Z� � s2n`2i=3:
Here n is the number of segments between A-groups on
the Af-star monomer (so the number of segments on an
arm of the Af-star monomer isn/2), ` is the length of
each segment on the arms of the Af-star monomer, ands 2

is the flexibility coefficient for the arms of Af-monomers
�s 2 � 1 corresponds to freely-jointed chain). Note that
E�X� � E�Y� � E�Z� � 0; it then follows that E�X2� �
E�Y2� � E�Z2� � s 2n`2i=3: By independence ofX, Y, and
Z, the mean squared end-to-end distance isE�R2� �
E�X2�1 E�Y2�1 E�Z2� � s 2n`2i; which is the well-
known result. So, the joint density of�X;Y;Z� for a single
Av

i ; an unreacted A-group exactlyi generations from the
root unreacted group, is the three-dimensional (3D)
Gaussian density

fX;Y;Z�x; y; z� � 1����������������
2ps 2n`2i=3

p !3

exp 2
x2 1 y2 1 z2

2s 2n`2i=3

 !
;

2∞ # x; y; z # ∞
�12�
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Fig. 2. The shell and generation structure around a random unreacted
monomer, Avp :



The density at (0,0,0) equals the mean concentration of a
single Av -group in theith generation about Avp :

Ci � fX;Y;Z�0; 0;0� � �2ps 2n`2i=3�23=2 �13�
This concentration is given in units per volume. This value
should be divided by Avogadro’s number to obtain concen-
tration in moles per volume. The number of Av-groups in
the ith generation isNv�i�; therefore the mean concentration
(over all conformations) of the totality of these Av -groups
in the neighborhood of the root Avp is

Cintra�b� �
X∞
i�1

�2ps2n`2i=3�23=2Nv�i� �14�

and the expected mean concentration over all choices of
random unreacted A-group roots is

E�Cintra�b�� � �2ps2n`2
=3�23=2

X∞
i�1

i23=2E�Nv�i�� �15�

We shall now use a branching process model, the shell
method, to derive a formula forE�Nv�i�� to be used in the
above formula forE�Cintra�b��: We need the following nota-
tion: Let Ti; j equal the number of additional Aa -groups on
the jth monomer in theith shell (excluding the Aa connect-
ing this monomer to the root Avp �; i � 0;1; 2;…The random
variables T have a Binomial� f–1;a�b�� distribution; so,
E�T� � � f–1�a�b�: Let Ui; j equal the number of additional
Av-groups on thejth monomer in theith shell (excluding
the root Avp in the 0th shell),i � 0; 1;2;… The random
variablesU have a Binomial� f–1;v�b�� distribution; so,
E�U� � � f–1�v�b�: Note that, for fixedi and j, Ti; j and
Ui; j are not independent, but have a multinomial distribu-
tion. (Recall thatTs represent tree-forming bonds andUs
represent unreacted groups.) The shell relationships for the
molecular structure are:

M�0� � 1 �16�

M�i 1 1� � Na�i 1 1� �
XM�i�
j�1

Ti; j ; i � 0;1;2;… �17�

Nv�i 1 1� �
XM�i�
j�1

Ui; j ; i � 0;1; 2;… �18�

Taking expected values of the structural relationships in
Eqs. (16)–(18) gives:

E�M�0�� � 1 �19�

E�M�i 1 1�� � E
XM�i�
j�1

Ti; j

0@ 1A � E�M�i��E�T�

� � f 2 1�a�b�E�M�i�� �20�

E�Nv�i 1 1�� � E
XM�i�
j�1

Ui; j

0@ 1A � E�M�i��E�U�

� � f 2 1�v�b�E�M�i��
�21�

Solving Eqs. (19) and (20) gives

E�M�i�� � �E�T��i � �� f 2 1�a�b��i ; i � 0;1;2;…

�22�
and further substitution into Eq. (21) gives

E�Nv�i�� � E�M�i 2 1�E�U� � � f 2 1�iv�b�a�b�i21
;

i � 0; 1;2;…
�23�

Finally, substitution into Eq. (13) gives

E�Cintra�b�� � �2ps 2n`2
=3�23=2

X∞
i�1

i23=2� f 2 1�iv�b�a�b�i21
;

0 # b # 1 (24)

Using Eqs. (24)–(9) with Eq. (2) allows numerical calcula-
tion of �v�b�;s �b�;a�b��; 0 # b # 1:

