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The Rheology of Colloidal
and Noncolloidal Food Dispersions
D. B. GENOVESE, J. E. LOZANO, AND M. A. RAO

ABSTRACT: Rheological data on a food together with data on its composition and structure or microstructure should
lead to understanding the interrelationships between them. A number of foods are dispersions of solids in liquids,
liquids in liquids, or gas in liquids. The dispersed particles may be colloidal in nature with dimensions < 10 µm, or
larger noncolloidal particles (> 10 µm). For both colloidal and noncolloidal dispersions (either in dilute or concen-
trated regimes), several theoretical equations exist that provide insights into the role of key rheological parameters,
such as particle volume fraction and size, interparticle forces, and fractal dimension on their viscosity, yield stress,
and modulus. When theoretical models cannot be easily applied to foods with complex structures, structural analysis
and structure-based models provide insight into the role of solids loading and interparticle bonding on rheological
behavior. In this review, recent studies on colloidal and noncolloidal food dispersions in which theoretical models as
well as structural analysis were employed are discussed.
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Introduction

Processed foods are edible structures that are created as a result of
the responses of proteins, mono and polysaccharides, and lipids

in aqueous media to different processing methods such as thermal
processing, homogenization, and other physical treatments. Most,
if not all, of those responses are physical in nature. The measured
rheological responses occur at the macroscopic level. However, they
are affected by the changes and properties at the molecular and mi-
croscopic level. A major challenge is to establish links between the
macroscopic rheological properties with changes at the molecular
and microscopic level (Rao 2006). Rheological data on a food to-
gether with data on its composition and structure or microstructure
should lead to understanding the interrelationships between them.
In turn, such knowledge should lead to the improvement in food
quality through creation of foods with desirable structures and rhe-
ological behavior.

Many foods are dispersions of either solids in a liquid medium,
usually an aqueous solution, or of liquid droplets in another liquid,
named emulsions.

Three kinds of forces coexist to various degrees in flowing dis-
persions: hydrodynamic, Brownian, and colloidal forces. Hydro-
dynamic forces arise from the relative motion of particles to the
surrounding fluid. The Brownian force is the ever-present thermal
randomizing force. Colloidal forces are potential forces and are elas-
tic in nature (Zhou and others 2001; Qin and Zaman 2003). The
relative magnitude of these forces and, therefore, the bulk rheol-
ogy depend on the particle size. Brownian motion and interparti-
cle forces quickly equilibrate for sub-nanometer-size dispersions,
while hydrodynamic forces dominate for particles larger than ap-
proximately 10 µm. For particles in the intermediate range the flow
behavior is determined by a combination of hydrodynamic forces,
Brownian motion, and interparticle forces (Russel 1980; Qin and Za-
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man 2003). Consequently, dispersions may be classified according
to the size and nature of the particles in them (Table 1).

Colloidal dispersions may be defined as polyphasic or heteroge-
neous systems where the dispersed phase is subdivided into dis-
crete units (particles/droplets) that are large compared to simple
molecules, but small enough so that interfacial and inertial forces
are significant in governing system properties (Sennet and Olivier
1965). The size range of colloidal (or Brownian) particles is not de-
fined rigidly, but typically considered to be 1 nm to 10 µm (Rus-
sel and others 1989; McClements 1999; Qin and Zaman 2003), as
for example cloudy fruit juices, milk, soy protein suspensions, and
mayonnaise (a colloidal emulsion). Brownian motion promotes col-
lisions between pairs of colloidal particles, while interparticle forces
determine if 2 colliding particles aggregate or not.

The particle arrangements in colloidal systems depend on the vol-
ume occupied by the particles in relation to the total volume, that
is, the particle volume fraction, φ. At low φ, the mean distance be-
tween particles is large compared to particle radius. Thus, particles
are able to move freely throughout the medium driven by Brownian
forces. This regime (φ → 0) is considered as the dilute limit. As φ in-
creases, hydrodynamic interactions and the probability of collision
between particles become important. As a consequence, the Brow-
nian motion of each particle is hindered by the presence of the other
ones. In this region, the suspension is considered to be concentrated
(Quemada and Berli 2002).

Colloidal suspensions can be either dispersed or flocculated, de-
pending on the magnitude of particle–particle interaction energy
and particle concentration. Two limit cases are usually considered
for the mechanism of aggregation: perikinetic aggregation, where
the particle encounters are due to Brownian motion, and orthoki-
netic aggregation, where the collisions are caused by the gradient
velocity field. This last mechanism dominates for particles of mi-
crometer size and larger (Berli and others 1999b).

In weakly flocculated dispersions, particles form a volume-
spanning network. For aggregation resulting from long-range at-
tractions, deformation of the network changes the relative positions
of the particles, thereby increasing the total potential energy of the
system and producing an interparticle force tending to restore the
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Table 1 --- Classification of dispersions

Particle size/nature Forces governing viscosity

Polymers Molecular/colloidal Dilute: intermolecular-Brownian
approximately 1 nm Concentrated: Entanglements and Reptation

1 nm-10 µma Microscopic/colloidal Low γ̇ : Hydrodynamic-interparticle-Brownian
High γ̇ : Hydrodynamic

10 µm-100 µma Microscopic/noncolloidal Hydrodynamic

> 100 µm Macroscopic/noncolloidal Hydrodynamic

aFood dispersions covered in this review.

equilibrium structure. The nonequilibrium nature of the structure
gives a complex, history-dependent rheological behavior (Russel
and others 1989). A colloidal gel is a special state of strongly floc-
culated systems where a continuous network of particles (often
< 0.1 µm) is formed by aggregation, with the resulting suspension
having a very high viscosity and a finite shear modulus.

