
Finite Fields and Their Applications 31 (2015) 42–83
Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Polar varieties, Bertini’s theorems and number of 
points of singular complete intersections over 

a finite field ✩

Antonio Cafure a,b,c, Guillermo Matera b,c,∗, Melina Privitelli a,c,d

a Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 
Pabellón III (1428), Buenos Aires, Argentina
b Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, 
J.M. Gutiérrez 1150 (B1613GSX), Los Polvorines, Buenos Aires, Argentina
c National Council of Science and Technology (CONICET), Argentina
d Instituto de Ciencias, Universidad Nacional de General Sarmiento, 
J.M. Gutiérrez 1150 (B1613GSX), Los Polvorines, Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2013
Received in revised form 4 
September 2014
Accepted 6 September 2014
Available online xxxx
Communicated by L. Storme

MSC:
primary 11G25
secondary 14G05, 14G15, 14B05, 
14N05

Keywords:
Varieties over finite fields
Rational points
Singular locus
Bertini smoothness theorem
Polar varieties

Let V ⊂ Pn(Fq) be a complete intersection defined over 
a finite field Fq of dimension r and singular locus of dimension 
at most s, and let π : V ��� Ps+1(Fq) be a generic 
linear mapping. We obtain an effective version of the Bertini 
smoothness theorem concerning π, namely an explicit upper 
bound of the degree of a proper Zariski closed subset of 
Ps+1(Fq) which contains all the points defining singular fibers 
of π. For this purpose we make use of the concept of polar 
variety associated with the set of exceptional points of π. 
As a consequence, we obtain results of existence of smooth 
rational points of V , that is, conditions on q which imply that 
V has a smooth Fq-rational point. Finally, for s = r − 2 and 
s = r − 3 we estimate the number of Fq-rational points and 
smooth Fq-rational points of V .

© 2014 Elsevier Inc. All rights reserved.

✩ Research was partially supported by grants PIP CONICET 11220090100421, UNGS 30/3180 and STIC-
AmSud 13STIC-02 “Dynalco”.
* Corresponding author at: Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, 

J.M. Gutiérrez 1150 (B1613GSX), Los Polvorines, Buenos Aires, Argentina.
E-mail addresses: acafure@ungs.edu.ar (A. Cafure), gmatera@ungs.edu.ar (G. Matera), 

mprivitelli@conicet.gov.ar (M. Privitelli).
http://dx.doi.org/10.1016/j.ffa.2014.09.002
1071-5797/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ffa.2014.09.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ffa
mailto:acafure@ungs.edu.ar
mailto:gmatera@ungs.edu.ar
mailto:mprivitelli@conicet.gov.ar
http://dx.doi.org/10.1016/j.ffa.2014.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ffa.2014.09.002&domain=pdf


A. Cafure et al. / Finite Fields and Their Applications 31 (2015) 42–83 43
Multihomogeneous Bézout theorem
Deligne estimate
Hooley–Katz estimate

1. Introduction

Let Fq be the finite field of q elements and let Fq be the algebraic closure of Fq. 
We denote by Pn := Pn(Fq) and An := An(Fq) the n-dimensional projective and affine 
spaces defined over Fq respectively. For any affine or projective variety V defined over Fq, 
we denote by V (Fq) the set of Fq-rational points of V , i.e., the set of points of V with 
coordinates in Fq, and by |V (Fq)| its cardinality. Observe that, for any r ≥ 0, we have

pr :=
∣∣Pr(Fq)

∣∣ = qr + · · · + q + 1.

Let V ⊂ Pn be an ideal-theoretic complete intersection defined over Fq, of dimension r, 
multidegree d := (d1, . . . , dn−r) and singular locus of dimension at most s ≥ 0. In this 
paper we obtain estimates on |V (Fq)| and conditions on q which imply that V (Fq) is not 
empty. All these estimates and conditions will be expressed in terms of r, d and s.

In a fundamental work [13], P. Deligne has shown that if V is nonsingular, then

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ b′r(n,d)q r
2 , (1)

where b′r(n, d) is the rth primitive Betti number of any nonsingular complete intersection 
of Pn of dimension r and multidegree d (see, e.g., [16, Theorem 4.1] for an explicit 
expression of b′r(n, d) in terms of n, r and d).

This result has been extended by C. Hooley and N. Katz to singular complete inter-
sections. More precisely, in [22] it is proved that if the singular locus of V has dimension 
at most s ≥ 0, then

∣∣V (Fq)
∣∣ = pr + O

(
q

r+s+1
2

)
, (2)

where the constant implied by the O-notation depends only on n, r and d, and it is not 
explicitly given.

In [16] (see also [17]), S. Ghorpade and G. Lachaud have obtained the following explicit 
version of (2):

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ b′r−s−1(n− s− 1,d)q
r+s+1

2 + C(n, r,d)q
r+s
2 , (3)

where C(n, r, d) := 9 · 2n−r((n − r)d + 3)n+1 and d := max1≤i≤n−r di.
From the point of view of the potential applications of (3), the fact that C(n, r, d)

depends exponentially on n may be inconvenient. This is particularly the case if V is 
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a hypersurface, because C(n, r, d) becomes exponential in the degree of V . For this 
reason, in [9] it is shown that, for V normal,

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ b′1(n− r + 1,d)qr− 1
2 + 2

(
(n− r)dδ

)2
qr−1, (4)

provided that q > 2(n −r)dδ+1, where δ = d1 · · · dn−r is the degree of V . This solves the 
exponential dependency on n of the error term in (3) for s = r − 2 and q large enough.

1.1. Our contributions

A fundamental tool for our work is an effective version of the Bertini smoothness 
theorem. The Bertini smoothness theorem asserts that a generic (r− s − 1)-dimensional 
linear section of a variety V ⊂ Pn of dimension r and singular locus of dimension at 
most s is nonsingular. With notations and assumptions as above, an effective version 
of this result establishes a threshold C(n, r, s, d) such that, if V is a singular complete 
intersection, then for q > C(n, r, s, d) there exists a nonsingular linear section of V of 
dimension r − s − 1 defined over Fq. In this paper we show the following result (see 
Theorem 6.4 and Corollary 6.6).

Theorem 1.1. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
degree δ, multidegree d := (d1, . . . , dn−r) and singular locus of dimension at most s ≥ 0. 
Let D :=

∑n−r
i=1 (di − 1). Then for q > (n + 1)2Dr−s−1δ there exist nonsingular (r −

s − 1)-dimensional linear sections of V defined over Fq.

We remark that [1] and [9] provide effective versions of the Bertini smoothness theorem 
for hypersurfaces and normal complete intersections respectively. Theorem 1.1 signifi-
cantly improves and generalizes both results.

The linear sections underlying Theorem 1.1 are obtained as (the Zariski closure of) 
fibers of a “generic” linear mapping π : V ��� Ps+1. For this purpose, it is necessary to 
analyze the set S of critical points of π. Our treatment of the set S relies on the notion of 
polar varieties. Polar varieties are a classical concept of projective geometry which, in its 
modern formulation, was introduced in the 1930’s by F. Severi and J. Todd. Around 1975 
a renewal of the theory of polar varieties took place with essential contributions due to 
R. Piene [29], B. Teissier [35] and others (see [36] for a historical account and references). 
Our main result in connection with polar varieties is a genericity condition on π which 
implies that the polar variety associated with the exceptional locus of π has the expected 
dimension (Theorem 4.5).

More precisely, let λ ∈ (Pn)s+2 denote the matrix of coefficients of the linear forms 
defining π. We show that there exists a hypersurface of (Pn)s+2 which contains all 
the points λ for which the exceptional locus of π has not the expected dimension. To 
bound the degree of this hypersurface we use tools from intersection theory for prod-
ucts of projective spaces, as a multiprojective version of the Bézout theorem (see, e.g., 
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[11, Theorem 1.11]). Combining this with the results on the number of Fq-rational points 
of multiprojective hypersurfaces of Section 3 we obtain suitable bounds on the number 
of nonsingular linear sections of V defined over Fq.

Next we obtain conditions on q which imply that V has a smooth Fq-rational point. 
A classical problem is that of establishing conditions which imply that a variety has an
Fq-rational point. Nevertheless, in several number-theoretical applications is not just an
Fq-rational point what is required, but a smooth Fq-rational point (see, e.g., [26,38,39]).

A standard approach to this question consists of combining a lower bound for the 
number of Fq-rational points of V with an upper bound for the number of singular 
Fq-rational points of V . Instead of doing this, we use our effective Bertini theorem, that 
is, we obtain a condition on q which implies that there exists a nonsingular (r − s −
1)-dimensional linear section S of V defined over Fq, and apply Deligne’s estimate (1) to 
this section. As S is contained in the smooth locus Vsm := V \ Sing(V ), the existence of 
an Fq-rational point of S implies that of a smooth Fq-rational point of V . More precisely, 
we obtain the following result (see Corollaries 7.3 and 7.4).

Theorem 1.2. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
degree δ, multidegree d and singular locus of dimension at most s. Let D :=

∑n−r
i=1 (di−1). 

If either s = r − 2 and q > 2(D + 2)2δ2, or s = r − 3 and q > 3D(D + 2)2δ, then V has 
a smooth Fq-rational point.

Finally, we estimate the number of Fq-rational points and smooth Fq-rational points 
of a complete intersection with a singular locus of dimension at most r− 2 or r− 3. For 
this purpose, assuming that there exists a linear mapping π : V ��� Ps+1 defined over Fq

which is generic in the sense above, we express V as the union of ps+1 := |Ps+1(Fq)|
linear sections of V of dimension r − s − 1, namely the Zariski closure of the fibers of 
the points of Ps+1(Fq) under π. “Most” fibers will be nonsingular and thus Deligne’s 
estimate can be applied to them, while the Fq-rational points lying in the remaining 
fibers do not make a significant contribution to the estimate. Summarizing, we obtain 
the following result (see Corollaries 8.3 and 8.4).

Theorem 1.3. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r, 
degree δ, multidegree d and singular locus of dimension at most s ∈ {r − 3, r − 2}. Let 
D :=

∑n−r
i=1 (di − 1). Then, for s = r − 2,∣∣∣∣V (Fq)

∣∣− pr
∣∣ ≤ (

δ(D − 2) + 2
)
qr−1/2 + 14D2δ2qr−1,∣∣∣∣Vsm(Fq)

∣∣− pr
∣∣ ≤ (

δ(D − 2) + 2
)
qr−1/2 + 11(r + 1)D2δ2qr−1.

On the other hand, for s = r − 3,∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ 14D3δ2qr−1,∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ ≤ (34r − 20)D3δ2qr−1.
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Our estimates have the same pattern as (3) for s = r − 2 or s = r − 3, but differ 
from (3) in that the exponential dependency on n is not present. In Section 8 we show 
that Theorem 1.3 yields a more accurate estimate than (3) when s = r−2 and s = r−3 for 
varieties of large dimension, say r ≥ (n +1)/2, or small degree, say δ ≤ (2(n −r))n−r. On 
the other hand, (3) may be preferable to Theorem 1.3 for varieties of small dimension and 
large degree. In this sense, we may say that Theorem 1.3 complements (3) for s = r − 2
and s = r − 3. Finally, Theorem 1.3 improves (4) for normal varieties since it holds 
without restrictions on q.

2. Notions, notations and preliminary results

We use standard notions and notations of commutative algebra and algebraic geom-
etry as can be found in, e.g., [18], [25] or [33].

2.1. Basic notions

Let K be any of the fields Fq or Fq. We denote by An the n-dimensional affine space Fn
q

and by Pn the n-dimensional projective space over Fn+1
q . Both spaces are endowed with 

their respective Zariski topologies over K, for which a closed set is the zero locus of a set 
of polynomials of K[X1, . . . , Xn], or of a set of homogeneous polynomials of K[X0, . . . ,
Xn].

We say that a subset V ⊂ Pn is a projective variety defined over K (or a projective 
K-variety for short) if it is the set of common zeros in Pn of a family of homogeneous 
polynomials F1, . . . , Fm ∈ K[X0, . . . , Xn]. Correspondingly, an affine variety of An de-
fined over K (or an affine K-variety for short) is the set of common zeros in An of 
polynomials F1, . . . , Fm ∈ K[X1, . . . , Xn]. We think a projective or affine K-variety to be 
equipped with the induced Zariski topology. We shall frequently denote by V (F1, . . . , Fm)
or {F1 = 0, . . . , Fm = 0} the affine or projective K-variety consisting of the common zeros 
of the polynomials F1, . . . , Fm.

In what follows, unless otherwise stated, all results referring to varieties in general 
should be understood as valid for both projective and affine varieties.

A K-variety V is K-irreducible if it cannot be expressed as a finite union of proper 
K-subvarieties of V . Further, V is absolutely irreducible if it is Fq-irreducible as an
Fq-variety. Any K-variety V can be expressed as an irredundant union V = C1∪· · ·∪Cs of 
irreducible (absolutely irreducible) K-varieties, unique up to reordering, which are called 
the irreducible (absolutely irreducible) K-components of V .

For a K-variety V contained in Pn or An, we denote by I(V ) its defining ideal, 
namely the set of polynomials of K[X0, . . . , Xn], or of K[X1, . . . , Xn], vanishing on V . 
The coordinate ring K[V ] of V is defined as the quotient ring K[X0, . . . , Xn]/I(V ) or 
K[X1, . . . , Xn]/I(V ). The dimension dimV of V is the length r of the longest chain 
V0 � V1 � · · · � Vr of nonempty irreducible K-varieties contained in V . We call V
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equidimensional if all the irreducible K-components of V are of the same dimension. In 
this case, we say that V has pure dimension r if V is equidimensional of dimension r.

A K-variety in Pn or An of pure dimension n − 1 is called a K-hypersurface. 
A K-hypersurface in Pn, or An, is the set of zeros of a single nonzero polynomial of 
K[X0, . . . , Xn], or of K[X1, . . . , Xn].

Degree. The degree deg V of an irreducible K-variety V is the maximum number of points 
lying in the intersection of V with a linear space L of codimension dimV , for which V ∩L
is a finite set. More generally, following [19] (see also [15]), if V = C1 ∪ · · · ∪ Cs is the 
decomposition of V into irreducible K-components, we define the degree of V as

deg V :=
s∑

i=1
deg Ci.

The degree of a K-hypersurface V is the degree of a polynomial of minimal degree 
defining V . Another property is that the degree of a dense open subset of a K-variety V
is equal to the degree of V .