We can also calculate the weight-average molecular
weight Mw at any conversionb . To do this, randomly pick
an A-monomer and designate it as the root (p) of a random
molecule selected by weight. The resulting structure could
be, for example, the one indicated in Fig. 2. LetR equal the
number of A-groups on the root monomer that have reacted
intermolecularly; thenR has a Binomial� f ;a�b�� distri-
bution andE�R� � fa�b�: Let M�i� equal the number of
monomers in theith shell around the root monomer,
i � 0; 1;2;… The number of monomers in successive
generations satisfy the relationships

M�0� � 1 �25�

M�1� � R �26�

M�i 1 1�
XM�i�
j�1

Ti; j ; i � 0; 1;2;… �27�

Taking expectations of the structural relationships in Eqs.
(25)–(27) gives

E�M�0�� � 1 �28�

E�M�1�� � E�R� �29�

E�M�i 1 1�� � E
XM�i�
j�1

Ti; j

0@ 1A � E�M�i��E�T�;

i � 0; 1;2;…

�30�

Solving Eqs. (28)–(30) gives

E�M�i�� � E�R�E�T�i21
; i � 0;1;2;… �31�
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The molecular weightW of this random molecule satisfies:

W � MA

X∞
i�0

M�i� �32�

Taking the expected value gives the weight-average
molecular weight:

Mw � E�W� � MAE
X∞
i�0

M�i�
 !

� MA

X∞
i�0

E�M�i�� �33�

which by substitution using Eq. (31) becomes

Mw � MA 1 1 E�R�
X∞
i�0

E�T�i
 !

� MA 1 1
E�R�

1 2 E�T�
� �

� MA
1 1 a�b�

1 2 � f 2 1�a�b�
� �

�34�

Note that gelation occurs whena�b� equals 1=� f 2 1�: Note
also, that for this critical value ofa�b�; E�Cintra�b�� , ∞:

But, for a�b� . 1=� f 2 1�; E�Cintra�b�� � ∞ and
P�intraub� � 1: Thus, beyond the gel point, this model
does not allow intermolecular reaction to occur. For this
reason, the usual spanning-tree approximation is not
appropriate for post-gel analysis.

3. Model B: an alternative formulation

Beyond the gel point, the probability of intramolecular
reaction should still be less than one. The model for
P�intraub� given in Eq. (2) yields a value of 1 for conver-
sions beyond the gel point, creating a problem. A more
accurate model forP�intraub� is the following. Consider
that Cintra�b� is a random variable; it equals the mean
concentration of intramolecular-bonding candidate
A-groups about a randomly chosen unreacted A-group,
Av

p : The probability of an intramolecular bond around this
particular random A-group is then

P�intra for Av
p ub� � Cintra�b�

Cintra�b�1 Cinter�b� �35�

and the average, overall probability is obtained by taking the
expected value of these random probabilities for random
choices of Avp :

P�intraub� � E
Cintra�b�

Cintra�b�1 Cinter�b�
� �

�36�

Note that

E
Cintra�b�

Cintra�b�1 Cinter�b�
� �

±
E�Cintra�b��

E�Cintra�b��1 Cinter�b� �37�

and that the values can differ significantly.
We propose using Eq. (36) to estimate the probability of

intramolecular reactions. Making the appropriate modi-
fication to the previous model, the substitution into

Eq. (36) gives

P�intraub� � E

�2ps 2n`2
=3�23=2

X∞
i�1

i23=2Nv�i�

�2ps2n`2
=3�23=2

X∞
i�1

i23=2Nv�i�1 Cinter�b�

0BBBB@
1CCCCA
�38�

whereCinter�b� is in units per volume. Unfortunately, this
expression for the intramolecular probability appears
analytically intractable. Therefore, to solve Eqs. (4)–(6),
we will estimate P�intraub� in Eq. (38) using Monte
Carlo simulation for given values of�v�b�;s �b�;a�b��; 0 #
b # 1:

4. Monte Carlo simulation of P�intra ub�

Pick a random Av and designate it as the root unreacted
A-group, Av

p : We want to simulate the mean concentration
of intramolecular-bonding candidate A-groups around this
particular Avp : We shall simulate the random spanning-
tree structure around this Avp for the parameters
�v�b�;s �b�;a�b�� and from this simulation estimate the
mean concentration of possible intramolecular groups.
From this concentration, we can estimate the probability
that an intramolecular reaction occurs if the root group
reacts. We replicate this Monte Carlo experimentn times,
and average then estimates of the intramolecular prob-
ability to obtain our estimate ofP�intraub�:

To simulate the random spanning-tree structure around
Av

p ; we simulate values of the random variablesTi; j andUi; j

until the molecule terminates or (in the gel) until we reach a
truncation condition. For a given�i; j�; the random variables
Ti; j and Ui; j have a multinomial distribution with� f 2 1�
trials: the probability of “v ” is v�b� and the probability of
“a ” is a�b�: To simulate, sample� f 2 1� random numbers;
the number falling in the interval�0;v�b�� equalsui; j and
the number falling in the interval�1 2 a�b�; 1� equalsti; j :
Then the spanning-tree structure is:

m�0� � 1 �39�

m�i 1 1� �
Xm�i�
j�1

ti; j ; i � 0;1; 2;… �40�

nv�i 1 1� �
Xm�i�
j�1

ui; j ; i � 0;1;2;… �41�

The mean concentration of a single Av in the ith generation
around the root Avp is given by Eq. (13). Therefore the mean
concentration of all Av-groups in theith generation around
the root Avp is

cintra;i�b� � nv�i�fi�0;0; 0� � nv�i��2ps 2n`2i=3�23=2 �42�
The total mean concentration of all Av-groups near this
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randomly chosen root Avp is

cintra�b� �
X∞
i�1

cintra;i�b� �
X∞
i�1

nv�i��2ps2n`2i=3�23=2 �43�

So, for this particular Avp we estimate the probability of
intramolecular reaction to be

p�intraub� � cintra�b�
cintra�b�1 Cinter�b� ; �44�

the probability of intermolecular reaction to be

p�interub� � Cinter�b�
cintra�b�1 Cinter�b� �45�

and the probability of a cycle of sizei to be

pi�intraub� � cintra;i�b�
cintra�b�1 Cinter�b� �46�

We replicate this Monte Carlo experimentn times for given
values of�v�b�;s �b�;a�b��: In this way, we getn inde-
pendent observations of each of the above values. Usingk
as an index for the replicates, we have values�cintra�b��k and
� p�intraub��k; k � 1;2;3;…;n; and �cintra;i�b��k and
� pi�intraub��k; i � 1;2; 3;…; k � 1;2;3;…;n: From these
numbers, we estimate the probabilities of intramolecular
reaction and also the probabilities of cycles of particular
sizes

P̂�intraub� � 1
n

Xn
k�1

� p �intraub�k�

� 1
n

Xn
k�1

�cintra�b��k
�cintra�b��k 1 Cinter�b� �47�

P̂i�intraub� � 1
n

Xn
k�1

� pi�intraub�k�

� 1
n

Xn
k�1

�cintra;i�b��k
�cintra�b��k 1 Cinter�b� �48�

P̂�interub� � 1 2 P̂�intraub� �49�
These estimates of the probabilities are then used instead of
the analytical values from Eq. (2) in the differential equa-
tions governing�v�b�;s �b�;a�b��: The rest of the analysis
is the same as before.

If we use Euler’s method forb : 0 # b # 1; with Db �
0:01; then we go through the Monte Carlo simulation step
100 times. At each value ofb , we randomly grow statisti-
cally larger structures around a random unreacted root
A-group, Av

p : One approach is to execute 100 independent
simulation experiments, buildingn new structures each
time. Another, more efficient approach, is to save then
structures created at conversionb and then add to them at
time b 1 Db rather than starting all over withn new struc-
tures. In the interval�b;b 1 Db�; fractionDb of all groups
are reacted, which equals fractionDb =v �b� of all groups

unreacted at conversionb . So, during the interval�b;b 1
Db�; fraction P�intraub�Db=v�b� of v -groups become
s-groups and fractionP�interub�Db=v�b� of v -groups
becomea -groups. At conversion(b , a spanning tree rooted
at Av

p is described by�nv�1�;nv�2�;nv�3�;…�; the number
of unreacted groups in each generation from Av

p . We
consider eachv -group in the rooted tree, except for
the root. With probabilityP�intraub�Db=v�b�; we randomly
change thev -group to a s -group. With probability
P�interub�Db=v�b�; we randomly change thev -group to
form an a-bond and then continue building using
probabilitiesa�b 1 Db� and s �b 1 Db� to continue the
tree out from that a -group, updating thenv-vector
appropriately.

We have presented two spanning-tree approximation
models: we refer to them as Models A and B. In Model
A, we calculateP�intraub� as the ratio of expected concen-
trations from Eq. (2); this is the original method of Gordon
and Scantlebury [6]. In Model B, using Monte Carlo simu-
lation, we estimateP�intraub� in Eq. (36) as the average of
probabilities for individual unreacted groups; this is a new
method. Model B is a more accurate representation of the
physical intramolecular reaction phenomenon than Model
A; therefore Model B should be the a priori model of choice.