Several foods contain microscopic particles that are >10 µm and
up to approximately 100 µm (for example, chocolate, fruit purees
and sauces, starch and vegetable pastes); some of them may be
flocs or aggregates of colloidal particles. For such large particles,
Brownian motion and interparticle forces are negligible compared
to hydrodynamic forces. However, nonhydrodynamic parameters
such as particle shape, particle size and size distribution, particle
deformability, and liquid polarity could affect the structure and the
resulting flow behavior (Tsai and Zammouri 1988). Such dispersions
have been called simply “noncolloidal” or non-Brownian.

Other foods contain macroscopic particles (>100 µm), for exam-
ple, vegetable or cream soups, fruits in syrups or yogurts, dressings
or sauces with seeds, and pasta or meat in sauces. Gondret and Petit
(1997) referred to dispersions of glass spheres of diameter 45 to 450
µm as macroscopic. Those food dispersions are usually considered
to be liquid/particle mixtures, and sometimes the liquid itself is a
colloidal dispersion (Mart́ınez-Padilla 2005). In this case, when the
particle size has atomic dimensions, the system consists of a molec-
ular or ionic dispersion, although strictly speaking it is a 1-phase
system (Sennet and Olivier 1965).

It should be emphasized that most foods are complex polydis-
perse systems that may contain particles from a broad size range
(that is, both microscopic and macroscopic particles) immersed (or
even imbibed) in an aqueous (or lipid) medium, which in turn may
be a molecular dispersion itself. The rheological behavior of such
systems has been covered by several groups, including Rao and
coworkers (Vitali and Rao 1984; Tanglertpaibul and Rao 1987; Yoo
and Rao 1996).

In addition to solid–liquid and liquid–liquid systems, liquid food
foams are biphasic systems where a gas bubble phase is dispersed
in a continuous liquid phase, with the gas–liquid interface being
under tension. Their complex rheological behavior is influenced by
many factors, such as air phase volume, liquid phase viscosity, in-
terfacial tension and viscosity, bubble size, size distribution, and
shape (Herzhaft 1999; Vernon-Carter and others 2001; Thakur and
others 2003). There are also solid food foams (typically cooked prod-
ucts such as breads or cakes), which consist of a discontinuous air
phase dispersed in a continuous solid phase. Solid foams are elastic
or plastic materials. Their mechanical (rheological) behavior is be-
yond the scope of this work, but we may mention that it is primarily
dependent on the physical properties of the solid phase and the bulk
density of the material (Pernell and others 2002).

The present review is focused on microscopic colloidal and non-
colloidal food dispersions. The objective is to discuss the role of
structure on their rheological properties in terms of theoretical mod-
els and structural analysis. Measurement of rheological properties

has been well covered in texts such as those of Steffe (1996) and Rao
(1999); therefore, they are not covered here.

Theoretical Rheological Models
and Their Application

Theoretical models are derived from fundamental concepts, and
they provide valuable guidelines on understanding the role of

structure. They indicate the factors that influence a rheological pa-
rameter. As mentioned, the viscosity of colloidal dispersions is af-
fected by interparticle forces and Brownian motion at low shear
rates, while hydrodynamic forces dominate at high shear rates (Berli
and others 1999a). On the other hand, the viscosity of noncolloidal
dispersions is governed by hydrodynamic forces within all the range
of shear rates.

Viscosity models for noncolloidal dispersions
The hydrodynamic disturbance of the flow field induced by solid

particles in liquid media leads to an increase in the energy dissipa-
tion and an increase in viscosity (Zhou and others 2001). The relative
viscosity of dispersions of solid particles in a liquid medium is de-
fined as

ηr = (
η
/
ηs

)
(1)

where η is the viscosity of the dispersion, and ηs is the viscosity of
the continuous phase. In general, ηr of dispersions of rigid, nonin-
teracting spherical particles (hard-sphere systems) depends on the
volume fraction, φ, and the intrinsic viscosity, [η], of the dispersed
solids (Eq. 2 and 3). At low particle concentrations (in the dilute
regime), it is described by the well-known Einstein’s equation

ηr = 1 + [η] φ (2)

Theoretically, [η] depends on particle shape, being 2.5 for rigid
spheres (Barnes 2000).

One relationship derived for concentrated dispersions is the
widely used Krieger–Dougherty equation (Krieger and Dougherty
1959)

ηr =
(

1 − φ

φm

)−[η]φm

(3)

where φm is the maximum packing fraction of solids. Although the
theoretical φm value of monodisperse spheres is 0.74 (in a face-
centered cubic array), experimental observations have shown that
loose random packing is close to 0.60, and that dense random pack-
ing is close to 0.64 (Quemada and Berli 2002; Servais and others 2002;
Qin and Zaman 2003).