An important tool for our estimates is the following Bézout inequality (see [19,15,37]): 
if V and W are K-varieties of the same ambient space, then

deg(V ∩W ) ≤ deg V · degW. (5)

Another result we shall use concerns the behavior of degree under linear mappings. 
Let V ⊂ Pm and W ⊂ Pn be K-varieties and let φ : V → W be a regular linear map. 
Then (see, e.g., [9, Lemma 2.1])

degφ(V ) ≤ deg V, (6)

where φ(V ) is the Zariski closure of φ(V ) in Pn, degφ(V ) denotes the degree of φ(V ) as 
a K-subvariety of Pn and deg V denotes the degree of V as a K-subvariety of Pm.

Singular locus. Let V ⊂ An be a K-variety and let I(V ) ⊂ K[X1, . . . , Xn] be its defin-
ing ideal. Let x be a point of V . The dimension dimx V of V at x is the maximum of 
the dimensions of the irreducible K-components of V that contain x. If I(V ) = (F1,

. . . , Fm), the tangent space TxV to V at x is the kernel of the Jacobian matrix 
(∂Fi/∂Xj)1≤i≤m,1≤j≤n(x) of the polynomials F1, . . . , Fm with respect to X1, . . . , Xn

at x. We have (see, e.g., [33, p. 94])

dimTxV ≥ dimx V.

The point x is regular if dimTxV = dimx V . Otherwise, the point x is called singular. The 
set of singular points of V is the singular locus Sing(V ) of V ; this is a closed K-subvariety 
of V . A variety is called nonsingular if its singular locus is empty. For a projective variety, 
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the concepts of tangent space, regular and singular point can be defined by considering 
an affine neighborhood of the point under consideration.

Mappings. Regular maps will be represented by solid arrows →, while partial ratio-
nal maps will be indicated with dashed arrows ���. Let V and W be irreducible affine 
K-varieties of the same dimension and let f : V → W be a regular map for which 
f(V ) = W , where f(V ) is the closure of f(V ) with respect to the Zariski topology of W . 
Such a map is called dominant. Then f induces a ring extension K[W ] ↪→ K[V ] by com-
position with f . We say that the dominant map f is a finite morphism if this extension 
is integral, i.e., each element η ∈ K[V ] satisfies a monic equation with coefficients in 
K[W ]. A basic fact is that a dominant finite morphism is necessarily closed. Another 
fact concerning dominant finite morphisms we shall use is that the preimage f−1(S) of 
an irreducible closed subset S ⊂ W is equidimensional of dimension dimS (see, e.g., 
[12, §4.2, Proposition]).

2.2. Rational points

We denote by An(Fq) the n-dimensional Fq-vector space Fn
q and by Pn(Fq) the set of 

1-dimensional subspaces of the (n +1)-dimensional Fq-vector space Fn+1
q . For a projective 

variety V ⊂ Pn or an affine variety V ⊂ An, we denote by V (Fq) the set of Fq-rational 
points of V , namely V (Fq) := V ∩Pn(Fq) in the projective case and V (Fq) := V ∩An(Fq)
in the affine case.

For a projective variety V of dimension r and degree δ we have the upper bound (see 
[17, Proposition 12.1] or [9, Proposition 3.1])∣∣V (Fq)

∣∣ ≤ δpr. (7)

On the other hand, if V is an affine variety of dimension r and degree δ, then (see, e.g., 
[8, Lemma 2.1]) ∣∣V (Fq)

∣∣ ≤ δqr. (8)

2.3. Complete intersections

A K-variety V of dimension r in an n-dimensional (affine or projective) space is an 
(ideal-theoretic) complete intersection if its ideal I(V ) over K can be generated by n − r

polynomials. If V ⊂ Pn is a complete intersection defined over K, of dimension r and 
degree δ, and F1, . . . , Fn−r is a system of homogeneous generators of I(V ), the degrees 
d1, . . . , dn−r depend only on V and not on the system of generators. Arranging the di
in such a way that d1 ≥ d2 ≥ · · · ≥ dn−r, we call d := (d1, . . . , dn−r) the multidegree
of V .

According to the Bézout inequality (5), if V ⊂ Pn is a complete intersection defined 
over K of multidegree d := (d1, . . . , dn−r), then deg V ≤

∏n−r
i=1 di. Actually, a much 
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stronger result holds, which is sometimes called the Bézout theorem (see, e.g., [18, The-
orem 18.3] or [34, §5.5, p. 80]):

deg V = d1 · · · dn−r.

In what follows we shall deal with a particular class of complete intersections, which 
we now define. A K-variety V is regular in codimension m if its singular locus Sing(V )
has codimension at least m + 1 in V , i.e., dim V − dim Sing(V ) ≥ m + 1. A complete 
intersection V which is regular in codimension 1 is called normal (actually, normality is a 
general notion that agrees on complete intersections with the one we define here). A fun-
damental result for projective complete intersections is the Hartshorne connectedness 
theorem (see, e.g., [25, Theorem VI.4.2]), which we now state. If V ⊂ Pn is a complete 
intersection defined over K and W ⊂ V is any K-subvariety of codimension at least 2, 
then V \W is connected in the Zariski topology of Pn over K. Applying the Hartshorne 
connectedness theorem with W := Sing(V ), one deduces the following result.

Theorem 2.1. If V ⊂ Pn is a normal complete intersection, then V is absolutely irre-
ducible.

2.4. Multiprojective space

Let N := Z≥0 be the set of nonnegative integers. For n := (n1, . . . , nm) ∈ Nm, we 
define |n| := n1 + · · · + nm and n! := n1! · · ·nm!. Given α, β ∈ Nm, we write α ≥ β

whenever αi ≥ βi holds for 1 ≤ i ≤ m. For d := (d1, . . . , dm) ∈ Nm, the set Nn+1
d :=

Nn1+1
d1

× · · · ×Nnm+1
dm

consists of the elements a := (a1, . . . , am) ∈ Nn1+1 × · · · ×Nnm+1

with |ai| = di for 1 ≤ i ≤ m.
We denote by Pn the multiprojective space Pn := Pn1 × · · · × Pnm . For 1 ≤ i ≤ m, 

let Xi := {Xi,0, . . . , Xi,ni
} be group of ni + 1 variables and let X := {X1, . . . , Xm}. 

For K := Fq or K := Fq, a multihomogeneous polynomial F ∈ K[X] of multidegree d :=
(d1, . . . , dm) is a polynomial which is homogeneous of degree di in Xi for 1 ≤ i ≤ m. An 
ideal I ⊂ K[X] is multihomogeneous if it is generated by a family of multihomogeneous 
polynomials. For such an ideal, we denote by V (I) ⊂ Pn the variety defined over K
(K-variety for short) as its set of common zeros. In particular, a hypersurface in Pn

defined over K is the set of zeros of a multihomogeneous polynomial of K[X]. The notions 
of irreducible variety and dimension of a subvariety of Pn are defined as in the projective 
space.

Now we discuss the concept of mixed degree of a multiprojective variety and a few 
properties and results concerning mixed degrees. For this purpose, we follow the exposi-
tion in [11]. Let V ⊂ Pn be an irreducible Fq-variety of dimension r and let I(V ) ⊂ Fq[X]
denote its multihomogeneous ideal. The quotient ring Fq[X]/I(V ) is multigraded and its 
part of multidegree b ∈ Nm is denoted by (Fq[X]/I(V ))b. The Hilbert–Samuel function 
of V is the function HV : Nm → N defined as HV (b) := dim(Fq[X]/I(V ))b. It turns 
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out that there exist δ0 ∈ Nm and a unique polynomial PV ∈ Q[z1, . . . , zm] of degree r
such that PV (δ) = HV (δ) for every δ ∈ Nm with δ ≥ δ0 (see [11, Proposition 1.8]). For 
b ∈ Nm

r , we define the mixed degree of V of index b as the nonnegative integer

degb(V ) := b! coeffb(PV ).

This notion can be extended to equidimensional varieties and, more generally, to equidi-
mensional cycles (formal linear combinations with integer coefficients of subvarieties of 
equal dimension) by linearity.

The Chow ring of Pn is the graded ring

A∗(Pn
)

:= Z[θ1, . . . , θm]/
(
θn1+1
1 , . . . , θnm+1

m

)
,

where each θi denotes the class of the inverse image of a hyperplane of Pni under the 
projection Pn → Pni . Given a variety V ⊂ Pn of pure dimension r, its class in the Chow 
ring is

[V ] :=
∑
b

degb(V )θn1−b1
1 · · · θnm−b1

m ∈ A∗(Pn
)
,

where the sum is over all b ∈ Nm
r with b ≤ n. This is a homogeneous element of degree 

|n| − r. In particular, if H ⊂ Pn is a hypersurface and F ∈ Fq[X] is a polynomial of 
minimal degree defining H, then

[H] :=
m∑
i=1

degXi
(F )θi (9)

(see [11, Proposition 1.10]).
A fundamental tool for estimates of mixed degrees of intersections of multiprojective 

varieties is the following multiprojective version of the Bézout theorem, called the mul-
tihomogeneous Bézout theorem (see [11, Theorem 1.11]). If V ⊂ Pn is a multiprojective 
variety of pure dimension r > 0 and F ∈ Fq[X] is a multihomogeneous polynomial such 
that V ∩ V (F ) is of pure dimension r − 1, then

[
V ∩ V (F )

]
= [V ] ·

[
V (F )

]
. (10)

Finally, we mention the following result, which shows that mixed degrees are mono-
tonic with respect to linear projections. Let l := (l1, . . . , lm) ∈ Nm be an m-tuple with 
l ≤ n and let π : Pn ��� Pl be the linear projection which takes the first li coordinates 
of each coordinate xi of each point x := (x1, . . . , xm) ∈ Pn, namely

π(xi,j : 1 ≤ i ≤ m, 0 ≤ j ≤ ni) := (xi,j : 1 ≤ i ≤ m, 0 ≤ j ≤ li).
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This rational map induces the following injective Z-linear map:

j : A∗(Pl
)
→ A∗(Pn

)
, j(P ) := θn−lP.

If V ⊂ Pn is an equidimensional variety and π(V ) is of pure dimension dimV , then (see 
[11, Proposition 1.16])

j
([
π(V )

])
≤ [V ]. (11)

3. Number of zeros of multihomogeneous hypersurfaces

Let n := (n1, . . . , nm) ∈ Nm and let Pn be the corresponding multiprojective space. 
By Pn(Fq) we denote the set of Fq-rational points of Pn. For 1 ≤ i ≤ m, let Xi :=
{Xi,0, . . . , Xi,ni

} be a group of ni + 1 variables and let X := {X1, . . . , Xm}. Let F ∈
Fq[X] be a multihomogeneous polynomial of multidegree d := (d1, . . . , dm). In this sec-
tion we establish two basic results concerning the number N of Fq-rational zeros of F in 
Pn(Fq).

The first result is a nontrivial upper bound on N , which generalizes (7) to the multi-
projective setting. This bound shall be used to estimate the number of smooth Fq-rational 
points of a singular complete intersection (Theorem 8.2). The second result is a suffi-
cient condition for the existence of a point in Pn(Fq) which does not annihilates F and 
will be used in the proof of our effective version of the Bertini smoothness theorem 
(Corollary 6.6).

For α ∈ Nm, we use the notations dα := dα1
1 · · · dαm

m and pn−α := pn1−α1 · · · pnm−αm

for n ≥ α. Further, let

ηm(d,n) :=
∑

ε∈{0,1}m\{0}
(−1)|ε|+1dεpn−ε.

Observe that ηm(d, n) ≤ pn1 · · · pnm
= |Pn(Fq)| if q ≥ max1≤i≤m di, while this inequality 

may not hold for q < max1≤i≤m di. We have the following result.

Proposition 3.1. Let F ∈ Fq[X] be a multihomogeneous polynomial of multidegree d with 
max1≤i≤m di ≤ q and let N be the number of zeros of F in Pn(Fq). Then

N ≤ ηm(d,n).

Proof. We argue by induction on m. The case m = 1 is (7).
Suppose that the statement holds for m −1 and let F ∈ Fq[X] be an m-homogeneous 

polynomial of multidegree d := (d1, . . . , dm). Let N be the number of zeros of F in 
Pn(Fq), and let Zm be the set of elements xm in Pnm(Fq) such that the substitution 
F (X1, . . . , Xm−1, xm) of xm for Xm in F yields the zero polynomial of Fq[X1, . . . ,
Xm−1]. Consider F as an element of Fq[Xm][X1, . . . , Xm−1] and let A ∈ Fq[Xm] be 
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a nonzero homogeneous polynomial of degree dm which occurs as the coefficient of a 
monomial Xα1

1 · · ·Xαm−1
m−1 in the dense representation of F . Then Zm is contained in the 

set of zeros in Pnm(Fq) of A. Therefore, by (7) we have |Zm| ≤ dmpnm−1.
Since dm ≤ q by hypothesis, it follows that |Zm| ≤ dmpnm−1 < pnm

= |Pnm(Fq)|, 
which implies that Pnm(Fq) \ Zm is nonempty. Fix xm ∈ Pnm(Fq) \ Zm and denote 
by Nm−1 the number of zeros of F (X1, . . . , Xm−1, xm) in Pn1(Fq) × · · · × Pnm−1(Fq). 
Combining the inductive hypothesis and the fact that max1≤i≤m−1 di ≤ q, we see that

Nm−1 ≤ ηm−1
(
d∗,n∗) ≤ pn1 · · · pnm−1 ,

where d∗ := (d1, . . . , dm−1) and n∗ := (n1, . . . , nm−1). As a consequence,

N ≤ |Zm|pn1 · · · pnm−1 +
(
pnm

− |Zm|
)
ηm−1

(
d∗,n∗)

= |Zm|
(
pn1 · · · pnm−1 − ηm−1

(
d∗,n∗)) + ηm−1

(
d∗,n∗)pnm

≤ ηm(d,n).

This completes the proof of the proposition. �
In the proof of Proposition 3.1 we use the upper bound (7) in order to bound the 

number of zeros of a given homogeneous polynomial of Fq[Xm]. Given a homogeneous 
polynomial F ∈ Fq[X0, . . . , Xn] of degree δ < q, the number N of zeros of F in Pn(Fq)
can be bounded using the well-known Serre bound (see [32]):

N ≤ δqn−1 + pn−2. (12)

Although (12) is stated for polynomials with coefficients in Fq, it is easy to see that 
it also holds for polynomials with coefficients in Fq, as it is asserted in the following 
result.