5. Some numerical results and conclusions for
conversions up to the gel point

We have run several cases for monomers with function-
ality f ranging from 3 to 7. As a first step, we had to establish
the parameters that would make the Monte Carlo simulation
reliable. Two parameters were involved: the number of
replications that would be used to obtain the averages, and
the maximum number of generations in any one soluble
molecule (molecules with more generations are considered
to belong to the gel fraction). We performed the simulations
with a Db step-size of 0.001, and increased the number of
replications “n” and the number of generations in the sol
“nsol” until the gel point calculated by Model B became
stable, with a maximum variation of 0.002 inb . We
performed this test for concentrated and diluted systems
(in the latter, there is greater ring formation), and for differ-
ent functionalities in the starting monomer. From these
simulations, the values of 150 replications and 20 genera-
tions in the sol give good accuracy. These values were used
for the remainder of the work reported in this paper.

We compared the results of Models A and B. The results
given by the two models are not always different. If the
amount of ring formation causes the gel point to be delayed
by less than 20% compared with the ideal (no rings) case,
then both models give practically identical results. If ring
formation is more important, then Model A always predicts
a greater delay than Model B does. As an example, we show
in Fig. 3 the results obtained from both models for a system
of A3 homopolymerization, with the same molecular weight
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Fig. 3. Predictions from Models A and B for an A3 homopolymerization: (a) with 40 bonds in each arm; and (b) with 120 bonds in each arm.



(3000), the same dilution (50%), the same end-to-end
distance distribution (Gaussian) and different number of
segments in their arms. For Fig. 3(a), there are 40 segments
in each arm, while for Fig. 3(b) there are 120 segments in
each arm. It is expected that the system with longer arms
will generate fewer rings, since the concentrationsCintra;i

will be lower in that case. We know that for the ideal
case, the gel point should be atb � 0:5: When there are
40 segments in each of the three arms of the Af monomer,
the predicted gel points are 0.984 for Model A, and 0.900 for
Model B. Weight average molecular weight predictions
differ accordingly. The prediction ofP�intraub� is different
between the two models, even though the average value of
Cintra is practically the same for both of them. This was to be
expected, as discussed above. For the case where the
number of bonds in each arm is 120, the predicted gel points
are 0.593 for Model A and 0.592 for Model B. As can be
seen in Fig. 3(b), all quantities are almost identical.

6. After the gel point: Model I

The original spanning-tree approximation model (Model
A) is a poor one after the gel point and no one has attempted
to use it in its original form. The theoretical expected
concentration Cintra�b� is infinite after gelation. Thus,
P�intraub� equals 1 and all reactions after the gel point
will be intramolecular. This results in all molecular and
network parameters being fixed at the values they had at
the gel point.

Using our modification of the usual spanning-tree model
(Model B) in which we computeP�intraub� as the expected
value of the intramolecular reaction probabilities over
randomly chosen molecules is a modest improvement
after the gel point: If the root unreacted A-group, Av

p ;

belongs to the soluble fraction we will getP�intrausol;b�
less than 1; if it belongs to the gel fraction, we get
P�intraugel;b� � 1: The overallP�intraub� will then be less
than one, so we still get some intermolecular reaction and
network build-up after the gel point.

So, for this first post-gel model (Model I), we concede
complete intramolecular reaction in the gel fraction. We
model the sol fraction, estimateP�intrausol;b�; and then
average it with 1 to getP�intraub�: We can estimate
P�intrausol;b� in two ways: (a) as the ratio of theoretical
expected concentrations (in the spirit of the original span-
ning tree); or, (b) as the expected value of probabilities of
intramolecular reaction for randomly chosen Av

p (using
Monte Carlo simulation). In both cases, we model the
molecular structure of the sol fraction.

The molecules in the sol fraction of an Af homopolymer-
ization (reacted to intermolecular conversiona�b�� are
statistically identical to those of a pre-gel Af homo-
polymerization at conversionas�b�; where the subscript
“s” represents “soluble material” [1,15]. For an Af

homopolymerization, the relationship betweena s and a

is: as � aP�Fout
A � f 22

; whereP�Fout
A � equals the probability

of seeing a finite branch when looking “out” from a
randomly chosen A-group [15].P�Fout

A � satisfies the equa-
tion

P�Fout
A � � �1 2 a�1 1 aP�Fout

A � f 21 �50�
For f � 3;

P�Fout
A � � �1 2 a�

a
; as � 1 2 a;

1
2

# a # 1 �51�

For f � 4;

P�Fout
A � �

������������
4a 2 3a2
p

2 a

2a
;

as � 1 2
a 1

������������
4a 2 3a2
p

2
;