Effect of particle shape and particle size distribution. When
the particles are nonspherical there is an extra energy dissipation
and consequently an increase in the viscosity. In dilute dispersions
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this increase is reflected by the intrinsic viscosity in Einstein equa-
tion (Eq. 2). Simple formulas has been derived by Barnes (2000) as
[η] = 0.07q5/3 for rod-like (prolate) particles, and [η] = 0.3q for disk-
like (oblate) particles, where q is the axial ratio. The effect of particle
shape on concentrated suspensions was studied by Kitano and oth-
ers (1981), who proposed a modification of the Krieger–Dougherty
relationship (Eq. 3) for suspensions of nonspherical particles

ηr =
(

1 − φ

β

)−2

(4)

where β is an adjustable parameter whose value decreases as the
aspect ratio (L/D) of the suspended particles increases; for example,
when L/D=1 (smooth spheres)β =φm, and when 6<L/D<8 (rough
crystals) β = 0.44 (Metzner 1985; Rao 1999).

Equation 3 is valid for monomodal spherical particles. For sus-
pensions of polydispersed spherical particles in Newtonian fluids,
φm is higher since small particles may occupy the space between
the larger particles. Under flow conditions, the small particles act as
a lubricant for the flow of the larger particles, thereby reducing the
overall viscosity (Servais and others 2002; Mart́ınez-Padilla 2005).
In other words, for a given particle concentration (φ), the viscos-
ity decreases at increasing polydispersity (particle size distribution
width). Farris (1968) assembled many monomodal distributions and
showed that the overall resulting viscosity was the product of the
relative viscosity associated with each discrete unimodal size dis-
tribution, ηri(φ i), assuming no interactions between the particles of
different class sizes

ηr =
n∏

i=1

ηri (φi ) (5)

Effect of particle deformability. At high concentrations, de-
formable particles can accommodate each other at rest and squeeze
past each other during flow, increasing φm and reducing [η] in Eq. 3,
resulting in a lower viscosity (Barnes 2000). Often, the data neces-
sary to apply a theoretical model are not easy to obtain. For example,
in a starch dispersion of a specific concentration, c, φ changes dur-
ing heating of the dispersion; it has a low value in the ungelatinized
state and it increases continuously to a maximum value. After the
maximum value has been attained, on further heating, the volume
fraction of a native starch often decreases substantially while that of
a cross-linked starch remains nearly the same (Yang and Rao 1998;
Rao 1999; Tattiyakul and Rao 2000). Because of their deformable
nature, it is difficult to determine volume fraction of starch disper-
sions accurately and it is preferable to work with starch granule mass
fraction, (cQ), where c is dry starch concentration, w/w, and Q is the
mass of hydrated starch granules per unit weight of dry starch.

Yang and Rao (1998) and Liao and others (1999) obtained complex
viscosity, η∗, versus temperature data of a starch dispersion at sev-
eral oscillatory frequencies (not shown here). Because the profiles
were similar in shape, by choosing an arbitrary reference frequency
(ωr ), all the η ∗-temperature curves at the different frequencies were
reduced to a single master curve of reduced complex viscosity η∗

R as
in Figure 1.

The shape of the curve in Figure 1 reflects the aforementioned
changes in the volume fraction of starch granules. Initially at low
temperatures, the granules are in the raw state and the volume frac-
tion is low. As the granules are heated they swell due to water absorp-
tion (segment A-B-C), the volume fraction increases and reaches a
maximum value (C). With further heating, the granules rupture and
disintegrate, resulting in a gradual decrease in the volume fraction of
the granules in the dispersion (segment C-D). The rupture of gran-

ules also results in the release of amylose that contributes to the
viscosity of the continuous phase of the starch dispersion. Thus,
in Figure 1, the segment C-D is not a mirror image of the segment
ABC. The leached amylose and the granule remnants contribute to
a viscosity at point D that is higher than that at point A.

Viscosity models for colloidal dispersions
In stable colloidal dispersions, repulsive forces keep neighboring

particles away from each other. Therefore, for flow to occur particles
must be forced to move against the force fields of the other particles,
demanding an extra energy (Berli and others 1999a). The predictive
models for the viscosity of colloidal dispersions are divided into
2 categories based on their scaling technique. One is the separation
of contributions method, in which the contributions from individ-
ual factors are separated from each other. The other is the effective
volume fraction method, in which all the contributions from differ-
ent factors are lumped into 1 factor, the effective maximum packing
fraction (Qin and Zaman 2003).

In the separation of contributions method, the relative viscosity
of a colloidal dispersion has been modeled (Ogawa and others 1997;
Quemada and Berli 2002) as the sum of a “hard-sphere” contribution
(ηhs

r ) and a “colloidal forces” contribution (ηcf
r )

ηr = ηhs
r + ηc f

r (6)

The term ηhs
r is considered to be the relative viscosity of an ideal

dispersion of hard spheres or, more generally, the relative viscosity of
a noncolloidal dispersion of rigid particles. Thus, it can be calculated
by selecting the appropriate expression from Eq. 2 to 5.

The term ηcf
r involves the increase in viscosity due to interparti-

cle colloidal forces. They can be classified as attractive (including
van der Waals, electrostatic attractive, hydrophobic, bridging, and
depletion) and repulsive (including electrostatic repulsive, steric,
hydration, and structural) forces (McClements 1999; Zhou and oth-
ers 2001). The total or net interaction potential (U) between pairs
of particles as a function of the interparticle distance (r) may be
predicted by the extended DLVO theory.