Lemma 3.2. Let F ∈ Fq[X0, . . . , Xn] be a nonzero homogeneous polynomial of degree 
δ < q and let N be the number of zeros of F in Pn(Fq). Then the following upper bound 
holds:

N ≤ δqn−1 + pn−2.

Proof. Let K be the finite field extension of Fq defined by the coefficients of F and let 
{α1, . . . , αr} be a basis of K as an Fq-vector space. Then there exist unique polynomials 
F1, . . . , Fr ∈ Fq[X0, . . . , Xn], which are homogeneous of degree δ or zero, such that 
F = α1F1 + · · · + αrFr holds. Assume without loss of generality that F1 	= 0. Then 
it is clear that the set of zeros of F in Pn(Fq) is contained in the set of zeros of F1
in Pn(Fq). Let N and N1 denote the number of zeros of F and F1 in Pn(Fq). By the 
Serre bound (12) it follows that N ≤ N1 ≤ δqn−1 + pn−2, finishing thus the proof of the 
lemma. �
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Using Lemma 3.2, the upper bound of Proposition 3.1 can be slightly improved. In 
particular, it may be worthwhile to remark that, if d, n ∈ Nm are of the form d =
(d, . . . , d) and n = (n, . . . , n) with d < q, then combining Lemma 3.2 with the proof of 
Proposition 3.1 we obtain

N ≤ pmn −
(
qn − (d− 1)qn−1)m. (13)

We finish this section with a sufficient condition for the existence of a point in Pn(Fq)
not annihilating F . This condition significantly improves the one which is deduced by a 
direct application of (8) to F , considering F as a homogeneous polynomial of Fq[X] of 
degree d1 + · · · + dm.

Corollary 3.3. Let F ∈ Fq[X] be a multihomogeneous polynomial of multidegree d and 
let d := max1≤i≤m di. If q > d, then there exists x ∈ Pn(Fq) with F (x) 	= 0.

Proof. Let N be the number of Fq-rational zeros of F in Pn(Fq). Proposition 3.1 shows 
that the number N�=0 of elements in Pn(Fq) not annihilating F is bounded as follows:

N�=0 = pn −N ≥ pn − ηm(d,n) =
∑

ε∈{0,1}m

(−1)|ε|dεpn−ε =
m∏
i=1

(pni
− dipni−1).

Since q > d, we have pni
> dipni−1 for 1 ≤ i ≤ m, which yields the corollary. �

4. Polar varieties

Let V ⊂ Pn be a variety of pure dimension r. Let Σ ⊂ V denote the singular locus 
of V , let Vsm := V \ Σ and let L ⊂ Pn be a linear variety of dimension n − s − 2. For 
each integer s with 0 ≤ s ≤ r − 2 and x ∈ Vsm, the linear variety L meets TxV ⊂ Pn

in dimension at least r − s − 2. The set of points x ∈ Vsm such that the dimension of 
TxV ∩ L is at least r − s − 1 is called the sth polar variety of V with respect to L and 
is denoted by M(L):

M(L) :=
{
x ∈ Vsm : dim(TxV ∩ L) ≥ r − s− 1

}
.

This classical notion of projective geometry shall play a critical role in our approach 
to the Bertini smoothness theorem. Indeed, as we explain in Lemma 4.1 below, the 
polar variety M(L) is the set of points of Vsm which are critical for the linear projection 
associated with L. Furthermore, by means of the polar variety M(L) we shall be able to 
obtain a useful description of the set of singular points of the linear section V ∩ L of V . 
To establish these properties, we fix some notations that will be kept throughout the 
paper.

Set X := (X0, . . . , Xn). For μ := (μ0 : · · · : μn) ∈ Pn, we shall use the notation 
μ ·X := μ0X0 + · · ·+μnXn. Let λ0, . . . , λs+1 be linearly independent elements of Pn, let 
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λ := (λ0, . . . , λs+1) ∈ (Pn)s+2 and let L ⊂ Pn be the following linear space of dimension 
n − s − 2 associated with λ:

L :=
{
x ∈ Pn : λ0 · x = · · · = λs+1 · x = 0

}
. (14)

Let Yi := λi ·X for 0 ≤ i ≤ s + 1 and consider the rational mapping from V to Ps+1

defined by Y0, . . . , Ys+1, that is,

π : V ��� Ps+1

x 
→ (λ0 · x : · · · : λs+1 · x). (15)

This mapping is well-defined outside its exceptional locus E, namely the set of points 
x ∈ V with λ0 · x = · · · = λs+1 · x = 0. In other words, π is well-defined in V \ L and 
E = V ∩ L.

Additionally, for x ∈ Vsm we shall consider the rational mapping

πx : TxV ��� Ps+1

v 
→ (λ0 · v : · · · : λs+1 · v). (16)

The exceptional locus Ex of πx is the set of elements v ∈ TxV with λ0 · v = · · · =
λs+1 · v = 0. Observe that πx may also be seen as the differential mapping of the 
morphism CV → As+2 defined by Y0, . . . , Ys+1, where CV ⊂ An+1 is the affine cone 
of V .

With these notations, we have the following result.

Lemma 4.1. Let V ⊂ Pn be a variety of pure dimension r and let Σ be its singular locus. 
Let L ⊂ Pn be the linear variety of dimension n − s − 2 defined in (14) and let π and πx

be defined as in (15) and (16). Then:

1. The polar variety M(L) coincides with the set of points x ∈ Vsm such that the dimen-
sion of Ex is at least r − s − 1.

2. Sing(V ∩ L) = (Σ ∩ L) ∪ (M(L) ∩ L).

Proof. We prove the first assertion. By definition, for x ∈ Vsm the exceptional locus Ex

of πx is the set of points v ∈ TxV such that λ0 ·v = · · · = λs+1 ·v = 0, i.e., Ex = TxV ∩L. 
As a consequence, dim Ex ≥ r− s − 1 if and only if dim(TxV ∩L) ≥ r− s − 1. Therefore, 
the polar variety M(L) is the set of points x ∈ Vsm for which dim Ex ≥ r − s − 1.

Now we consider the second assertion. According to [16, Lemma 1.1.],

Sing(V ∩ L) = (V ∩ SingL) ∪ (Σ ∩ L) ∪N(V,L) = (Σ ∩ L) ∪N(V,L),
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where N(V, L) is the set of points x ∈ Vsm where V and L do not meet transversely, that 
is, where dimTxV ∩ L > dimTxV − codimL = r − s − 2. By definition it follows that 
N(V, L) = M(L) ∩ L, which readily shows the second assertion of the lemma. �

The polar variety M(L) is empty or of pure dimension at least s. In fact, following 
[24, Section IV.B], for a generic L the polar variety M(L) has dimension s. We include a 
proof of this result for the sake of completeness (see also [29, Transversality Lemma 1.3]).

Proposition 4.2. For a generic linear variety L ⊂ Pn of dimension n − s − 2, the polar 
variety M(L) has dimension s.

Proof. Let G(r, n) denote the Grassmannian of r-planes in Pn. We consider the Gauss 
map G : Vsm → G(r, n), which maps a point x into the tangent space TxV . Let S ⊂
G(r, n) be the Schubert variety

S :=
{
Λ ∈ G(r, n) : dim(Λ ∩ L) ≥ r − s− 1

}
.

Observe that S has dimension dimG(r, n) − (r − s) (see, e.g., [18, Example 11.42]). 
Furthermore, it is clear that M(L) = G−1(S ∩ G(Vsm)). Let i : S ↪→ G(r, n) denote the 
standard inclusion mapping. We claim that the polar variety M(L) coincides with the 
fiber product Vsm ×G(r,n) S. Indeed,

Vsm ×G(r,n) S =
{
(x,Λ) ∈ Vsm × S : TxV = Λ

}
=

{
x ∈ Vsm : dim(TxV ∩ L) ≥ r − s− 1

}
= M(L).

The general linear group acts transitively on G(r, n), and with respect to this action S

is in general position, namely the fiber of a general translate of S is equidimensional of 
the expected dimension, because L is so by hypothesis. Therefore, [23, Theorem 2] shows 
that M(L) is of pure dimension

dim M(L) = dimVsm + dimS − dimG(r, n) = s.

This finishes the proof of the proposition. �
One may think that it is natural to describe the linear (n − s − 2)-dimensional va-

riety L ⊂ Pn of (14) defining the polar variety M(L) as a point of the Grassmannian 
G(n − s − 2, n) of (n − s − 2)-planes in Pn, and not by means of a point λ in the multi-
projective space (Pn)s+2. The reason why we choose the latter is that we have the tools 
provided by multiprojective elimination theory, as summarized in Section 2.4. In partic-
ular, the multihomogeneous Bézout theorem and the behavior of mixed degrees under 
linear projections will allow us to bound the degree of the variety of points λ ∈ (Pn)s+2

for which the corresponding polar variety M(L) has not the expected dimension.
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4.1. Polar varieties of complete intersections

From now on we consider polar varieties associated with a complete intersection V . 
We shall see that the polar variety M(L) associated with V and a linear variety L can 
be expressed in terms of the vanishing of certain minors involving the partial derivatives 
of the polynomials defining V and L. This will allow us to obtain an explicit system of 
equations defining the polar variety M(L). In the series of papers [3–6,2] polar varieties 
of complete intersections are locally described by regular sequences consisting of the 
polynomials defining V and certain well-determined maximal minors of their Jacobian 
in the context of efficient real elimination.

Let V ⊂ Pn be a complete intersection defined by homogeneous polynomials F1, . . . ,
Fn−r ∈ Fq[X] := Fq[X0, . . . , Xn] of degrees d1 ≥ · · · ≥ dn−r ≥ 2 respectively. Denote 
Σ := Sing V and suppose that there exists 0 ≤ s ≤ r − 2 with dimΣ ≤ s. In particular, 
V is a normal complete intersection and then absolutely irreducible (Theorem 2.1). 
Finally, denote δ := deg V = d1 · · · dn−r and D :=

∑n−r
i=1 (di − 1).

Let x ∈ V . Since F1, . . . , Fn−r define the radical ideal of V , by, e.g., [25, §VI, Propo-
sition 1.5], the tangent space TxV is the linear variety

TxV =
{
v ∈ Pn : ∇F1(x) · v = · · · = ∇Fn−r(x) · v = 0

}
. (17)

For x ∈ Vsm, the gradients ∇F1(x), . . . , ∇Fn−r(x) are linearly independent and TxV has 
dimension r.

Let λi := (λi,0 : · · · : λi,n) (0 ≤ i ≤ s + 1) be linearly independent elements of Pn, 
let λ := (λ0, . . . , λs+1) and consider the (n − s − 2)-dimensional linear variety L ⊂ Pn

defined as in (14). Further, consider the matrix

M(X,λ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1
∂X0

. . . ∂F1
∂Xn

...
...

∂Fn−r

∂X0
. . . ∂Fn−r

∂Xn

λ0,0 . . . λ0,n

...
...

λs+1,0 . . . λs+1,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

For x ∈ Vsm, the dimension of TxV ∩ L is equal to r − s − 2 if and only if M(x, λ) has 
maximal rank. Equivalently, M(x, λ) is not of full rank if and only if the dimension of 
TxV ∩ L is at least r − s − 1. As a consequence, if Δ1(x, λ), . . . , ΔN (x, λ) denote the 
maximal minors of M(x, λ), then

M(L) =
{
x ∈ Vsm : Δ1(x,λ) = · · · = ΔN (x,λ) = 0

}
. (19)
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As established in Proposition 4.2, for generic L the dimension of M(L) is equal to s. 
Next we obtain conditions on λ := (λ0, . . . , λs+1) ∈ (Pn)s+2 which imply that the 
corresponding polar variety M(L) has dimension s.

For 0 ≤ i ≤ s + 1, we denote by Λi := (Λi,0, . . . , Λi,n) a group of n + 1 variables and 
set Λ := (Λ0, . . . , Λs+1). We consider the so-called generic polar variety, namely

W := (Vsm × U) ∩
{
Δ1(X,Λ) = · · · = ΔN (X,Λ) = 0

}
, (20)

where U ⊂ (Pn)s+2 is the Zariski open subset of all the (s + 2) × (n + 1)-matrices of 
maximal rank and Δ1, . . . , ΔN are the maximal minors of the generic version M(X, Λ)
of the matrix M(X, λ) of (18).

Proposition 4.3. Let t := n(s + 2). Then W is an irreducible variety of Vsm × U of 
dimension t + s.

Proof. Let π1 : W → Vsm be the linear projection π1(x, λ) := x. Fix x ∈ Vsm and 
consider the fiber π−1

1 (x). We have π−1
1 (x) = {x} ×L, where L ⊂ U is the set of matrices 

λ := (λ0, . . . , λs+1) for which the matrix M(x, λ) is not of full rank. This is the same as 
saying that

〈λ0, . . . , λs+1〉 ∩
〈
∇F1(x), . . . ,∇Fn−r(x)

〉
	= ∅,

where 〈v0, . . . , vm〉 ⊂ An+1 is the linear variety spanned by v0, . . . , vm. Equivalently, 
λ0, . . . , λs+1 are linearly dependent in the quotient Fq-vector space

V := An+1/
〈
∇F1(x), . . . ,∇Fn−r(x)

〉
.

This Fq-vector space has dimension r + 1 because x ∈ Vsm.
The affine cone (An+1)s+2 of (Pn)s+2 can be identified with the Fq-vector space 

Hom
Fq

(As+2, An+1) of linear homomorphisms from As+2 to An+1. In particular, the 
Zariski open subset Uaff ⊂ (An+1)s+2 of matrices of full rank is the affine cone of 
U ⊂ (Pn)s+2, and can be identified with the open subset of homomorphisms of full 
rank of Hom

Fq
(As+2, An+1):

L=
s+2

(
As+2,An+1) :=

{
f ∈ Hom

Fq

(
As+2,An+1) : rank(f) = s + 2

}
.

The quotient map An+1 → V induces a surjective map

Φ : Hom
Fq

(
As+2,An+1) → Hom

Fq

(
As+2,V

)
.

With a slight abuse of notation we denote the image of L=
s+2(As+2, An+1) under Φ by 

Φ(Uaff).
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From the above, if π−1
1 (x) = {x} ×L, then the affine cone of L is, modulo 〈∇F1(x), . . . ,

∇Fn−r(x)〉, isomorphic to the Zariski open set Ls+1(As+2, V) ∩ Φ(Uaff), where

Ls+1
(
As+2,V

)
:=

{
f ∈ Hom

Fq

(
As+2,V

)
: rank(f) ≤ s + 1

}
.