1
3

# a # 1

�52�

For f $ 5; P�Fout
A � must be calculated by numerically

solving Eq. (50). The fraction 12 as�b� of remaining
groups will be labeled “v ” and “s ” in the same proportion
as in the overall polymerization:

vs�b� � �1 2 as�b�� v�b�
v�b�1 s �b� �53�

ss�b� � �1 2 as�b�� s �b�
v�b�1 s �b� �54�

Finally, note that

P�Av
p [ solub� � P�Fout

A � f 21 �55�
Thus, we can calculateP�intrausol;b� either theoretically as
the ratio of expected concentrations (call it Model I-A) or by
Monte Carlo simulation as the average of probabilities (call
it Model I-B). We use the same equations as above for
P�intraub� but instead of using�v�b�;s �b�;a�b��; we use
�vs�b�;ss�b�;as�b�� to getP�intrausol;b�: At the beginning
of the interval �b;b 1 Db� we have �v�b�;s �b�;a�b��;
from these values we calculate�vs�b�;ss�b�;as�b��; from
which we calculateP�intrausol;b�: We then calculate

P�intraub� � P�intrausol;b�P�Av
p [ solub�

11�1 2 P�Av
p [ solub�� (56)

and

P�interub� � 1 2 P�intraub� �57�
Finally, for this interval, we calculate

v�b 1 Db� � v�b�2 Db �58�

a�b 1 Db� � a�b�1 P�interub�Db �59�

s �b 1 Db� � s �b�1 P�intraub�Db �60�
and then repeat the process all over again for the nextDb -
interval.
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7. Weight fraction and weight-average molecular weight
of soluble material

The first post-gel polymerization parameter we seek is
the weight fraction of soluble material,wfs. For an Af

homopolymerization,

wfs� �P�Fout
A �� f �61�

where P�Fout
A � is the probability of a finite branch seen

looking “out” from a random A-group [15]; it satisfies the
equation:

P�Fout
A � � �1 2 a�b��1 1 a�b�P�Fout

A � f 21 �62�
For f � 3;

wfs� �1 2 a�b��
a�b�

� �3

;
1
2

# a # 1 �63�

For f � 4;

wfs�
����������������������
4a�b�2 3�a�b��2p

2 a�b�
2a�b�

 !4

; 1=3 # a # 1

�64�
For f $ 5; �P�Fout

A �� f must be calculated by numerically
solving Eq. (62).

We can also calculate the weight-average molecular
weight of molecules in the sol fraction:

� �Ms�w � MA
1 1 as�b�

1 2 � f 2 1�as�b� �65�

as in Eq. (34).

8. After the gel point: Model II

Model I assumes that there is infinite concentration of
intramolecular-bonding candidates around every unreacted
group in the gel fraction of the post-gel polymer, implying
unit probability of intramolecular reaction in the gel frac-
tion; this is clearly an overestimation. Instead, we could
assume that the probability of intramolecular bond forma-
tion is the same in the gel fraction of the polymer as it is in
the sol fraction of the polymer. This may be an under-
estimate of cyclization in the gel, but if we are primarily
concerned about the sol fraction, it may not be a bad
approximation. Under this assumption

P�intraub� � P�intraugel;b� � P�intrausol;b� �66�

P�interub� � P�interugel;b� � P�interusol;b� �67�
These values are calculated using the methods for the sol
fraction in the above Model I. There are again two numeri-
cal approaches: use either the ratio of the theoretical
expected concentrations (Model II-A) or the Monte Carlo
simulation of the average probability (Model II-B).

9. After the gel point: Model III

There is another approach to intermolecular vs. intra-
molecular reactions within the gel fraction of the polymer.
The point of view is that of “wasted bonds”. A “wasted
bond” is one that does not contribute to the molecular or
network performance of the polymer. Cyclization in the sol
fraction does not contribute to molecular weight build-up,
so all s -bonds in the sol fraction are wasted. In the gel
fraction, any random root unreacted A-group, Av

p ; is
pendant; an intramolecular bond that connects this group
to another group without changing the pendant status may
not contribute to the elastic structure of the network and
therefore is wasted in some sense that is difficult to quantify
or model. We shall assume the following. If there is an
elastically active junction point (a monomer with at least
three paths to the infinite network) between the root Av

p and
the group with which it reacts, then the bond contributes to
the elastic structure and is not wasted; we consider it an
a -bond rather than as -bond, even though it is intra-
molecular. In this way, we define the “wasted bonds” in
the gel fraction as those involving intramolecular reaction
between groups in the gel fraction with no intervening
effective junction point. The remaining bonds in the gel
fraction are modeled as intermolecular. This modeling
idea is due to Dusek et al. [10]; they derived it from
Scanlan’s [16] theory of rubber elasticity.