Charged particles in an electrolyte present an arrangement of
charges in the interface called the electrical double layer (EDL). The
distortion of the EDL by the shear field leads to an increase in the

Figure 1 --- Change of reduced complex viscosity of a corn-
starch dispersion during heating, due to granule swelling
and rupture. Master curve of experimental data at differ-
ent oscillatory frequencies and heating rates. Reprinted
from Yang and Rao (1998), with permission from Black-
well Publishing.
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viscosity due to increased energy dissipation. This effect was first
considered by Smoluchowski and is called the primary electrovis-
cous effect (Hidalgo-Álvarez and others 1996; Rubio-Hernández and
others 2004). For dilute dispersions of spherical particles, it appears
as a correction p, the primary electroviscous coefficient, to the Ein-
stein equation (Eq. 2), such that combined with Eq. 6 gives

ηc f
r = 2.5 p φ (7)

The coefficient p is a function of the potential in the slipping plane
or ζ–potential (a measure of the particle surface potential), and the
relative size of the particle radius (a) with respect to the thickness of
the EDL, calculated as the Debye length (κ −1). Several theoretical ex-
pressions have been derived for p (see, for example, Hidalgo-Álvarez
and others 1996; Rubio-Hernández and others 2004).

However, Eq. 7 only considers the contribution of electrostatic
repulsive forces to the viscosity. Genovese and Lozano (2006) pro-
posed a more general, semiempirical expression for ηcf

r in terms
of the maximum net repulsive potential between pairs of particles
(UMax), also known as the energy barrier or activation energy

ηc f
r = α

(
UMax

kB T

)
φ (8)

where α is a dimensionless proportionality constant, kB is Boltz-
mann’s constant, and T is the absolute temperature. The value of
U Max predicts the stability of colloidal dispersions, and is obtained
at the maximum of the U(r) curve.

Figure 2 shows the 3 components of Eq. 6 as a function of φ for
cloudy apple juice from 10 to 50◦ Brix (Genovese and Lozano 2006).
Values ofηcf

r were obtained by difference between empiricalηr values
and theoretical ηhs

r values from Eq. 2. Values of U Max were obtained
from the balance between van der Waals, electrostatic, and hydra-
tion interparticle forces. By applying Eq. 8, the value α = 0.483 was
obtained.

Figure 2 --- Cloudy apple juice relative viscosity compared
with particle volume fraction: experimental (•), and pre-
dicted with Eq. 6 (dashed line); theoretical hard-sphere
contribution, Eq. 2 (full line); colloidal-forces contribution:
semi-empirical values (©), and fitted with Eq. 8 (dashed-
dotted line). Reprinted from Genovese and Lozano (2006),
with permission from Elsevier.

Figure 3 shows ηcf
r (φ) of cloudy apple juice at different pHs and

ionic strengths (Benı́tez and others 2007). Values of U Max were ob-
tained combining the extended DLVO theory and turbidity experi-
mental data. A unique value of α = 0.267 was obtained from Eq. 8
for all samples.For concentrated colloidal suspensions, Ogawa and
others (1997) derived the following expression based on the theory
of activation processes:

ηc f
r = c1φ exp

(
UMax

kB T
− c2d 3σp

φ · kB T

)
(9)

where c1 and c2 (theoretically π/6) are numerical constants, d is
the particle diameter, and σ p (approximately 0 for low shears) is the
particle stress (as in Eq. 32 also).

In the effective volume fraction method, it is considered that re-
pulsive forces keep particles apart from one another, thus increasing
their effective radius from a to aeff . Consequently, the effective vol-
ume fraction is given as

φef f = φ
( aef f

a

)3
(10)

In this context, the viscosity of a colloidal dispersion can be simply
obtained by replacing φ by φeff in a hard-sphere viscosity equation,
like Eq. 3 (Quemada and Berli 2002)

ηr =
(

1 − φef f

φm

)−[η]φm

(11)

By allowing aeff to be shear-dependent, Buscall (1991, 1994) found
an approximate theoretical expression

U(2aef f )
kB T

= k

(
σ · a 3

ef f

kB T · K (φef f )
+ 1

)
(12)

where k approximately 1
2 and K (φ eff ) = 0.016 + 0.52φ eff are phe-

nomenological factors.

Figure 3 --- Effect of particle volume fraction on the col-
loidal forces contribution to relative viscosity, for differ-
ent liquid medium conditions. Experimental data (sym-
bols) fitted with Eq. 8 (full lines). Reprinted from Benı́tez
and others (2007), with permission from Elsevier.
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Aggregating colloidal dispersions and microgel suspensions.
The aggregation of colloidal particles leads to the formation of fractal
structures, that is, highly branched aggregates. A fractal dimension
indicates the degree to which an image or object outline deviates
from smoothness and regularity. The term fractal was coined by
Mandelbrot (1982), who introduced dimensions “between” the con-
ventional Euclidean dimensions of 1, 2, and 3 in order to describe
structures that are not Euclidean lines, surfaces, or solids.

Berli and others (1999) proposed a viscosity equation for an ag-
gregating soy suspension by using the modified Krieger–Dougherty
equation (Eq. 3)

η

ηm
=

[
1 − φ

φm
N (3−D f )/D f

]−2

(13)

where ηm is the viscosity of the medium filling the space between
the aggregates (instead of ηs), Df is the fractal dimension of the
aggregates, and N is the averaged number of particles in a cluster
given by the expression

N = 1 + k̄a (t − t0) (14)

where t 0 is the initial time at which N ≈ 1, and k̄a the aggregation
rate constant. Combining Eq. 13 and 14 it is possible to measure the
degree of aggregation of a suspension (and to estimate the value of
Df ) from viscosity-time data.