According to [7, Proposition 1.1], Ls+1(As+2, V) is an irreducible variety of dimension 
(s + 1)(r + 2). Since we are considering subspaces of An+1 of dimension s + 2 modulo a 
subspace 〈∇F1(x), . . . , ∇Fn−r(x)〉 of dimension n −r, the affine cone of L is an irreducible 
variety of Uaff of dimension (s + 1)(r + 2) + (n − r)(s + 2) = (n + 1)(s + 2) + s − r. We 
may rephrase this conclusion saying that π−1

1 (x) = {x} × L is an irreducible subvariety 
of Vsm × U of dimension t + s − r.

We claim that the projection Vsm ×U → Vsm is closed. Indeed, this is the case if U is 
a complete variety (see, e.g., [12, Chapter 2, §3]). A well-known fact is that a projective 
variety is complete (see, e.g., [12, Chapter 2, §3.3]). Furthermore, if there exists a proper 
map from a quasiprojective variety to a complete variety, then the former is complete 
(see, e.g., [12, Chapter 2, §3.2]). In our case, it is not hard to see that the mapping 
U → G(s + 1, n) defined by the Plücker coordinates is proper. Since G(s + 1, n) is a 
projective variety and thus complete, the claim follows.

Let W =
⋃

j Cj be the decomposition of W into irreducible components. Our previous 
arguments show that π1 : W → Vsm is surjective. As Vsm × U → Vsm is closed, we have 
π1(W ) = Vsm =

⋃
j π1(Cj), where each π1(Cj) is a closed subset of Vsm. Recall that 

V is a normal complete intersection and thus irreducible (Theorem 2.1). Then Vsm is 
irreducible and there exists j with Vsm = π1(Cj).

Now the proof repeats mutatis mutandis the second and third paragraph of the proof 
of [33, §I.6.3, Theorem 8] to conclude that W is an irreducible subvariety of Vsm × U .

Finally, by the theorem on the dimension of fibers (see, e.g., [33, §I.6.3, Theorem 7]), 
for any x ∈ Vsm we have

t + s− r = dim π−1
1 (x) = dimW − dimVsm = dimW − r.

This shows that dimW = t + s and finishes the proof of the proposition. �
As the polar variety M(L) defined by a generic linear variety L has dimension s

(Proposition 4.2), the second projection π2 : W → Pn(s+2) is a dominant mapping. As 
we shall see, by the theorem on the dimension of fibers it follows that, for any λ in a 
Zariski open subset of Pn(s+2), the corresponding polar variety has dimension s. The 
main result of this section asserts that there exists a closed subset of Pn(s+2) of “low” 
degree containing the fibers of π2 of dimension greater than s.

For this purpose we shall use the following technical lemma, which shows how we 
obtain such a closed subset. Although the general technique is well-known, we state and 
prove it here due to lack of a suitable reference.
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Lemma 4.4. Let W ⊂ Pn be a multiprojective variety of pure dimension e and let 
W1 ⊂ Pn be a subvariety of W of dimension at most e1 < e. Suppose that there ex-
ist multihomogeneous polynomials H1, . . . , HM ∈ Fq[X] of multidegree e such that

W ∩ {H1 = · · · = HM = 0} = W1. (21)

Then there exist linear combinations H1, . . . , He−e1 of H1, . . . , HM such that W∩{H1 =
· · · = He−e1 = 0} contains W1 and is of pure dimension e1.

Proof. We show by induction that for 1 ≤ i ≤ e − e1 there exist linear combinations 
H1, . . . , Hi of H1, . . . , HM such that W ∩ {H1 = · · · = Hi = 0} contains W1 and is of 
pure dimension e − i. The assertion for i = e − e1 is the statement of the lemma.

We start with the step i = 1. Set W0 := W and let W0 =
⋃t

j=1 C0,j be the decompo-
sition of W0 into irreducible components. Observe that dim C0,j = e for 1 ≤ j ≤ t. Since 
dim(W1) ≤ e1 < e, there exists x0,j ∈ C0,j \W1 for 1 ≤ j ≤ t.

Let Γ := (Γ1, . . . , ΓM ) be a vector of indeterminates over Fq and let H1 ∈ Fq[Γ ] be 
the following polynomial:

H1 :=
t∏

j=1

(
Γ1H1(x0,j) + · · · + ΓMHM (x0,j)

)
.

Since x0,j ∈ W0 \W1 for 1 ≤ j ≤ t, by (21) we see that for each j there exists Hij with 
Hij (x0,j) 	= 0. Then H1 is a nonzero polynomial and there exists γ1 := (γ1,1, . . . , γ1,M ) ∈
FM
q with H1(γ1) 	= 0. In particular, the polynomial H1 :=

∑M
k=1 γ1,kHk ∈ Fq[X] is 

multihomogeneous of multidegree e and does not vanish on x0,j for 1 ≤ j ≤ t. Therefore, 
the multiprojective variety C0,j ∩{H1 = 0} is of pure dimension e − 1 for 1 ≤ j ≤ t. This 
implies that W1 := W0 ∩ {H1 = 0} is of pure dimension e − 1. From (21) we have that 
H1 vanishes identically on W1, and hence W1 ⊂ W1. This finishes the proof of the first 
step of our inductive argument.

Now, given i with 1 < i ≤ e − e1, assume that there exist linear combinations H1, . . . ,
Hi−1 of H1, . . . , HM such that Wi−1 := W ∩ {H1 = · · · = Hi−1 = 0} is of pure 
dimension e − i + 1 and W1 ⊂ Wi−1. Let Wi−1 =

⋃t′

j=1 Ci−1,j be the decomposition of 
Wi−1 into irreducible components. We have dim Ci−1,j = e − i +1 > e −e1 = dimW1 for 
1 ≤ j ≤ t′. Then the argument of the first step of the inductive argument works mutatis 
mutandis and shows that there exists a linear combination Hi of H1, . . . , HM such that 
Wi := W ∩ {H1 = · · · = Hi = 0} is of pure dimension e − i and W1 ⊂ Wi.

Setting i = e − e1 we obtain the assertion of the lemma. �
Now we are in a position to prove our result concerning the points λ ∈ (Pn)s+2 for 

which the polar variety M(L) has dimension greater than expected, where L ⊂ Pn is the 
linear variety associated with λ as in (14).
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Theorem 4.5. There exists a hypersurface H1 ⊂ (Pn)s+2, defined by a multihomogeneous 
polynomial of degree at most (n − s)(r − s)Dr−s−1δ + 1 in each group of variables Λi, 
such that for any λ ∈ (Pn)s+2 \ H1 the polar variety M(L) has dimension at most s.

Proof. Let π2 : W → U be projection π2(x, λ) := λ, where W ⊂ Vsm × U is the 
generic polar variety of (20). For λ ∈ π2(W ), we have π−1

2 (λ) = M(L). According to 
Proposition 4.2, for a generic point λ ∈ U the polar variety M(L) is of pure dimension 
s ≥ 0. Then π2 is dominant. On the other hand, by Proposition 4.3 the generic polar 
variety W is irreducible of dimension t + s, where t := n(s + 2). Hence, the theorem on 
the dimension of fibers (see, e.g., [33, §I.6.3, Theorem 7]) shows that for any λ ∈ π2(W )
and any irreducible component C of the fiber π−1

2 (λ), we have

dim C ≥ dimW − dimU = t + s− t = s.

Furthermore, there exists a Zariski open subset of U where equality holds.
The fact that π2 is dominant implies that the field extension Fq(Λ) ↪→ Fq(W ) has 

transcendence degree s + 1, and there exist indices i0, . . . , is such that the coordinate 
functions of Fq(W ) defined by Xi0 , . . . , Xis form a transcendence basis of this field ex-
tension.

Fix i ∈ Γ := {0, . . . , n} \ {i0, . . . , is} and consider the linear mapping πi : W ���
Ps+1 × (Pn)s+2 defined by Xi0 , . . . , Xis , Xi and Λ.

Claim. The Zariski closure Wi ⊂ Ps+1 × (Pn)s+2 of πi(W ) is a hypersurface.

Proof. Since the coordinate functions of Fq(W ) defined by Xi0 , . . . , Xis form a tran-
scendence basis of the field extension Fq(Λ) ↪→ Fq(W ), for each i ∈ Γ there exists a 
polynomial mi ∈ Fq[Xi0 , . . . , Xis , Λ, T ] of minimal degree Di > 0 in T , which is prim-
itive as an element of Fq[Xi0 , . . . , Xis , Λ][T ], such that the coordinate function defined 
by Xi in Fq(W ) vanishes identically. Let Ai ∈ Fq[Xi0 , . . . , Xis , Λ] be the (nonzero) 
polynomial appearing as the coefficient of TDi in mi, considering mi as an element of 
Fq[Xi0 , . . . , Xis , Λ][T ]. Finally, let AΓ := Xi0

∏
i∈Γ Ai. Since AΓ ∈ Fq[Xi0 , . . . , Xis , Λ], 

the coordinate functions of W defined by Xi0 , . . . , Xis are algebraically independent over 
Fq(Λ) and W is irreducible, we conclude that W ∩{AΓ 	= 0} is a nonempty Zariski open 
dense subset of W .

Fix (x, λ) ∈ W ∩ {AΓ 	= 0}. Then πi(x, λ) is well-defined and its fiber has dimension 
zero, since all the polynomials mj(Xi0 , . . . , Xis , λ, Xj) with j ∈ Γ vanish on any point 
(x̃, λ) ∈ π−1

i (πi(x, λ)). By the theorem on the dimension of fibers we have

0 = dim π−1
i

(
πi(x,λ)

)
≥ dimW − dim πi(W ).

It follows that dim πi(W ) ≥ dimW , which implies dim πi(W ) = dimW = n(s + 2) + s. 
Since πi(W ) is irreducible, its Zariski closure Wi is a hypersurface. This finishes the 
proof of the claim. �
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Observe that F1, . . . , Fn−r define a subvariety of (Pn)s+3 of pure dimension t + r, 
namely the variety V × (Pn)s+2. Furthermore, by the definition of W in (20) we have

W ⊂
(
V ×

(
Pn

)s+2) ∩ {Δ1 = · · · = ΔN = 0},

where Δ1, . . . , ΔN are the maximal minors the generic version M(X, Λ) of the matrix 
of (18). Proposition 4.3 shows that W is a subvariety of codimension r−s of V ×(Pn)s+2. 
Hence, one might expect that r− s generic linear combinations of Δ1, . . . , ΔN cut out a 
variety of pure dimension t + s containing W . Indeed, we have the following claim.

Claim. There exist linear combinations Δ1, . . . , Δr−s of Δ1, . . . , ΔN such that F1, . . . ,
Fn−r, Δ1, . . . , Δr−s define a subvariety W ′ of (Pn)s+3 of pure dimension t + s contain-
ing W .

Proof. Observe that Σ × (Pn)s+2 has dimension at most t + s. On the other hand, the 
affine cone of U ⊂ (Pn)s+2 represents the Zariski open set of (s + 2) × (n + 1)-matrices 
with entries in Fq of full rank. The affine cone of (Pn)s+2 \ U is then the closed set of 
matrices of rank at most s +1, that is, Ls+1(As+2, An+1). By [7, Proposition 1.1], it is an 
irreducible subvariety of (An+1)s+2 of dimension (s +1)(n +2) = t −n +s +s +2. Therefore, 
(Pn)s+2 \U is a multiprojective variety of dimension t −n + s and V × ((Pn)s+2 \U) has 
dimension t + r − n + s < t + s. We conclude that

W ′′ := W ∪
(
Σ ×

(
Pn

)s+2) ∪ (
V ×

((
Pn

)s+2 \ U
))

(22)

has dimension t + s.
For (x, λ) ∈ V × (Pn)s+2, either x ∈ Σ, or λ ∈ (Pn)s+2 \ U , or (x, λ) ∈ Vsm × U . 

In the first two cases, (x, λ) ∈ W ′′ and Δj(x, λ) = 0 for 1 ≤ j ≤ N . In the last case, 
(x, λ) ∈ W ′′ if and only if Δj(x, λ) = 0 for 1 ≤ j ≤ N . As a consequence,

W ′′ =
(
V ×

(
Pn

)s+2) ∩ {Δ1 = · · · = ΔN = 0}, (23)

and thus W ′′ is a Zariski closed subset of (Pn)s+3 of dimension t + s.
Now we apply Lemma 4.4 to W := V × (Pn)s+2 and W1 := W ′′. Since W ′′ has codi-

mension r−s in V ×(Pn)s+2, by Lemma 4.4 there exist linear combinations Δ1, . . . , Δr−s

of Δ1, . . . , ΔN such that the multiprojective variety W ′ := (V × (Pn)s+2) ∩ {Δ1 = · · · =
Δr−s = 0} is of pure dimension t + s and contains W ′′, and thus W . This finishes the 
proof of the claim. �

Denote by W ′
i the union of the irreducible components of W ′ for which the Zariski 

closure of its image under πi is a hypersurface of Ps+1 × (Pn)s+2. Since πi(W ) has 
codimension 1 and W ⊂ W ′, such a union is nonempty. Then πi(W ′

i ) is a hypersurface 
of Ps+1 × (Pn)s+2 which contains Wi.
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Next we estimate the multidegree of W ′ and hence of W ′
i and Wi. For this purpose, we 

consider the class [W ′] of W ′ in the Chow ring A∗((Pn)s+3) of (Pn)s+3. Denote by θj−2
the class of the inverse image of a hyperplane of Pn under the jth canonical projection 
(Pn)s+3 → Pn for 1 ≤ j ≤ s + 3. In particular, θ−1 is associated with the projection 
π1 : Pn × (Pn)s+2 → Pn considered before. Observe that W ′ := {F1 = · · · = Fn−r = 0,
Δ1 = · · · = Δr−s = 0}. From (9) it follows that

[
V (Fi)

]
≤ diθ−1 (1 ≤ i ≤ n− r),[

V
(
Δi

)]
≤ Dθ−1 + θ0 + · · · + θs+1 (1 ≤ i ≤ r − s).