Consider a randomly chosen unreacted A-group, which
we designate as the root Avp : We want the mean concentra-
tion of additional intramolecular Av-groups about this root,
under the restriction that we ignore all Av-groups connected
at or beyond effective junction points. Fig. 4 shows a reali-
zation of the situation. We have labeled all the A-groups and
monomers.

The A-groups (or the bonds to which they belong) have

C. Sarmoria, D.R. Miller / Computational and Theoretical Polymer Science 11 (2001) 113–127 121

Fig. 4. Example of a path from an Av site to effective junction points when
f � 3: Labels on A-sites and monomers correspond to Model III.



the following labels:v is the unreacted A-group,p is a
pendant bond, representing a single path from Av

p to the
infinite network,f is a finite bond, representing a bond to
a tree with a finite number of monomers, ande is an elas-
tically effective bond, representing a bond in the elastically
effective network. Note thata -bonds may be labeledp, f, or
e.

The A-monomers have the following labels (relative to
the direction we are looking from Avp as indicated by the
arrows in Fig. 4).p is pendant, representing a monomer that
is on the single path from Avp to the network.s is sol-like,
representing monomers that are on finite branches.b is a
branch point of a pendant link from Avp with the elastically
active part of the network.c is a chain monomer, represent-
ing a monomer whose connection to Av

p is part of an elas-
tically active chain.j is a junction point, representing a
monomer with at least three paths to the infinite network.

Notice that, in our “thought experiment” walk from Avp
into the effective network, there are 10 cases involving
combinations of the number of labeled groups and the label-
ing of the monomer. The 10 cases are depicted in Fig. 5
along with the possible labeling of the groups via which we
leave the monomer. Note that forf � 3 there are only eight
cases. Forf � 4 there are the 10 cases shown in Fig. 5.

We introduce the following random variable notation to
describe the statistical structure of the molecule from Av

p

into the elastically effective network: letIg;m be the indicator
random functions that represent seeing a monomer labeled
m when coming “in” from a group labeledg on the
monomer, e.g. ifg� v andm� p thenIv;p � 1; otherwise
Iv;p � 0: Then

Iv;p � 1; w:p:� f 2 1��1 2 P�Fout
A ���P�Fout

A �� f 22 �68�

Iv;s � 1; w:p:�P�Fout
A �� f 21 �69�

Iv;b � 1; w:p:�� f 2 1�� f 2 2�=2��1 2 P�Fout
A ��2�P�Fout

A �� f 23

�70�

If ;s � 1; w:p:1 �71�

Ip;p � 1; w:p:�P�Fout
A �� f 22 �72�

Ip;b � 1; w:p:� f 2 2��1 2 P�Fout
A ���P�Fout

A �� f 23 �73�

Ie;c � 1; w:p:�P�Fout
A �� f 22 �74�

where “w.p.” means “with probability” andP�Fout
A � is the

probability of seeing a finite branch when looking out from a
random A-group. The remaining three of the 10 indicators
take up the slack:

Iv; j � 1; w:p:P�Iv;p � 0; Iv;s � 0; Iv;b � 0� �75�

Ip; j � 1; w:p:P�Ip;p � 0; Ip;b � 0� �76�

Ie; j � 1; w:p:P�Ie;c � 0� �77�
Let Lm,g equal the number of A-groups labeledg seen going
“out” from a monomer labeledm. Then

Ls; f , Binomial�� f 2 1�; as�b�� �78�

Ls;v , Binomial�� f 2 1�; vs�b�� �79�

Lp;p � 1; w:p:1 �80�

Lp; f , Binomial�� f 2 2�; as�b�� �81�
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Fig. 5. Possible combinations of labeled groups and monomers in Model III whenf � 4:



Lp;v , Binomial�� f 2 2�; vs�b�� �82�

Lb;e � 2; w:p:1 �83�

Lb; f , Binomial�� f 2 3�; as�b�� �84�

Lb;v , Binomial�� f 2 3�;vs�b�� �85�

Lc;e � 1; w:p:1 �86�

Lc; f , Binomial�� f 2 2�;as�b�� �87�

Lc;v , Binomial�� f 2 2�;vs�b��: �88�
Note that each of the above pairs of Binomial random

variables are dependent. The joint distributions are multi-
nomial distributions.

Let Mm�i� equal the number of monomers labeledm in the
ith shell from the root A-group, Avp , m� s; p, b, c, andj. Let
Ng�i� equal the number of A-groups labeledg in the ith
generation from the root A-group, Avp , g� f ; p, e, andv .
Then, the statistical structure of the branch connecting Av

p to
the infinite network is given by the following relationships:

Ms�0� � Iv;s �89�

Mp�0� � Iv;p �90�

Mb�0� � Iv;b �91�
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Fig. 6. Predictions of weight fraction of solubles at three different dilutions for: (a)f � 5 or (b) f � 7: At 75% dilution Model A predicts no sol, so the
correspondingwfs is zero.