Microgel suspensions are particles composed of a central zone
of cross-linked polymer and an external layer of polymer chains.
Berli and Quemada (2000) proposed the following model for these
systems

η(σ ) = η∞

(
σ
/
σc + 1

σ
/
σc − χ

)2

(15)

σc = kB T

a 3
hs

(
1 + U(2ahs )

kB T

)
(16)

χ = (
φ
/
φ0 − 1

)/(
1 − φ

/
φ∞

)
(17)

where σc is the critical shear stress, χ is a rheological index, ahs is the
equivalent hard-sphere radius, which involves the core radius plus
the hydrodynamic thickness of the polymer layer, and φ0 and φ∞ are
the maximum packing fractions for σ → 0 and σ →∞, respectively.

Modulus of colloidal gels of fractal flocs
Shih and others (1990) developed a scaling relationship to explain

the elastic properties of colloidal gels by considering the structure
of the gel network to be a collection of close packed fractal flocs
of colloidal particles. At high particle concentrations, the links be-
tween flocs have lower elastic constant than the flocs themselves.
This regime should be applicable to gels that are well above the gela-
tion threshold (Shih and others 1990), where the elastic modulus,
G′, is related to the particle volume fraction (φ) by the following
relationship:

G ′ ∝ φ(D−2)/(D−D f ) (18)

where D is the Euclidean dimension of the network—usually 3.
Russel and others (1989) pointed out that the fractal dimension

reflects the internal structure of the flocs and depends on the mode

of aggregation. In rapid flocculation, Df = 1.75 for cluster–cluster
aggregation, and Df = 2.5 for particle–particle aggregation. On the
other hand, slow flocculation allows particles to penetrate further
into the floc and rearrange its configuration before sticking, thus
increasing Df to approximately 2.0 and 3.0, respectively.

Fractal dimension of food dispersions. Genovese and Rao
(2003a) studied dispersions of 2 starches that were substantially
different from each other: a cross-linked waxy maize (CLWM) and
tapioca, a tuber starch, with 19.3% amylose. The volume fraction
occupied by the starch granules was calculated as the granule mass
fraction, that is, φ = cQ. From plots (not shown here) of elastic mod-
ulus (G ′) compared with oscillatory frequency (ω) of the starch dis-
persions the plateau equilibrium values, G ′

0, were determined (Shih
and others 1990). The equilibrium G ′

0 values obtained for CLWM
and tapioca starch dispersions were plotted against φ (Figure 4).
The double logarithmic plot resulted in reasonable straight lines
(R2 ≥ 0.95) for both starches, fulfilling the power law relationship
inferred by Eq. 18. From the slope of the lines, the fractal dimen-
sions of the 2 types of starch granules were calculated to be Df =
2.81 for CLWM and Df = 2.79 for tapioca, respectively. This was in-
terpreted as both starches having granules with highly convoluted
surfaces. The higher G ′

0 values of CLWM starch dispersions were
attributed to the higher rigidity of their granules (Genovese and Rao
2003a). Studies on fractal dimension of a number of foods, some of
them based on rheological data, have been reported and the values
obtained, listed in Table 2, illustrate typical magnitudes.

Yield stress models
In general, the magnitude of the yield stress increases with in-

creasing particle volume fraction, decreasing particle size, and in-
creasing magnitude of interparticle forces (Poslinski and others
1988). It has been claimed that yield stress will not occur in a hard-
sphere system until the maximum packing fraction is reached (Zhou
and others 2001). Most investigations have established and/or quan-
tified yield stresses in suspensions of interacting (colloidal or sur-
face active) particles. Just a few works (Husband and others 1993;
Marquez and others 2006) were found on yield stress determination
of highly concentrated noncolloidal suspensions. In calcium car-
bonate filled polyisobutylene suspensions (27 µm in diameter, 0%-
57% volume fractions), Husband and others (1993) found a propor-
tional dependence of the yield stress with particle volume fraction.

Figure 4 --- Elastic plateau modulus of 2 starch dispersions
as a function of their granules volume fraction. Experi-
mental data (symbols) fitted with Eq. 17. Reprinted from
Genovese and Rao (2003a), with permission from AACC
International.

Vol. 72, Nr. 2, 2007—JOURNAL OF FOOD SCIENCE R15
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Unfortunately, the reasons/mechanisms of that yielding behavior
were not clear, and no theoretical models were proposed in those
works.Colloidal dispersions. Volume fraction (φ) and particle size (d)
affect the density of the interparticle links and the microstructure,
which in turn govern the yield stress behavior of concentrated col-
loidal dispersions (Zhou and others 2001). Consequently, most theo-
retical yield stress models are mainly functions of φ, d, and particle–
particle interactions. A representative selection of the many models
found in the literature is presented next.

Michaels and Bolger (1962) derived the following expression for
suspensions of aggregated flocs, where the aggregates form tenuous
networks

σ0 = F
H
d 2

(
φ − φ f

)3
(19)

whereσ0 is the apparent yield stress, F is a dimensionless orientation
function, H is the interfloc adhesive force, d is the diameter of the
individual flocs, and φ f is the minimum floc concentration required
to form a continuous aggregate network.