Then the multihomogeneous Bézout theorem (10) shows that

[
W ′] ≤ n−r∏

i=1
(diθ−1)

r−s∏
k=1

(Dθ−1 + θ0 + · · · + θs+1)

= δDr−s−1(D(θ−1)n−s + (r − s)(θ−1)n−s−1(θ0 + · · · + θs+1)
)

+ O
(
(θ−1)n−s−2), (24)

where O((θ−1)n−s−2) represents a sum of terms of degree at most n − s − 2 in θ−1. On 
the other hand, by (9) we have

[
πi

(
W ′

i

)]
= degX m′

iθ−1 + degΛ0
m′

iθ0 + · · · + degΛs+1
m′

iθs+1,

where m′
i ∈ Fq[Xi0 , . . . , Xis , Λ, Xi] is a polynomial of minimal degree defining πi(W ′

i ). 
Let j : A∗(Ps+1 × (Pn)s+2) ↪→ A∗((Pn)s+3) be the injective Z-map P 
→ (θ−1)n−s−1P

induced by πi. Since πi(W ′
i ) is of pure dimension t + s = dimW ′

i , (11) shows that 
j([πi(W ′

i )]) ≤ [W ′
i ], and by definition [W ′

i ] ≤ [W ′], that is,

j
([
πi

(
W ′

i

)])
= degX m′

i(θ−1)n−s +
s+1∑
j=0

degΛj
m′

i(θ−1)n−s−1θj ≤
[
W ′],

where inequalities are understood in a coefficient-wise sense. By (24) we deduce that 
degΛj

m′
i ≤ (r − s)Dr−s−1δ for 0 ≤ j ≤ s + 1.

Let mi ∈ Fq[Xi0 , . . . , Xis , Λ, Xi] be a polynomial of minimal degree defining Wi. Ob-
serve that Di := degXi

mi > 0. Let Ai ∈ Fq[Xi0 , . . . , Xis , Λ] be the (nonzero) polynomial 
occurring as the coefficient of XDi

i in mi, considered as an element of the polynomial ring 
Fq[Xi0 , . . . , Xis , Λ][Xi]. Further, let A∗

i ∈ Fq[Λ] be a nonzero coefficient of Ai, consider-
ing Ai as an element of Fq[Λ][Xi0 , . . . , Xis ]. Finally, let A0 ∈ Fq[Λ] denote a maximal 
minor of the generic matrix (Λi,j)0≤i≤s+1,0≤j≤n and set A := A0 ·

∏
i∈Γ A∗

i ∈ Fq[Λ]. We 
claim that the hypersurface H1 ⊂ (Pn)s+2 defined by the zero locus of A satisfies the 
requirements of the theorem.
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To show this claim, let λ := (λ0, . . . , λs+1) ∈ (Pn)s+2 \ H1 and denote mλ
i :=

mi(Xi0 , . . . , Xis , λ, Xi). Since A0(λ) 	= 0, we have λ ∈ U . Furthermore, A∗
i (λ) 	= 0, 

which implies that Ai(Xi0 , . . . , Xis , λ) is a nonzero polynomial of Fq[Xi0 , . . . , Xis ]. This 
polynomial appears as the coefficient of XDi

i in mλ
i , considering mλ

i as an element of 
Fq[Xi0 , . . . , Xis ][Xi]. We conclude that mλ

i is a nonzero polynomial of Fq[Xi0 , . . . , Xis , Xi]
with degXi

mλ
i > 0 vanishing on M(L) for any i ∈ Γ , where L is the linear variety asso-

ciated with λ. Then the coordinate function of M(L) defined by Xi satisfies a nontrivial 
algebraic equation over Fq(Xi0 , . . . , Xis) for any i ∈ Γ . As a consequence, M(L) has 
dimension at most s.

Since A∗
i is a multihomogeneous polynomial of Fq[Λ] with degΛi

A∗
i ≤ (r−s)Dr−s−1δ

and |Γ | = n − s, we find that degΛi
A ≤ (n − s)(r − s)Dr−s−1δ + 1. This finishes the 

proof of the theorem. �
5. On the existence of nonsingular linear sections

In this section we establish a Bertini-type theorem, namely we show the existence 
of nonsingular linear sections of a singular complete intersection. Combining the main 
result of this section and Theorem 4.5 we shall be able to obtain an effective Bertini 
smoothness theorem.

A version of the Bertini theorem asserts that a generic hyperplane section of a non-
singular variety V is nonsingular. A more precise variant asserts that, if V ⊂ Pn is a 
projective variety with singular locus of dimension at most s, then a section of V defined 
by a generic linear space of Pn of codimension at least s + 1 is nonsingular (see, e.g., 
[16, Proposition 1.3]). In this section we consider the existence of nonsingular linear sec-
tions of codimension s +2 of a complete intersection having a singular locus of dimension 
at most s. Identifying each section of this type with a point in the multiprojective space 
(Pn)s+2, we show the existence of a hypersurface of (Pn)s+2 containing all the linear 
subvarieties of codimension s + 2 of (Pn)s+2 which yield singular sections of V . We also 
estimate the multidegree of this hypersurface.

Let V ⊂ Pn be a complete intersection defined by homogeneous polynomials F1, . . . ,
Fn−r ∈ Fq[X0, . . . , Xn] of degrees d1 ≥ · · · ≥ dn−r ≥ 2 respectively. Let Σ := Sing V
and suppose that it has dimension at most s ≤ r− 2. This implies that V is normal, and 
therefore absolutely irreducible (Theorem 2.1).

As before, given a point λ := (λ0, . . . , λs+1) ∈ (Pn)s+2 where λ0, . . ., λs+1 are 
Fq-linearly independent, we consider the linear variety

L :=
{
x ∈ Pn : λ0 · x = · · · = λs+1 · x

}
of (14). Further, if Yi := λi ·X for 0 ≤ i ≤ s + 1, we consider the mapping

π : V ��� Ps+1

x 
→ (λ0 · x : · · · : λs+1 · x)
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as defined in (15). Finally, we recall the notations

δ := deg V =
n−r∏
i=1

di, D :=
n−r∑
i=1

(di − 1), t := n(s + 2).

As asserted above, in this section we obtain a condition on λ ∈ (Pn)s+2 which implies 
that the linear section V ∩ L is nonsingular of pure dimension r − s − 2.

First we obtain a condition on λ which implies that every fiber and the exceptional 
locus of π have the expected dimension. Recall that the exceptional locus E of π is V ∩L.

Lemma 5.1. There exists a hypersurface H′
2 ⊂ (Pn)s+2, defined by a multihomogeneous 

polynomial of Fq[Λ] of multidegree at most δ in each group of variables Λi, with the 
following property: let λ ∈ (Pn)s+2 \ H′

2 and let π : V ��� Ps+1 be the linear mapping 
of (15). Then the Zariski closure Vy of every fiber π−1(y) is of pure dimension r− s − 1
and the exceptional locus E of π is of pure dimension r − s − 2.

Proof. Let U0, . . . , Ur be groups of n + 1 indeterminates over Fq[X0, . . . , Xn], where 
Ui := (Ui,0, . . . , Ui,n), and let U := (U0, . . . , Ur). Denote by FV ∈ Fq[U ] the Chow 
form of V (see, e.g., [21, Chapter X, §6] or [30, Chapter I, §9]). This is an irreducible 
polynomial of Fq[U ] which characterizes the set of overdetermined linear systems over V , 
i.e., FV (u0, . . . , ur) = 0 if and only if V ∩ {u0 · X = · · · = ur · X = 0} is not empty. 
Furthermore, FV is homogeneous in each group of variables Ui and degUi

FV = δ for 
0 ≤ i ≤ r.

Consider FV as a polynomial of Fq[U0, . . . , Us+1][Us+2, . . . , Ur] and fix u := (us+2,

. . . , ur) ∈ (Pn)r−s−1 such that the multihomogeneous polynomial B := FV (U0, . . . , Us+1,

us+2, . . . , ur) does not vanish. We claim that any λ := (λ0, . . . , λs+1) ∈ (Pn)s+2 with 
B(λ) 	= 0 satisfies the statement of the lemma.

Indeed, by the definition of λ and u we have FV (λ, u) 	= 0. This implies

V ∩ {λ0 ·X = · · · = λs+1 ·X = 0, us+2 ·X = · · · = ur ·X = 0} = ∅. (25)

Then the mapping πr : V → Pr defined by the linear forms λ0 ·X, . . . , λs+1 ·X, us+2 ·X,

. . . , ur ·X is a finite morphism (see, e.g., [33, §I.5.3, Theorem 8]).
Let π : V ��� Ps+1 be the mapping defined by λ0 · X, . . . , λs+1 · X. Observe that 

π = πr,s ◦ πr, where πr,s : Pr ��� Ps+1 is the mapping defined by (x0 : · · · : xr) 
→
(x0 : · · · : xs+1). As πr,s is surjective, the Zariski closure Ly ⊂ Pr of the preimage 
π−1
r,s (y) of any point y ∈ Ps+1 is a linear variety of dimension r− s − 1. Then the Zariski 

closure Vy of any fiber π−1(y) agrees with the inverse image by πr of the linear variety 
Ly ⊂ Pr, and hence is of pure dimension r − s − 1. On the other hand, from (25) we 
easily conclude that E := V ∩ {λ0 · X = · · · = λs+1 · X = 0} is of pure dimension 
r − s − 2. Indeed, every irreducible component of E has dimension at least r − s − 2
by, e.g., [33, §I.6.2, Corollary 2]. Furthermore, if there were an irreducible component C
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of E of dimension at least r − s − 1, then C ∩ {us+2 ·X = · · · = ur ·X = 0} would be 
nonempty, contradicting (25).

As a consequence, defining H′
2 ⊂ (Pn)s+2 as the zero locus of the polynomial B ∈

Fq[U0, . . . , Us+1] finishes the proof of the lemma. �
Next we consider the set of elements λ ∈ (Pn)s+2 such that the corresponding linear 

variety L does not meet the singular locus Σ.

Lemma 5.2. There exists a hypersurface H′′
2 ⊂ (Pn)s+2, defined by a multihomogeneous 

polynomial of Fq[Λ] of multidegree at most Dr−s−1δ in each group of variables Λi, with 
the following property: if λ ∈ (Pn)s+2 \ H′′

2 , then Σ ∩ L is empty.

Proof. According to (17), the tangent space TxV at any point x ∈ V is the linear 
variety orthogonal to ∇F1(x), . . . , ∇Fn−r(x). Hence, a point x ∈ V is singular if and 
only if ∇F1(x), . . . , ∇Fn−r(x) are linearly dependent, or equivalently, if and only if the 
Jacobian matrix of F1, . . . , Fn−r at x has not maximal rank. Let Δ′

1, . . . , Δ′
M be the 

maximal minors of the Jacobian matrix of F1, . . . , Fn−r. Then

Σ =
{
x ∈ V : Δ′

1 = · · · = Δ′
M = 0

}
.

All the polynomials Δ′
j are homogeneous of degree D and Σ ⊂ V has dimen-

sion at most s < s + 1. Then Lemma 4.4 shows that there exist linear combinations 
H1, . . . , Hr−s−1 of Δ′

1, . . . , Δ′
M such that the projective variety Z := V ∩ {H1 = · · · =

Hr−s−1 = 0} is of pure dimension s + 1 with Σ ⊂ Z. By the Bézout inequality (5), the 
degree of Z is at most Dr−s−1δ.

Let FZ ∈ Fq[Λ] be the Chow form of Z. Recall that FZ is homogeneous in each group 
of variables Λi and degΛi

FZ = degZ ≤ Dr−s−1δ for 0 ≤ i ≤ s + 1.
Let λ ∈ (Pn)s+2 be such that FZ(λ) 	= 0 and let L ⊂ Pn be the linear variety 

L := {λ0 ·X = · · · = λs+1 ·X = 0}. Then Z ∩ L is empty by the definition of FZ , and 
thus so is Σ ∩ L. Therefore, defining H′′

2 ⊂ (Pn)s+2 as the zero locus of FZ finishes the 
proof of the lemma. �
5.1. An incidence variety for the singular linear sections of codimension s + 2

Similarly to Section 4.1, we consider the following incidence variety:

Ws := (Vsm × U) ∩
{
Λ0 ·X = 0, . . . , Λs+1 ·X = 0,

Δ1(Λ, X) = 0, . . . ,ΔN (Λ, X) = 0
}
, (26)

where U ⊂ (Pn)s+2 is the Zariski open subset of (s + 2) × (n + 1)-matrices of full rank 
and Δ1, . . . , ΔN are the maximal minors of the generic version M(X, Λ) of the matrix 
of (18). Denote by π2 : Ws → U the projection on the second argument. Then each 
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λ ∈ π2(Ws) corresponds to a linear variety L ⊂ Pn of codimension s +2 such that V ∩L

is singular.
Our first result asserts that Ws is irreducible of dimension t −1. At first sight this might 

be seen as contradicting Proposition 4.3, which shows that the generic polar variety W
of (20) has dimension t +s, since Ws is the intersection of W with s +2 bilinear forms and 
has codimension s + 1 in W . Nevertheless, for a generic λ ∈ (Pn)s+2 the corresponding 
equations in (26) describe the singular locus of V ∩ L, which is likely to be empty.

Proposition 5.3. Ws is an irreducible subvariety of Vsm × U of dimension t − 1.

Proof. As the arguments are similar to those of the proof of Proposition 4.3, we shall 
omit some details.

Let π1 : Ws → Vsm be the projection π1(x, λ) := x. Fix x ∈ Vsm and consider 
the fiber π−1

1 (x). We have π−1
1 (x) = {x} × L, where L ⊂ U denotes the set of points 

λ := (λ0, . . . , λs+1) such that λ0 · x = · · · = λs+1 · x = 0 and the matrix M(x, λ) is not 
of full rank. The latter is equivalent to

〈λ0, . . . , λs+1〉 ∩
〈
∇F1(x), . . . ,∇Fn−r(x)

〉
	= {0}, (27)

where 〈v0, . . . , vm〉 ⊂ An+1 is the linear variety spanned by v0, . . . , vm in An+1. Let 
V := {v ∈ An+1 : v ·x = 0}. Observe that ∇Fj(x) ∈ V for 1 ≤ j ≤ n −r. Then (27) holds 
if and only if λ0, . . . , λs+1 are linearly dependent in the quotient Fq-vector space

W := V/
〈
∇F1(x), . . . ,∇Fn−r(x)

〉
.

This shows that L is, modulo 〈∇F1(x), . . . , ∇Fn−r(x)〉, isomorphic to the Zariski open 
set L′

s+1(As+2, W) ∩ Φ(Uaff) of L′
s+1(As+2, W), where

L′
s+1

(
As+2,W

)
:=

{
f ∈ Hom

Fq

(
As+2,V

)
: rank(f) ≤ s + 1

}
,

Uaff ⊂ (An+1)s+2 is the affine cone of U and Φ : Hom
Fq

(As+2, An+1) → Hom
Fq

(As+2, W)
is the surjective map induced by the quotient map An+1 → W.