Mc�0� � 0 �92�

Nf �i 1 1� �
XMs�i�

j�1

�Ls; f �i; j 1
XMp�i�

j�1

�Lp; f �i; j 1
XMb�i�

j�1

�Lb; f �i; j

1
XMc�i�

j�1

�Lc; f �i; j ; i � 0;1; 2;… �93�

Np�i 1 1� � Mp�i�; i � 0;1;2;… �94�

Ne�i 1 1� � 2Mb�i�1 Mc�i�; i � 0;1;2;… �95�

Nv�i 1 1� �
XMs�i�

j�1

�Ls;v�i; j 1
XMp�i�

j�1

�Lp;v�i; j 1
XMb�i�

j�1

�Lb;v�i; j

1
XMc�i�

j�1

�Lc;v�i; j ; i � 0; 1;2;… �96�

Ms�i� �
XNf �i�

j�1

�If ;s�i; j � Nf �i�; i � 1;2;3;… �97�

Mp�i� �
XNp�i�

j�1

�Ip;p�i; j ; i � 1;2;3;… �98�
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Fig. 7. Predictions of average molecular weights in the sol fraction at three different degrees of dilution for: (a)f � 5 or (b) f � 7: At 75% dilution Model A
predicts no sol, so the corresponding molecular weight is zero.



Mb�i� �
XNp�i�

j�1

�Ip;b�i; j ; i � 1;2; 3;… �99�

Mc�i� �
XNe�i�

j�1

�Ie;c�i; j ; i � 1; 2;3;… �100�

For Model III-A we take expected values of the above
random variables and solve forE�Nv�i��; i � 1;2;3;…
Details are in the Appendix A. Substitution into Eq. (15)
givesE�Cintra�b�� which is then used in Eq. (2) to get values
of P�intraub� for Model III-A.

For Model III-B, we perform Monte Carlo simulations of
the random structure described by Eqs. (68)–(100) to get
observations ofNv�i�; i � 1; 2;3;… From this simulation
data, we estimateP�intraub� for Model III-B.

10. Numerical results and comparison of models beyond
the gel point

We have run some cases for models I-A, I-B, II-A, II-B,
III-A, and III-B. We varied the functionality of the mono-
mers and the degree of dilution. As examples, Figs. 6 and 7
show some results for monomers with functionalitiesf � 5
and f � 7 at dilutions ranging from 0 to 75% solvent. We
show predictions for sol fractions in Fig. 6 and weight aver-
age molecular weight of the soluble fraction in Fig. 7. It may
be observed that the general trends are the same for all
models: as the importance of intramolecular reactions
grows larger (at higher dilutions), gel point delays are
greater and network defects more noticeable, in the form
of nonzero sol fractions at complete reaction. Both in
models A and B, variations II and III give very similar
results. This is especially true for Model B, where Monte
Carlo simulations are performed. Variation I, on the other
hand, is always far removed from the other predictions.
Similar results are obtained for other post-gel parameters
such as weight fraction of pendant material and weight frac-
tion of elastically effective material. We tentatively
conclude that Models II-B and III-B are superior among
the six choices.

We could argue that variation III is the most complete one
of all the models. It is also the most complex one to calcu-
late. Variation II, then, becomes attractive because it is very
simple to program and calculate, and it gives results that are
very close to those of variation III.

11. Conclusions

We have presented an alternative to the traditional
spanning-tree approximation model calculations, using a
hybrid model that uses both numerical Monte Carlo simula-
tions and analytic formulas. This hybrid model allows the
evaluation of the probability of intramolecular reaction for
an unreacted site in a way that is mathematically more

sound, taking averages of the probabilities instead of
using averages of concentrations. This allows extension of
the spanning-tree approach to the post-gel region, some-
thing impossible with the original model. In this work, we
have proposed three different ways of achieving this exten-
sion. Since Monte Carlo simulations were not used to solve
the entire problem, just parts of it, the model did not become
computationally intensive.

Out of the three proposed ways of extending the
spanning-tree approach beyond the gel point, two are rather
simple, and the third one is a reformulation of a modeling
idea due to Scanlan [16]. We have found that Model II gives
results that are very similar to those of Model III, a more
complete and complex model. This makes Model II-B a
good choice for a working model.