By considering the colloidal interparticle forces, Poslinski and
others (1988) derived an expression for the yield stress of solid
spheres dispersed in a polymeric matrix

σ0 = Z A
8πd3

[
1 − φ

φm

]−4

+ 3Zεε0κψ2
0

4πd
(20)

where Z is the total number of nearest neighbors of each sphere
in a particular packing configuration, A is the Hamaker constant (a
measure of the van der Waals attractive forces), ε is the dielectric
constant of the continuous medium, ε0 the permittivity of vacuum,
and ψ 0 is the surface potential of the spheres. The 2nd term in Eq.
20 accounts for the electrostatic repulsive forces.

Scales and others (1998) proposed a general interactive model for
the shear yield stress of flocculated suspensions. For monodisperse
spherical particles, the model reduces to an expression similar to
Eq. 20:

σ0 = φ · M(φ)
24πd

[
A
r2

− 24πεε0κζ 2

1 + exp(κr)

]
(21)

where M(φ) is the mean coordination number. The terms in the
bracket account for the van der Waals and EDL forces acting between
pairs of particles, or the strength of 1 particle bond.

For polydisperse spheres, the previous model is quite complex
and may be consulted in the work of Scales and others (1998). A

Table 2 --- Fractal dimension of structural elements in a
few foods based on rheological data (Rao 2006)

Fractal
Network of particles dimension, Df Reference

Palm oil or lard fat 2.82–2.88 Marangoni and Rousseau
(1998)

Cocoa butter 2.37 Narine and Marangoni
(1999)

Salatrim� 2.90 Narine and Marangoni
(1999)

Milk fat and / 1.97–1.99 Marangoni and Hartel
canola oil blends (1998)

Whey protein isolate + 2.3–2.6 Hongsprabhas and others
CaCl2 gels (1999)

Soy protein isolate gels, 2.3. Renkema and van Vliet
pH 3.8 and 0.2M NaCl (2004)

Starch gels 2.79–2.81 Genovese and Rao
(2003a)

Egg white protein 1.9–2.1 Ould-Eleya and others
gel, pH 3.7 2004

simpler model has been suggested for calculation of the yield stress
of a mixture suspension (Zhou and others 2001):

σ0 =
(∑ φi

φ

√
σ0i

)2

(22)

where φ i and σ0i are the volume fraction and yield stress of the ith
component of the suspension, respectively. Unlike hard-sphere dis-
persions in which polydispersity reduces the viscosity (Eq. 5), a sus-
pension with a broad particle size distribution exhibits higher yield
stress than a narrow size distributed suspension (Zhou and others
2001).

From Eq. 12, Buscall (1991, 1994) derived Eq. 23, in which the
yield stress arises when the effective particle radius is high enough
to produce a dense packing of particles, thus

σ0 ≈ K (φef f )
a3

m
[U (2am) − kB T ] (23)

where am is the maximum radius that the particle can take because
of the spatial constraints of the other particles, and the other terms
are the same as in Eq. 12.

Based on Eq. 9, Ogawa and others (1997) proposed a simpler
model, indicating that when the effect of repulsive interaction is
strong, there is an apparent yield stress given by

σ0 = φ · U(r)
c1d 3

(24)

It should be noted that Eq. 20 and 21 only consider DLVO (van
der Waals and repulsive electrostatic) interparticle forces, while Eq.
23 and 24 are functions of the total interaction potential, U , which
may include also non-DLVO (steric, hydration, depletion, and so on)
interactions.

From analyses of experimental data and theoretical analysis from
several works, Zhou and others (2001) suggested the following gen-
eral expression:

σ0 = B
φv

d 2
(25)

where constant B is related with bond strength depending on mate-
rial properties and system surface chemistry condition.

The power-law exponent in Eq. 25, v, has been correlated with the
fractal dimension, which is believed to be associated with the inter-
connection and space-filling ability of the network microstructure.
To describe this behavior, de Rooij and others (1994) developed a
microrheological model in terms of fractal microstructures (Eq. 26):

σ0 ∝ φ3/(3−D f ) (26)

This model describes the suspension in terms of particle chains
where interparticle bonds can be soft or rigid, similar to the study
of Shih and others (1990) (Eq. 18).

Finally, it is worth mentioning the model of Berli and Quemada
(2000) for microgel suspensions (Eq. 15 to 17), where the yield stress
is simply given by

σ0 = χσc (27)

which is only valid if φ >φ0 approximately φm, that is, when particles
are densely packed.

The differences among Eq. 19 to 27 suggest that there is not
a unique or general theoretical model to describe the yield stress
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of concentrated colloidal dispersions, but instead the appropriate
model should be chosen/derived for each particular system.