According to [7, Proposition 1.1], L′
s+1(As+2, W) is an irreducible variety of dimension 

(s + 1)(r + 1). Since we are considering subspaces of V of dimension s + 2 modulo 
〈∇F1(x), . . . , ∇Fn−r(x)〉, which has dimension n − r, it follows that the affine cone of 
π−1

1 (x) = {x} × L is an open dense subset of an irreducible subvariety of Vsm × Uaff of 
dimension (s + 1)(r + 1) + (n − r)(s + 2) = (n + 1)(s + 2) − r − 1. This implies that 
π−1

1 (x) = {x} ×L is an irreducible subvariety of Vsm × U of dimension t − r − 1.
As in the proof of Proposition 4.3, the projection Vsm × U → Vsm on the sec-

ond argument is closed. Let Ws =
⋃

j Cj be the decomposition of Ws into irreducible 
components. Our previous arguments show that π1 : Ws → Vsm is surjective. Then 
π1(Ws) = Vsm =

⋃
j π1(Cj) and each π1(Cj) is a closed subset of Vsm. Recall that V is 
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a normal complete intersection, and thus irreducible (Theorem 2.1). Then Vsm is irre-
ducible and there exists j with Vsm = π1(Cj). Now we repeat mutatis mutandis the 
second and third paragraph of the proof of [33, §I.6.3, Theorem 8] and deduce that Ws is 
an irreducible subvariety of Vsm × U .

Finally, by the theorem on the dimension of fibers (see, e.g., [33, §I.6.3, Theorem 7]), 
for any x ∈ Vsm we have

t− r − 1 = dim π−1
1 (x) = dimWs − dimVsm = dimWs − r.

This shows that dimWs = t − 1 and finishes the proof of the proposition. �
An immediate consequence of Proposition 5.3 is that the Zariski closure of the image 

of the projection π2 : Ws → U is an irreducible variety of dimension at most t − 1. 
Our next result strengthens somewhat this conclusion and provides further quantitative 
information.

Theorem 5.4. Let Hs ⊂ (Pn)s+2 be the Zariski closure of the image of π2 : Ws → U . Then 
Hs is a hypersurface of (Pn)s+2, defined by a multihomogeneous polynomial of Fq[Λ] of 
degree at most δDr−s−2(D + r − s − 1) in each group of variables Λi.

Proof. We first prove that Hs is a hypersurface. For this purpose, it suffices to show that 
there exists a zero dimensional fiber π−1

2 (λ). Indeed, assuming that such a fiber exists, 
by the theorem on the dimension of fibers it follows that

0 = dim π−1
2 (λ) ≥ dimWs − dim π2(Ws).

We conclude that dimπ2(Ws) ≥ dimWs = t − 1. On the other hand, it is clear that 
dim π2(Ws) ≤ t − 1, which proves that dimπ2(Ws) = t − 1. Being the Zariski closure Hs

of π2(Ws) irreducible and of dimension t − 1, we conclude that it is a hypersurface.
Now we prove the existence of a zero-dimensional fiber of π2. Fix generic linear forms 

λ0 · X, . . . , λs ·X. By the Bertini theorem in the form of [16, Proposition 1.3] we have 
that V ∩ {λ0 · X = · · · = λs · X = 0} is nonsingular of pure dimension r − s − 1. We 
claim that there exists λs+1 ∈ Pn such that λ := (λ0, . . . , λs+1) ∈ U and V ∩ {λ0 ·X =
· · · = λs+1 · X = 0} is singular. Indeed, let L′ := {λ0 · X = · · · = λs · X = 0} and let 
x ∈ V ∩L′. The vectors ∇F1(x), . . . , ∇Fn−r(x), λ0, . . . , λs are linearly independent. Then 
the choice λs+1 := ∇F1(x) fulfills all our requirements, because L := L′∩{λs+1 ·X = 0}
has dimension n − s − 2 and V ∩ L has x as a singular point.

From [22, Appendix, Theorem 2] it follows that the singular locus of V ∩ L has 
dimension zero. Since such a singular locus is isomorphic to the fiber π−1

2 (λ), we deduce 
the existence of a zero-dimensional fiber of π2, which completes the proof of the first 
assertion.

Next we show the existence of a variety W ′
s ⊂ (Pn)s+3 of pure dimension t − 1 and 

“low” degree containing Ws.
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Claim. There exist linear combinations Δ1, . . . , Δr−s−1 of the polynomials Δ1(Λ, X), . . . ,
ΔN (Λ, X) such that the variety W ′

s ⊂ (Pn)s+3 defined by the set of common solutions of

F1 = 0, . . . , Fn−r = 0, Λ0 ·X = 0, . . . , Λs+1 ·X = 0,

Δ1(Λ, X) = 0, . . . ,Δr−s−1(Λ, X) = 0, (28)

is of pure dimension t − 1.

Proof. Let LΛ := {Λ0 ·X = 0, . . . , Λs+1 ·X = 0} ⊂ (Pn)s+3 and let W ′′
s ⊂ (Pn)s+3 be 

the following variety:

W ′′
s := Ws ∪

((
Σ ×

(
Pn

)s+2) ∩ LΛ

)
∪
((
V ×

((
Pn

)s+2 \ U
))

∩ LΛ

)
.

By the definition of W and Ws in (20) and (26) we easily conclude that Ws = W ∩LΛ. It 
follows that W ′′

s = W ′′ ∩LΛ, where W ′′ is the variety of (22). Therefore, by intersecting 
both sides of (23) with LΛ we find that

W ′′
s =

((
V ×

(
Pn

)s+2) ∩ LΛ

)
∩
{
Δ1(Λ, X) = 0, . . . ,ΔN (Λ, X) = 0

}
.

Next we determine the dimension of W ′′
s . First we observe that Σ × (Pn)s+2 is a 

cylinder which is well intersected by the equations Λ0 · X = 0, . . . , Λs+1 · X = 0. We 
conclude that (Σ × (Pn)s+2) ∩ LΛ has dimension at most s + t − (s + 2) < t − 1.

In the second claim of the proof of Theorem 4.5 we prove that V × ((Pn)s+2 \ U) has 
dimension t +r−n +s. Consider the projection π2 : (V ×((Pn)s+2\U)) ∩LΛ → (Pn)s+2\U
on the second argument. A generic linear variety of Pn of codimension s +1 intersects V
in a variety of pure dimension r− s − 1. Therefore, a generic fiber π−1

2 (λ) has dimension 
r − s − 1. Then the theorem on the dimension of fibers shows that

r − s− 1 = dim π−1
2 (λ) ≥ dim

(
V ×

((
Pn

)s+2 \ U
))

∩ LΛ − (t− n + s).

We deduce that (V × ((Pn)s+2 \ U)) ∩ LΛ has dimension at most t − n + r − 1 < t − 1. 
Combining these facts with Proposition 5.3 we conclude that W ′′

s has dimension t − 1.
Now we apply Lemma 4.4 to W := (V×(Pn)s+2) ∩LΛ and W1 := W ′′

s . From Lemma 4.4
we readily deduce the claim. �

The projection (Pn)s+3 → (Pn)s+2 on the second argument is closed (see, e.g., 
[33, §I.5.2, Theorem 3]). Let H′

s ⊂ (Pn)s+2 be the union of the components of π2(W ′
s)

of dimension t − 1. Then H′
s is a hypersurface containing Hs.

Finally, we estimate the multidegree of H′
s. For this purpose, we consider the class [W ′

s]
of W ′

s in the Chow ring A∗((Pn)s+3) of (Pn)s+3. Denote by θj−2 the class of the in-
verse image of a hyperplane of Pn under the jth canonical projection (Pn)s+3 → Pn for 
1 ≤ j ≤ s + 2. According to the definition (28) of W ′

s, by the multihomogeneous Bézout 
theorem (10) we deduce that
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[
W ′

s

]
≤

n−r∏
i=1

(diθ−1)
s+1∏
j=0

(θ−1 + θj)
r−s−1∏
k=1

(Dθ−1 + θ0 + · · · + θs+1)

= δDr−s−2(D + r − s− 1)(θ−1)n(θ0 + · · · + θs+1)

+ terms of lower degree in θ−1.

On the other hand, [H′
s] = degX H ′

sθ−1 +degΛ0
H ′

sθ0 + · · ·+degΛs+1
H ′

sθs+1, where H ′
s ∈

Fq[Λ] is a polynomial of minimal degree defining H′
s. Let j : A∗((Pn)s+2) ↪→ A∗((Pn)s+3)

be the injective Z-map P 
→ (θ−1)nP induced by π2. Then by definition [Hs] ≤ [H′
s], 

and (11) shows that j(H′
s) ≤ [W ′

s], that is,

j
(
H′

s

)
= degX H ′

s(θ−1)n+1 +
s+1∑
j=0

degΛj
H ′

s(θ−1)nθj ≤
[
W ′

s

]
,

where inequalities are understood in a coefficient-wise sense. This implies degΛj
H ′

s ≤
δDr−s−2(D + r − s − 1) for 0 ≤ j ≤ s + 1 and finishes the proof of the theorem. �

Combining Lemmas 5.1 and 5.2 and Theorem 5.4 we obtain the main result of this 
section.

Corollary 5.5. There exists a hypersurface H2 ⊂ (Pn)s+2, defined by a multihomogeneous 
polynomial of degree at most (Dr−s−2(2D+r−s −1) +1)δ in each group of variables Λi, 
with the following property: if λ ∈ (Pn)s+2 \ H2, and L ⊂ Pn and π : V ��� Ps+1 are 
defined as in (14) and (15), then the following conditions are satisfied:

1. V ∩ L is nonsingular of pure dimension r − s − 2;
2. Σ ∩ L is empty;
3. the Zariski closure Vy of every fiber π−1(y) is of pure dimension r − s − 1.

Proof. Let H2 := H′
2 ∪H′′

2 ∪Hs, where H′
2, H′′

2 and Hs are the hypersurfaces of (Pn)s+2

of Lemmas 5.1 and 5.2 and Theorem 5.4 respectively. We claim that H2 satisfies the 
statement of the corollary.

Indeed, let λ ∈ (Pn)s+2 \ H2. Then Lemma 5.1 shows that 3 is satisfied and V ∩ L is 
of pure dimension r− s − 2. In particular, L ⊂ Pn has codimension s +2, namely λ ∈ U . 
On the other hand, Lemma 5.2 proves 2, which implies V ∩ L = Vsm ∩ L. Finally, since 
λ /∈ Hs, we see that λ /∈ π2(Ws), where Ws is the incidence variety of (26). This means 
that

V ∩ L ∩
{
Δ1(λ, X) = 0, . . . ,ΔN (λ, X) = 0

}
= ∅.

We conclude that V ∩L is nonsingular, because Δ1(λ, X), . . . , ΔN (λ, X) are the maximal 
minors of the Jacobian matrix of the polynomials defining V ∩ L.
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The degree bound of the statement is an immediate consequence of those of 
Lemmas 5.1 and 5.2 and Theorem 5.4. �
6. An effective Bertini theorem

This section is devoted to establish an effective version of the Bertini smoothness the-
orem. The Bertini smoothness theorem (see, e.g., [33, II.6.2, Theorem 2]) asserts that, 
if f : V1 → V2 is a dominant morphism of irreducible varieties defined over a field of 
characteristic zero with V1 nonsingular, then there exists a Zariski dense open subset U
of V2 such that the fiber f−1(y) is nonsingular for every y ∈ U . An effective version of 
this result provides an upper bound of the degree of a proper subvariety of V2 containing 
the points defining singular fibers. Our effective version holds for complete intersections 
without any restriction on the characteristic of the ground field, and generalizes signifi-
cantly [9, Theorem 5.3].

We remark that an effective version of a weak form of a Bertini theorem is obtained 
in [1]. Nevertheless, the bound given in [1] is exponentially higher than ours and therefore 
not suitable for our purposes.

Let V ⊂ Pn be a complete intersection defined by homogeneous polynomials F1, . . . ,
Fn−r ∈ Fq[X0, . . . , Xn] of degrees d1 ≥ · · · ≥ dn−r ≥ 2 respectively. Assume that 
the singular locus Σ of V has dimension at most s ≤ r − 2. We use the notations 
δ := deg V = d1 · · · dn−r and D :=

∑n−r
i=1 (di − 1).

Let H := H1 ∪ H2, where H1 and H2 are the hypersurfaces of Theorem 4.5 and 
Corollary 5.5 respectively. Let λ := (λ0, . . . , λs+1) ∈ (Pn)s+2 \ H, let Yj := λj · X for 
0 ≤ j ≤ s + 1 and let π : V ��� Ps+1 be the linear mapping defined by Y0, . . . , Ys+1 as 
in (15). As before, we denote L := {Y0 = · · · = Ys+1 = 0}. Recall that the exceptional 
locus E of π is equal to V ∩ L.

Remark 6.1. With assumptions and notations as above, Σ ∩L is empty, and M(L) ∩L =
Sing(V ∩ L) is also empty.

Proof. By Corollary 5.5, as λ /∈ H2, Σ ∩ L is empty and V ∩ L is nonsingular. As a 
consequence, Sing(V ∩ L) is also empty. From Lemma 4.1 we deduce that M(L) ∩ L =
Sing(V ∩ L), which readily implies the remark. �

We shall prove that there exists a nonempty open subset U of Ps+1 such that the 
Zariski closure Vy of π−1(y) is nonsingular for every y ∈ U . Furthermore, we shall 
estimate the degree of the variety Ps+1 \ U yielding nonsingular fibers.

As a first step, we obtain a sufficient condition for the nonsingularity of the linear 
section Vy of V defined by a point y ∈ Ps+1. Fix y := (y0 : · · · : ys) ∈ Ps+1 and assume 
without loss of generality that y0 	= 0. Then

Vy =
{
x ∈ V : yjY0(x) − y0Yj(x) = 0 (1 ≤ j ≤ s + 1)

}
. (29)
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In particular, V ∩L ⊂ Vy. Since λ /∈ H, Corollary 5.5 asserts that V ∩L is nonsingular. 
As we shall see, this implies that any point of V ∩ L is a nonsingular point of Vy.