Appendix A. Expected values for Model III-A

Taking expected values of Eqs. (68)–(100) gives:

E�Iv;p� � � f 2 1��1 2 P�Fout
A ���P�Fout

A �� f 22 �A1�

E�Iv;s� � �P�Fout
A �� f 21 �A2�

E�Iv;b� � �� f 2 1�� f 2 2�=2��1 2 P�Fout
A ��2 �P�Fout

A �� f 23

�A3�

E�If ;s� � 1 �A4�

E�Ip;p� � �P�Fout
A �� f 22 �A5�

E�Ip;b� � � f 2 2��1 2 P�Fout
A ���P�Fout

A �� f 23 �A6�

E�Ie;c� � �P�Fout
A �� f 22 �A7�

E�Ls; f � � � f 2 1�as�b� �A8�

E�Ls;w� � � f 2 1�vs�b� �A9�

E�Lp;p� � 1 �A10�

E�Lp; f � � � f 2 2�as�b� �A11�

E�Lp;v� � � f 2 2�vs�b� �A12�

E�Lb;e� � 2 �A13�

E�Lb; f � � � f 2 3�as�b� �A14�

E�Lb;v� � � f 2 3�vs�b� �A15�

E�Lc;e� � 1 �A16�

E�Lc; f � � � f 2 2�as�b� �A17�
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E�Lc;v� � � f 2 2�vs�b� �A18�

E�Ms�0�� � E�Iv;s� �A19�

E�Mp�0�� � E�Iv;p� �A20�

E�Mb�0�� � E�Iv;b� �A21�

E�Mc�0�� � 0 �A22�

E�Nf �i 1 1�� � E�Ms�i��E�Ls; f �1 E�Mp�i��E�Lp; f �
1 E�Mb�i��E�Lb; f �1 E�Mc�i��E�Lc; f �; i � 0; 1;2;…

�A23�

E�Np�i 1 1�� � E�Mp�i��; i � 0;1;2;… �A24�

E�Ne�i 1 1�� � 2E�Mb�i��1 E�Mc�i��; i � 0;1;2;…

�A25�

E�Nv�i 1 1�� � E�Ms�i��E�Ls;v�1 E�Mp�i��E�Lp;v�
1 E�Mb�i��E�Lb;v�1 E�Mc�i��E�Lc;v�; i � 0; 1; 2; …

�A26�

E�Ms�i�� � E�Nf �i��; i � 1;2;3;… �A27�

E�Mp�i�� � E�Np�i��E�Ip;p�; i � 1; 2;3;… �A28�

E�Mb�i�� � E�Np�i��E�Ip;b�; i � 1; 2;3;… �A29�

E�Mc�i�� � E�Ne�i��E�Ie;c�; i � 1;2;3;… �A30�
In vector/matrix form, Eqs. (A23)–(A26) become

E� ~N�i 1 1�� � A·E� ~M�i��; i � 0;1;2;… �A31�
and Eqs. (A27)–(A30) become

E� ~M�i�� � B·E� ~N�i��; i � 1;2; 3;… �A32�
where

E� ~M�i�� �

E�Ms�i��
E�Mp�i��
E�Mb�i��
E�Mc�i��

26666664

37777775; i � 0; 1;2;… �A33�

E� ~N�i�� �

E�Nf �i��
E�Np�i��
E�Ne�i��
E�Nv�i��

26666664

37777775; i � 1;2; 3;… �A34�

A �

E�Ls; f � E�Lp; f � E�Lb; f � E�Lc; f �
0 1 0 0

0 0 2 1

E�Ls;v� E�Lp;v� E�Lb;v� E�Lc;v�

26666664

37777775 �A35�

B �

1 0 0 0

0 E�Ip;p� 0 0

0 E�Ip;b� 0 0

0 0 E�Ie;c� 0

26666664

37777775 �A36�

Combining Eqs. (A31) and (A32) gives

E� ~M�i 1 1�� � C·E� ~M�i��; i � 0;1; 2;… �A37�
where

C � B·A �

E�Ls; f � E�Lp; f � E�Lb; f � E�Lc; f �
0 E�Ip;p� 0 0

0 E�Ip;b� 0 0

0 0 2E�Ie;c� E�Ie;c�

26666664

37777775 �A38�

Solving Eq. (A37) gives

E� ~M�i�� � Ci ·E� ~M�0��; i � 0;1; 2;… �A39�
Eq. (A26) becomes

E�Nv�i 1 1�� � ~L· ~M�i� � ~L·Ci · ~M�0�; i � 0;1; 2;…

�A40�
where

~L � E�Ls;v� E�Lp;v� E�Lb;v� E�Lc;v�
� � �A41�

~M�0� �

E�Iv;s�
E�Iv;p�
E�Iv;b�

0

26666664

37777775 �A42�

Substituting the values from Eq. (A40) into (15) and then
further substitution into Eq. (2) gives values ofP�intraub� for
Model III-A.
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