Foams. Foams behave as elastic solids under small deforma-
tions, and flow like viscous liquids above a certain yield stress (Per-
nell and others 2000; Kampf and others 2003). Based on Eq. 25 and
other models for foams (Höhler and others 1999; Princen and Kiss
1989; Davis and others 2004), Raharitsifa and others (2006) proposed
a generalized expression for the yield stress of foams as a function
of their structural properties:

σ0 = B ′ φv

D b
32

(28)

where φ is the air volume fraction, parameter B′ is expected to in-
clude the effect of interfacial tension, b is a fitting parameter, and
D32 is the Sauter mean bubble diameter or surface average diameter.
For spherical bubbles

D 32 =
∑

d 3
i

/∑
d 2

i (29)

where di is the diameter of each bubble, and i varies from 1 to the
number of bubbles observed. Raharitsifa and others (2006) applied
Eq. (28) to experimental data (Figure 5) on apple juice foams pre-
pared with different concentrations of 2 different foaming agents
(methylcellulose and egg white), resulting in B

′ =18.9, v =10.9, and
b =1.37 (R 2 =0.975).

Structural Models and Analyses

Structural models
These models are derived from consideration of the structure and

often kinetics of changes in it. They are used, together with experi-
mental data, to estimate values of parameters that help characterize
the rheological behavior of a food sample. One such model is that of
Cross (1965) (Eq. 30) that has been used extensively to characterize
the flow behavior of polymer dispersions and other shear-thinning
fluids.

Figure 5 --- Yield stress of apple juice foams as function
of air volume fraction and bubble mean diameter for dif-
ferent foaming agents: ( � ) methylcellulose, and (©) egg
white. Experimental data (symbols) fitted with Eq. 28
(mesh). From Raharitsifa and others (2006).

ηa = η∞ + η0 − η∞
1 + (αc γ̇ )m (30)

For the shear rate, γ̇c, where ηa = (η0 + η∞)/2, the Cross time
constant αc = 1/γ̇c. Generally, γ̇c gives an order of magnitude of the
critical shear rate marking the end of the zero shear rate Newtonian
plateau or the onset of the shear-thinning region (Rao 1999).

The Casson model (Eq. 31) is another structure-based model
(Casson 1959) that, although developed for characterizing printing
inks originally, has been used to characterize chocolate and other
food dispersions that exhibit yield stress.

σ 0.5 = K0c + Kc (γ̇ )0.5 (31)

From a σ 0.5 compared with γ̇ 0.5 plot, the Casson yield stress is
calculated as the square of the intercept, σ 0c = (K 0c)2 and the Casson
plastic viscosity as the square of the slope, ηCa = (Kc)2.

Structural analyses
While application of structure-based models to rheological data

does provide useful information, structure-based analysis can pro-
vide valuable insight into the role of the structure of a dispersed
system. Bodenstab and others (2003) estimated the contributions
to flow shear stress of soy milk by suspended particles and the sus-
pending fluid.

σ = σs + σp (32)

where σs is the shear stress caused by the viscous forces generated
by the suspending fluid (continuous phase), and σp is the shear
stress caused by interaction between suspended particles. The for-
mer is temperature dependent and in the latter the temperature
dependency can be neglected. In the direct interparticle interac-
tions, Coulomb’s mechanical friction forces, hydrogen bonds, elec-
trostatic attraction, and hydrophobic attraction may be important.
The viscous contribution was estimated from the expression

σs = ηs
σ1 − σ2

η1 − η2
(33)

where the subscripts 1 and 2 refer to the values of stress and viscosity
of the dispersion at temperatures 1 and 2, respectively. Typical values
of temperature that were used were 10 ◦C and 25 ◦C, and 20 ◦C and
40 ◦C (Bodenstab and others 2003). Considerable care had to be used
to obtain reliable samples of the continuous phase of the soy milk
without solid residues, a concern with many other food dispersions
such as fruit and vegetable products (Rao 1987). Another concern is
that significant differences in structure of the sample may exist at
the 2 different temperatures used. Nevertheless, for the soy milks,
interparticle interactions were found to be significant at particle
concentrations above about 20 g/100 g.

In the kinetic or structural approach to rheology of dispersions
(Michaels and Bolger 1962), the basic flow units are assumed to be
small clusters or flocs that at low shear rates give the dispersion a
finite yield stress. The clusters associate randomly to form weakly
bonded aggregates and tenuous networks, giving rise to plastic and
structural properties. Based on the work of Michaels and Bolger
(1962), from an energy balance at the point of maximum defor-
mation (yield point) in the vane test, the contributions of different
structural components to the total yield stress,σ 0s, may be estimated
(Genovese and Rao 2003b)
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σ0s = σb + σv + σn (34)

The stress to break the bonds between the flocs may be calculated
as the difference between the static, σ 0s, and the dynamic, σ0d, yield
stresses of the samples with undisrupted and disrupted structure,
respectively.

σb = σ0s − σ0d (35)

where σb is the stress required to break the bonds between the flocs,
σv is the stress dissipated due to purely viscous drag, and σn is the
stress required to break the aggregate network. Given that σv = η∞γ̇

is very small in most dispersions, one can estimate the 2 contribu-
tions σb and σn. As 1 example of structural analysis of processed
foods, the contribution of bonding to the static yield stress of prod-
ucts that were homogenized, such as mayonnaise, ranged between
53% and 65%, while that of finished, nonhomogenized products
such as apple sauce was about 20% (Genovese and Rao 2005). In
another study (Tárrega and others 2006), the influence of starch
concentration and λ-carrageenan on the contribution of bonding
in skim milk-based dispersions was examined.