Now we can state and prove a sufficient condition for the nonsingularity of the linear 
section Vy. To this end, for a given x ∈ V \ E we consider as in (16) the linear mapping 
πx : TxV ��� Ps+1 defined by Y0, . . . , Ys+1, i.e., πx(v) := (λ0 · v : · · · : λs+1 · v). We 
denote by Ex the set of exceptional points of πx, namely TxV ∩ L.

Lemma 6.2. Let y ∈ Ps+1 be such that for every x ∈ π−1(y) the following conditions are 
satisfied:

1. x is a regular point of V ,
2. the set Ex has dimension at most r − s − 2.

Then Vy is a nonsingular variety.

Proof. Since λ /∈ H, by Corollary 5.5 we have that Vy is of pure dimension r − s − 1. 
Then it suffices to prove that for every x ∈ Vy the tangent space TxVy has dimension at 
most r− s − 1. Fix x ∈ π−1(y). Condition 1 implies that TxV has dimension r. Consider 
the linear mapping

πx|TxVy
: TxVy ��� Ps+1

v 
→
(
Y0(v) : · · · : Ys+1(v)

)
.

It is clear that the set Ex,y of exceptional points of πx|TxVy
is contained in Ex. Since the 

restriction π|Vy
: Vy ��� Ps+1 maps Vy to the point y, the dimension of πx(TxVy) is equal 

to 0. By the Dimension theorem of linear algebra (see, e.g., [20, Chapter 8, Section 1]) 
we have

dimTxVy = dim Ex,y + dim πx(TxVy) + 1.

From this and condition 2 we deduce that

r − s− 1 ≤ dimTxVy ≤ dim Ex + 1 ≤ r − s− 1.

We conclude that dimTxVy = dim Ex + 1 = r − s − 1 and therefore x is a regular point 
of Vy.

Finally, let x ∈ Vy \ π−1(y). Then x is a regular point of V ∩ L. As F1, . . . , Fn−r,

Y0, . . . , Ys+1 define the radical ideal of V ∩ L, we deduce that ∇F1(x), . . . , ∇Fn−r(x),
λ0, . . . , λs+1 are linearly independent. Assume without loss of generality that y0 	= 0 and 
recall that Vy is defined as in (29). Furthermore, ∇F1(x), . . . , ∇Fn−r(x), y0λ1 − y1λ0,

. . . , y0λs+1 − ys+1λ0 are linearly independent, which implies that x is a regular point 
of Vy. �



72 A. Cafure et al. / Finite Fields and Their Applications 31 (2015) 42–83
Lemma 6.2 shows that a critical point is the analysis of the set of points x ∈ Vsm
for which Ex has dimension at least r − s − 1. Lemma 4.1 asserts that this set is the 
polar variety M(L). Therefore, linear sections Vy defined by points y ∈ Ps+1 such that 
π−1(y) does not meet Σ ∪ M(L) are nonsingular. Our next result shows that Σ ∪ M(L)
is contained in a subvariety of V of pure dimension s and low degree.

Lemma 6.3. For λ /∈ H, there exists a subvariety Z(L) ⊂ V of pure dimension s and 
degree at most Dr−sδ with M(L) ∪Σ ⊂ Z(L).

Proof. For x ∈ V , we have x ∈ Σ if and only if dimTxV > r. By (17), this condition 
holds if and only if ∇F1(x), . . . , ∇Fn−r(x) are linearly dependent. This implies that the 
matrix M(x, λ) of (18) is not of full rank and thus

Σ ⊂
{
x ∈ V : Δ1(x,λ) = · · · = ΔN (x,λ) = 0

}
.

On the other hand, for x ∈ Vsm we have x ∈ M(L) if and only if Δ1(x, λ) = · · · =
ΔN (x, λ) = 0. We conclude that

M(L) ∪Σ =
{
x ∈ V : Δ1(x,λ) = · · · = ΔN (x,λ) = 0

}
. (30)

Now we apply Lemma 4.4 to W := V and W1 := M(L) ∪Σ. Since M(L) ∪Σ has dimen-
sion at most s and V has pure dimension r, by Lemma 4.4 there exist linear combinations 
Δ1(X, λ), . . . , Δr−s(X, λ) of the homogeneous polynomials Δ1(X, λ), . . . , ΔN (X, λ) of 
degree D such that the variety Z(L) := V ∩ {Δ1(X, λ) = 0, . . . , Δr−s(X, λ) = 0} is of 
pure dimension s and contains M(L) ∪Σ. Furthermore, the Bézout inequality (5) shows 
that degZ(L) ≤ Dr−s deg V = Dr−sδ. This completes the proof of the lemma. �

Now we are ready to state our effective version of the Bertini smoothness theorem.

Theorem 6.4. Let H := H1 ∪ H2, where H1 and H2 are the hypersurfaces of (Pn)s+2 of 
Theorem 4.5 and Corollary 5.5 respectively. Let λ := (λ0, . . . , λs+1) ∈ (Pn)s+2 \ H, set 
Yj := λj ·X for 0 ≤ j ≤ s + 1, let L := {Y0 = · · · = Ys+1 = 0} and let π : V ��� Ps+1 be 
the linear mapping defined by Y0, . . . , Ys+1. Then there exists a closed set W (L) ⊂ Ps+1

of dimension at most s and degree at most Dr−sδ such that for every y ∈ Ps+1 \W (L), 
the linear section Vy of V is nonsingular of pure dimension r − s − 1.

Proof. Since λ /∈ H, by Theorem 4.5 it follows that the polar variety M(L) has dimension 
at most s. Then Lemma 6.3 proves that there exists a subvariety Z(L) ⊂ V of dimension s

and degree at most Dr−sδ with M(L) ∪Σ ⊂ Z(L).
Define W (L) := π(Z(L)). Observe that W (L) ⊂ Ps+1 has dimension at most s. Since 

degZ(L) ≤ Dr−sδ, by (6) we conclude that degW (L) ≤ Dr−sδ.
Let y ∈ Ps+1 \W (L). By Corollary 5.5 we see that Vy is of pure dimension r− s − 1. 

Furthermore, by the definition of W (L) we have π−1(y) ∩ (Σ ∪ M(L)) = ∅. This implies 
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that the conditions of Lemma 6.2 are satisfied, and hence Vy is nonsingular. This finishes 
the proof of the theorem. �
Remark 6.5. Under the assumptions of Theorem 6.4, for λ ∈ (Pn)s+2 \ H and y ∈
Ps+1 \W (L), the linear section Vy is contained in Vsm. Indeed, by the choice of y, any 
point x ∈ π−1(y) is a regular point of V . On the other hand, if x ∈ Vy \ π−1(y), then 
x ∈ V ∩ L, and V ∩ L ⊂ Vsm because Σ ∩ L = ∅.

Since each linear section Vy with λ ∈ (Pn)s+2 \ H and y ∈ Ps+1 \W (L) is a nonsin-
gular projective complete intersection, by Theorem 2.1 we conclude that it is absolutely 
irreducible.

In what follows, we shall frequently use the notation

Bd,s := Dr−s−2δ
((

(n− s)(r − s) + 2
)
D + r − s− 1

)
+ δ + 1,

where δ := d1 · · · dn−r and D :=
∑n−r

i=1 (di − 1).

Corollary 6.6. For q > max{Bd,s, Dr−sδ}, there exists y ∈ Ps+1(Fq) such that the linear 
section Vy is a nonsingular Fq-variety of pure dimension r−s −1 with Vy ⊂ Vsm. In other 
words, V has a nonsingular linear section of pure dimension r − s − 1 defined over Fq

and contained in Vsm.

Proof. Let H := H1 ∪ H2 be the hypersurface of (Pn)s+2 of Theorem 6.4, where H1
and H2 are the hypersurfaces of Theorem 4.5 and Corollary 5.5 respectively. Since 
H1 and H2 are defined by multihomogeneous polynomials of Fq[Λ] of degree at most 
(n − s)(r − s)Dr−s−1δ + 1 and δ(Dr−s−2(2D + r − s − 1) + 1) in each group of vari-
ables Λi respectively, it follows that H is defined by a multihomogeneous polynomial of 
Fq[Λ] of degree at most Bd,s in each group of variables Λi.

As q > Bd,s, by Corollary 3.3 there exists λ ∈ (Pn(Fq))s+2 \H. Define Yj := λj ·X ∈
Fq[X] for 0 ≤ j ≤ s + 1, let L := {Y0 = · · · = Ys+1 = 0} and let π : V ��� Ps+1 be the 
linear mapping defined by Y0, . . . , Ys+1.

Then Theorem 6.4 shows that there exists a closed set W (L) ⊂ Ps+1 of dimension at 
most s and degree at most Dr−sδ such that, for y ∈ Ps+1 \W (L), the linear section Vy

is nonsingular. Furthermore, Remark 6.5 asserts that Vy ⊂ Vsm for any such y.
Since q > Dr−sδ, there exists y ∈ Ps+1(Fq) \ W (L). Then the linear section Vy is 

defined over Fq and satisfies the statement of the corollary. �
7. Existence of smooth FFFq-rational points

In this section we obtain sufficient conditions for the existence of smooth Fq-rational 
points of a complete intersection V ⊂ Pn defined over Fq, of dimension r, degree δ, 
multidegree d := (d1, . . . , dn−r) with d1 ≥ · · · ≥ dn−r ≥ 2 and singular locus Σ of 
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dimension at most s. More precisely, we establish conditions on q which imply that 
Vsm(Fq) is not empty.

The usual approach to this kind of results relies on a combination of estimates on the 
number of Fq-rational points and upper bounds for the number of singular Fq-rational 
points. Instead of doing this, we use the effective version of the Bertini smoothness 
theorem of Section 6 to prove the existence of a nonsingular linear section of V defined 
over Fq and contained in Vsm. We combine this result with the following well-known 
estimate on the number of Fq-rational points of a nonsingular complete intersection 
W ⊂ Pn defined over Fq, of dimension r and multidegree d, due to P. Deligne [13]:∣∣∣∣W (Fq)

∣∣− pr
∣∣ ≤ b′r(n,d)qr/2, (31)

where b′r(n, d) denotes the rth primitive Betti number of any nonsingular complete in-
tersection of Pn of dimension r and multidegree d.

We shall frequently use the following explicit expressions for b′r(n, d) with r ∈ {1, 2}
(see, e.g., [16, Theorem 4.1]):

b′1(n,d) = (d1 · · · dn−1)(d1 + · · · + dn−1 − n− 1) + 2,

b′2(n,d) = (d1 · · · dn−2)
((

n + 1
2

)
− (n + 1)

∑
1≤i≤n−2

di +
∑

1≤i≤j≤n−2
didj

)
− 3.

Remark 7.1. Let V ⊂ Pn be a nonsingular complete intersection defined over Fq, of 
dimension 2 and multidegree d := (d1, . . . , dn−2). Let D :=

∑n−2
i=1 (di−1). Then deg V =

d1 · · · dn−2 and we have

b′2(n,d) ≤ (n− 1)D2 deg V. (32)

Indeed,

−(n + 1)
∑

1≤i≤n−2
di +

∑
1≤i≤j≤n−2

didj ≤
n−2∑
i=1

di

(
n−2∑
i=1

di − n− 1
)

=
n−2∑
i=1

di(D − 3).

Using the inequality 
∑n−2

i=1 di ≤ (n − 1)D, we obtain

b′2(n,d) ≤ deg V
((

n + 1
2

)
+ (n− 1)D(D − 3)

)
≤ (n− 1)D2 deg V.

This shows (32).

Let Bd,s := Dr−s−2δ(((n − s)(r− s) + 2)D+ r− s − 1) + δ + 1, where δ := d1 · · · dn−r

and D :=
∑n−r

i=1 (di−1). According to Corollary 6.6, if q > max{Bd,s, Dr−sδ}, then there 
exists a nonsingular linear section S ⊂ Vsm defined over Fq of pure dimension r − s − 1. 
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We are going to prove that the number of Fq-rational points in S is strictly positive, 
showing thus that V has smooth Fq-rational points. We have the following result.

Theorem 7.2. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension 
r ≥ 2, degree δ, multidegree d and singular locus Σ of dimension at most s ≤ r − 2. 
Let b′ := b′r−s−1(n − s − 1, d). If q > max{Bd,s, Dr−sδ, b′

2
r−s−1 }, then V has a smooth 

Fq-rational point.

Proof. Let S ⊂ Vsm be the nonsingular linear section of V whose existence is shown in 
Corollary 6.6. Since S is a nonsingular complete intersection defined over Fq of dimension 
r − s − 1, by (31) we have

∣∣S(Fq)
∣∣ ≥ pr−s−1 − b′q

r−s−1
2 > q

r−s−1
2

(
q

r−s−1
2 − b′

)
.

The condition on q implies that the right-hand side is positive, finishing the proof of the 
theorem. �

Next we discuss two particular instances of this result.

Corollary 7.3. With notations and assumptions as in Theorem 7.2, if

q >

{
(δ(D − 2) + 2)2, for D ≥ 5 or D = 4 and n− r > 1,
(2(n− r + 3)D + 2)δ + 1, otherwise,

then V has a smooth Fq-rational point.

Proof. Observe that b′1(n − r + 1, d) = δ(D − 2) + 2. Therefore, applying Theorem 7.2
with s = r − 2, we conclude that, if

q > max
{(

2(n− r + 3)D + 2
)
δ + 1, D2δ,

(
δ(D − 2) + 2

)2}
, (33)

then V has a smooth Fq-rational point. For D ≤ 2 we have D2δ ≤ (2(n −r+3)D+2)δ+1, 
while D2δ ≤ (δ(D − 2) + 2)2 for D ≥ 3. As a consequence, (33) is equivalent to the 
following condition:

q > max
{(

2(n− r + 3)D + 2
)
δ + 1,

(
δ(D − 2) + 2

)2}
. (34)

If D ≥ 6, then

(
δ(D − 2) + 2

)2 ≥
(
2(D + 3)D + 2

)
δ + 1 ≥

(
2(n− r + 3)D + 2

)
δ + 1.

Combining this inequality with (34) and elementary calculations we deduce the statement 
of the corollary. �
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Corollary 7.4. Let notations and assumptions be as in Theorem 7.2. Suppose further that 
the singular locus of V has dimension at most r−3 ≥ 0. If q > 3D(D+2)2δ, then V has 
a smooth Fq-rational point.