A texture map can be created by plotting yield stress values against
the corresponding values of the deformation. The texture map of 3
heated starch dispersions based on static and dynamic yield stresses
compared with deformation is shown in Figure 6 (Genovese and
Rao 2003b). Unlike a traditional texture map, a map based on static
and dynamic yield stresses indicates the behavior of a food with
both undisrupted and disrupted structure, and should be valuable
in evaluation of product quality.

Conclusions

Some food dispersions (for example, cloudy apple juice) contain
colloidal particles with dimensions < 10 µm, and others (for

example, tomato concentrates, orange juice) contain larger, non-
colloidal particles with dimensions > 10 µm. Theoretical models
have been derived assuming that the particles are rigid to predict
viscosity, yield stress, and modulus of both types of dispersions.

Figure 6 --- Texture map of cross-linked waxy maize (cwm),
amioca (ami), and tapioca (tap) starch dispersions with
undisrupted (u) and disrupted (d) structures. From Gen-
ovese and Rao (2003b).

These models provide valuable guidelines with respect to the role of
key rheological parameters such as volume fraction, size, and fractal
dimension of the particles, as well as interparticle forces. However,
due to the complex, including nonrigid, nature of particles in most
food dispersions, those models have been modified to describe vis-
cosity data. Also due to the complex structure of foods, structural
analyses have been developed that are based on experimental rheo-
logical data on dispersions and they provide insight into the nature
of food microstructure.

Finally, it is worth to mention that foods are subjected to exten-
sional shear in the mouth and in some unit operations (such as fiber
spinning and dough mixing). Therefore, extensional viscosity and
its measurement are also of interest. Briefly, for low-viscosity flu-
ids, techniques based on creating a stagnation point such as flow
between opposing jets and filament stretching have been devel-
oped. For high-viscosity and semisolid foods, biaxial (compression-
extension) deformation technique has been used (Rao 1999).
Further, to better understand how food structure deforms under
elongational flow at the microscale, equipment was developed to
visualize food structure behavior under compression–extension de-
formation by combining confocal microscopy and compression ap-
paratus (Nicolas and Paques 2003). One can anticipate that more
rheo-optical studies will be conducted, which should provide both
visual and rheological data on foods at the microscale.
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Nomenclature
a = particle radius, m
am = maximum particle radius, m
A = Hamaker constant, J
b = constant in Eq. 28, dimensionless
B, B’ = constants in Eq. 25 and 28, N and N.mb−2, respectively
c = dry starch concentration, dimensionless
c1, c2 = constants in Eq. 9, dimensionless
d = particle diameter, m
D = Euclidean dimension, dimensionless
Df = fractal dimension, dimensionless
D32 = Sauter mean diameter of bubbles, m
F = orientation function, dimensionless
G′ = elastic modulus, Pa
G′

0 = plateau modulus, Pa
H = interfloc adhesive force, N
k = phenomenological factor in Eq. 12, dimensionless
k̄a = aggregation rate constant, s−1

kB = Boltzmann constant, J/◦K
K = phenomenological factor in Eq. 12, dimensionless
KC = square root of Casson plastic viscosity, (Pa.s)1/2

K0c = square root of Casson yield stress, Pa1/2

m = Cross exponent, dimensionless
M = mean coordination number, dimensionless
N = averaged number of particles in a cluster, dimensionless
p = primary electroviscous effect coefficient, dimensionless
q = axial ratio, dimensionless
Q = swelling factor, dimensionless
r = distance between pairs of particles, m
t, t0 = time, initial time, s
T = absolute temperature, ◦K
U = total interaction potential between pairs of particles, J
UMax = energy barrier between pairs of particles, J
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v = constant in Eq. 25 and 28, dimensionless
Z = total number of nearest neighbors of each sphere, dimension-

less
Greek Letters

α = constant in Eq. 8, dimensionless
αC = Cross time constant, s
β = constant in Eq. 4, dimensionless
γ̇ = shear rate, s−1

γ̇c = critical shear rate, s−1

ε = dielectric constant of the continuous medium, dimensionless
ε0 = permittivity of vacuum, F/m
ζ = zeta potential, V
η = dispersion viscosity, Pa.s
ηa = apparent viscosity, Pa.s
ηm = filling medium viscosity, Pa.s
ηr = relative viscosity, dimensionless
ηs = solvent viscosity, Pa.s
η0 = zero-shear viscosity (apparent viscosity as γ̇ → 0), Pa.s
η∞ = infinite-shear viscosity (apparent viscosity as γ̇ → ∞), Pa.s
[η] = intrinsic viscosity, dimensionless
κ = reciprocal Debye length, m−1

σ = shear stress, Pa
σ b = shear stress required to break the bonds between flocs, Pa
σ c = critical shear stress, Pa
σ n = stress required to break the aggregate network, Pa
σ p = shear stress caused by particle interaction, Pa
σ s = shear stress caused by flow of the suspending fluid, Pa
σ v = shear stress dissipated due to purely viscous drag, Pa
σ 0 = yield stress, Pa
σ 0d = dynamic yield stress, Pa
σ 0s = static yield stress, Pa
φ = volume fraction of the dispersed phase, dimensionless
φ f = minimum floc volume fraction, dimensionless
φm = maximum packing fraction, dimensionless
φ0, φ∞ = φm for σ → 0 and σ → ∞,
χ = rheological index, dimensionless
ψ 0 = surface potential, V
Subscripts
cf = colloidal forces
eff = effective
hs = hard-sphere
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