Proof. We apply Theorem 7.2 with s = r− 3. According to Remark 7.1, we have b′2(n −
r + 2, d) ≤ (n − r + 1)D2δ. Therefore, Theorem 7.2 shows that a sufficient condition for 
the existence of a smooth Fq-rational point of V is

q > max
{
D3δ,Dδ

((
3(n− r + 3) + 2

)
D + 2

)
+ δ + 1

}
. (35)

Using the inequality n − r ≤ D, we deduce that

Dδ
((

3(n− r + 3) + 2
)
D + 2

)
+ δ + 1 ≤ 3D(D + 2)2δ,

which immediately implies the statement of the corollary. �
8. Estimates on the number of FFFq-rational points

In this section we estimate |V (Fq)| for a complete intersection V ⊂ Pn defined over Fq, 
of dimension r and multidegree d := (d1, . . . , dn−r) with d1 ≥ · · · ≥ dn−r ≥ 2, having a 
singular locus of codimension at least 2 or 3. We denote δ := deg V = d1 · · · dn−r and 
D :=

∑n−r
i=1 (di − 1) as before.

Fix s ∈ {r − 2, r − 3}. Then Theorem 4.5 and Corollary 5.5 show that there exists a 
hypersurface H := H1 ∪ H2 ⊂ (Pn)s+2, defined by a multihomogeneous polynomial of 
Fq[Λ] of degree at most

Bd,s := Dr−s−2δ
((

(n− s)(r − s) + 2
)
D + r − s− 1

)
+ δ + 1

in each group of variables Λi, with the following property: for any λ := (λ0, . . . , λs+1) ∈
(Pn)s+2 \H, let Yj := λj ·X for 0 ≤ j ≤ s + 1, let π : V ��� Ps+1 be the linear mapping 
defined by Y0, . . . , Ys+1 and let L := {Y0 = · · · = Ys+1 = 0} ⊂ Pn. Denote by E = V ∩ L

the exceptional locus of π. Then the following conditions hold:

1. the polar variety M(L) has dimension at most s,
2. the Zariski closure Vy of every fiber π−1(y) is of pure dimension r − s − 1,
3. E = V ∩ L is nonsingular of pure dimension r − s − 2.

For any such matrix λ, our effective version of the Bertini smoothness theorem (The-
orem 6.4) asserts that there exists a variety WL := W (L) ⊂ Ps+1 of dimension at 
most s and degree at most Dr−sδ such that for every y ∈ Ps+1 \ WL, the linear 
section Vy is a nonsingular complete intersection. As Vy is defined over Fq for every 
y ∈ Ps+1(Fq), we can estimate the number Ny := |Vy(Fq)| for y ∈ Ps+1(Fq) \WL using 
Deligne’s estimate (31). On the other hand, fibers of points in WL(Fq) do not make 
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a significant contribution to the asymptotic behavior of |V (Fq)|. We have the following 
result.

Theorem 8.1. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r ≥ 2, 
multidegree d and singular locus of dimension at most s ∈ {r − 2, r − 3}. Then

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ b′r−s−1q
r+s+1

2 + A(n, s,d)qr−1,

where A(n, s, d) := 2b′r−s−1 + 2(7Dr−sδ + 1)(δ − 1) and b′r−s−1 := b′r−s−1(n − s − 1, d)
is the (r − s − 1)th primitive Betti number of any nonsingular complete intersection of 
Pn−s−1 of dimension r − s − 1 and multidegree d.

Proof. First we observe that, if D = 1, then V is a quadric, and the theorem follows 
from results on the number of Fq-rational points of quadrics (see, e.g., [31, Theorem 2E]
or [27, Section 6.2]).

Next we claim that we may assume q > Bd,s. Indeed, suppose that q ≤ Bd,s holds. 
Since n − r ≤ D and n − s ≤ D + r − s, we have

Bd,s ≤ Dr−s−2δ
((

(D + r − s)(r − s) + 2
)
D + r − s− 1

)
+ δ + 1. (36)

For D = 2 we have that V is either a cubic hypersurface or an intersection of two 
quadrics. In both cases, |V (Fq)| ≤ δqr +pr−1 (see [32] and [14]), which implies ||V (Fq)| −
pr| ≤ (δ − 1)qr ≤ Bd,s(δ − 1)qr−1. By (36) we conclude that Bd,s ≤ 10 · 2r−s · δ + 1, 
which completes the proof in this case.

On the other hand, for D ≥ 3, according to (7) we have |V (Fq)| ≤ δpr, and therefore 
||V (Fq)| − pr| ≤ (δ − 1)pr ≤ 2Bd,s(δ − 1)qr−1. As a consequence, from (36) we deduce 
that Bd,s ≤ 7Dr−sδ + 1, which implies the theorem in this case. This finishes the proof 
of the claim.

Now we assume that q > Bd,s. By Corollary 6.6 there exists λ ∈ (Pn(Fq))s+2 such 
that conditions 1–3 above are satisfied.

Let Vy be the linear section defined by a point y ∈ Ps+1 and let Ny := |Vy(Fq)| for 
y ∈ Ps+1(Fq). Then

∣∣V (Fq)
∣∣ =

∑
y∈Ps+1(Fq)

(Ny − e) + e =
∑

y∈Ps+1(Fq)

Ny − (ps+1 − 1)e, (37)

where e := |(V ∩ L)(Fq)|. Since V ∩ L has dimension r − s − 2, e ≤ δpr−s−2, and thus 
|e − pr−s−2| ≤ (δ − 1)pr−s−2.

Subtracting pr at both sides of (37) and taking into account the identity pr =
ps+1pr−s−1 − (ps+1 − 1)pr−s−2, we obtain
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∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ ∑
y∈Ps+1(Fq)

|Ny − pr−s−1| + (ps+1 − 1)(δ − 1)pr−s−2

≤
∑

y∈Ps+1(Fq)

|Ny − pr−s−1| + 2(δ − 1)qr−1. (38)

Let WL := W (L) ⊂ Ps+1 be the variety of the statement of Theorem 6.4. We can 
decompose the first term of the right-hand side of (38) as

∑
y∈Ps+1(Fq)

|Ny − pr−s−1| =
∑

y/∈WL(Fq)

|Ny − pr−s−1| +
∑

y∈WL(Fq)

|Ny − pr−s−1|.

In order to estimate the first term in the right-hand side, Theorem 6.4 asserts that, if 
y /∈ WL(Fq), then Vy is a nonsingular complete intersection of Pn−s−1 defined over Fq, 
of pure dimension r − s − 1, degree δ and multidegree d. By (31) we deduce that

∑
y/∈WL(Fq)

|Ny − pr−s−1| ≤ b′r−s−1q
r−s−1

2 ps+1

≤ b′r−s−1q
r+s+1

2 + 2b′r−s−1q
r−1. (39)

On the other hand, for y ∈ WL(Fq) we have Ny ≤ δpr−s−1. Since δ ≥ 2, we obtain 
|Ny − pr−s−1| ≤ (δ− 1)pr−s−1. From (7) it follows that |WL(Fq)| ≤ degWL · ps and thus

∑
y∈WL(Fq)

|Ny − pr−s−1| ≤ (δ − 1)pr−s−1 · degWL · ps

≤ 4(δ − 1) degWL · qr−1. (40)

Combining (38), (39), (40), we conclude that

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ b′r−s−1q
r+s+1

2 + 2
(
b′r−s−1 +

(
2Dr−sδ + 1

)
(δ − 1)

)
qr−1.

From this estimate we easily deduce the statement of the theorem. �
Next we estimate the number of smooth Fq-rational points of a singular complete 

intersection as above.

Theorem 8.2. Let notations and assumptions be as in Theorem 8.1. Then

∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ ≤ b′r−s−1q
r+s+1

2 + B(n, s,d)qr−1,

where B(n, s, d) := 2b′r−s−1 + 2(2Dr−sδ + 1)(δ − 1) + 2(s + 2)(δ − 1)Bd,s.
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Proof. Let H ⊂ (Pn)s+2 be the hypersurface of Theorem 6.4. Recall that H is defined 
by a multihomogeneous polynomial of Fq[Λ] of degree at most Bd,s in each group of 
variables Λi. We have

∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ = 1
ps+2
n

( ∑
λ∈((Pn)s+2\H)(Fq)

∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ +
∑

λ∈H(Fq)

∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣)

≤ 1
ps+2
n

( ∑
λ∈((Pn)s+2\H)(Fq)

∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ +
∣∣H(Fq)

∣∣(δ − 1)pr
)
.

By (13) we have |H(Fq)| ≤ ps+2
n − (qn − min{q, Bd,s}qn−1)s+2. Hence,

|H(Fq)|
(pn)s+2 (δ − 1)pr ≤ 2(s + 2)(δ − 1)Bd,sq

r−1.

For each λ ∈ ((Pn)s+2 \H)(Fq), Theorem 6.4 shows that there exists a variety WL ⊂
Ps+1 of dimension at most s and degree at most Dr−sδ such that for every y ∈ Ps+1\WL, 
the Zariski closure Vy of the fiber π−1(y) is a nonsingular complete intersection contained 
in Vsm. Then, arguing as in the proof of Theorem 8.1, we obtain

1
ps+2
n

∑
λ/∈H(Fq)

∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ ≤ b′r−s−1q
r+s+1

2 + 2
(
b′r−s−1 +

(
2Dr−sδ + 1

)
(δ − 1)

)
qr−1.

From this inequality we easily deduce the statement of the theorem. �
8.1. Normal complete intersections

In this section we consider the case s := r − 2 of Theorems 8.1 and 8.2.

Corollary 8.3. Let V ⊂ Pn be a normal complete intersection defined over Fq, of dimen-
sion r ≥ 2, degree δ and multidegree d. Then we have

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ (
δ(D − 2) + 2

)
qr−1/2 + 14D2δ2qr−1, (41)∣∣∣∣Vsm(Fq)

∣∣− pr
∣∣ ≤ (

δ(D − 2) + 2
)
qr−1/2 + 11(r + 1)D2δ2qr−1. (42)

Proof. Applying Theorems 8.1 and 8.2 with s = r − 2, we obtain

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ b′1q
r−1/2 + A(n, r − 2,d)qr−1,∣∣∣∣Vsm(Fq)

∣∣− pr
∣∣ ≤ b′1q

r−1/2 + B(n, r − 2,d)qr−1,

where b′1 := b′1(n − r + 1, d),
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A(n, r − 2,d) := 2b′1 + 2
(
7D2δ + 1

)
(δ − 1),

B(n, r − 2,d) := 2b′1 + 2
(
2D2δ + 1

)
(δ − 1) + 2r(δ − 1)Bd,r−2.

Since b′1 = δ(D − 2) + 2, we easily deduce (41). On the other hand, using the inequality 
n − r ≤ D we readily obtain (42). �

For a normal complete intersection V as in Corollary 8.3, we have the following esti-
mate (see [16, Corollary 6.2]):

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ (
δ(D − 2) + 2

)
qr−1/2 + 9 · 2n−r

(
(n− r)d + 3

)n+1
qr−1, (43)

where d := max1≤i≤n−r di. On the other hand, if q > 2(n − r)dδ + 1, then we have the 
following estimate (see [9, Corollary 6.2]):

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ (
δ(D − 2) + 2

)
qr−1/2 + 2

(
(n− r)dδ

)2
qr−1. (44)

These are the most accurate estimates for normal complete intersections to the best of 
our knowledge.

The right-hand sides of (41), (43) and (44) have the same first term and different 
second terms. For the sake of comparison, we observe that

2n−r
(
(n− r)d + 3

)n+1 ≥
(
2(n− r)

)n−r

(
n−r∑
i=1

di
n− r

)n−r(n−r∑
i=1

di

)r+1

≥
(
2(n− r)

)n−r
n−r∏
i=1

di

(
n−r∑
i=1

di

)r+1

≥
(
2(n− r)

)n−r
D2δ

(
n−r∑
i=1

di

)r−1

,

where the mid inequality is due to the AM–GM inequality. This allows us to draw several 
conclusions. First, for varieties of high dimension, say r ≥ (n + 1)/2, (41) and (44)
are clearly preferable to (43). In particular, for hypersurfaces the second term in the 
right-hand side of both (41) and (44) is roughly quartic in δ, while the one (43) contains 
an exponential term δn+1. On the other hand, for varieties of low dimension the second 
term in the right-hand side of (43) might be preferable to (41) and (44). In particular, 
for curves the former is roughly linear in δ while the latter is quadratic in δ. In this 
sense, we may say that (41)–(44) somewhat complement (43). Finally, the right-hand 
side of (44) is slightly lower than that of (41) but holds only for q > 2(n −r)dδ+1, while 
(44) holds without any restriction on q.
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8.2. Complete intersections which are regular in codimension 2

Next we consider complete intersections which are regular in codimension 2, namely 
s ≤ r − 3. We have the following result.

Corollary 8.4. Let V ⊂ Pn be a complete intersection defined over Fq, of dimension r ≥ 3, 
degree δ and multidegree d, with a singular locus of dimension at most r − 3. Then

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ 14D3δ2qr−1, (45)∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ ≤ (34r − 20)D3δ2qr−1. (46)

Proof. By Theorems 8.1 and 8.2 it follows that

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ A(n, r − 3,d)qr−1,∣∣∣∣Vsm(Fq)
∣∣− pr

∣∣ ≤ B(n, r − 3,d)qr−1,

where

A(n, r − 3,d) := 3b′2 + 2
(
7D3δ + 1

)
(δ − 1),

B(n, r − 3,d) := 3b′2 + 2
(
2D3δ + 1

)
(δ − 1) + 2(r − 1)(δ − 1)Bd,r−3,

and b′2 := b′2(n − r+ 2, d). According to Remark 7.1, b′2 ≤ (n − r+ 1)D2δ ≤ (D+ 1)D2δ. 
Then a simple calculation proves the corollary. �

Under the hypotheses of Corollary 8.4, we have [16, Theorem 6.1]:

∣∣∣∣V (Fq)
∣∣− pr

∣∣ ≤ b′2(n− r + 2,d)qr−1 + 9 · 2n−r ·
(
(n− r)d + 3

)n+1
qr−3/2. (47)

In the comparison of (45) and (47) similar remarks can be made as in the case of nor-
mal complete intersections: for high-dimensional varieties (45) may be more accurate 
than (47), while for low-dimensional varieties (47) may be preferable. Nevertheless, the 
exponentials in n in the second term of the right-hand side of (47) may hamper its appli-
cation, even for low-dimensional varieties. In fact, in [10] and [28] we use (41) and (45)
to estimate the average cardinality of the value set of polynomials with prescribed coef-
ficients, with a significant gain over what is obtained applying (43) and (47).
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