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a b s t r a c t

We examine the insertion of alkali and halide ions into narrow nanotubes of graphite and gold by density
functional theory (DFT). For tubes with diameters less than about 10 Åthe optimum position of the ion is
in the center of the tube. Bader analysis and an analysis of the densities of states gave contradictory results
for the charge on the halide ions, but we argue on physical grounds that they carry unit negative charge.
We have calculated the energies of inserting the atoms into the tubes, where they are ionized. Because of
the small system size the work function of the tubes changes during this process, which makes it difficult
to interpret these energies. The surrounding tubes screen the ionic charge very effectively; thereby the
ion-ion interactions are strongly reduced, which explains, why narrow tubes store charge more effectively
than wider one. These effects are stronger for gold than for graphite tubes. We define an effective image
radius of a cylindrical tube, and calculate the image energy experienced by the ions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The advent of nanotechnology has opened a new domain for
electrochemistry, and electrode structures of nanometer size, such
as pores and clusters, have become the subject of intensive inves-
tigations. They not only promise applications in catalysis, energy
storage and conversion, but they also present challenges for fun-
damental science. A case in point is the double-layer structure in
confined geometries such as nanopores. Conventional double-layer
theory considers only semi-infinite electrolyte solutions, and even
at high ionic concentrations the thickness of the double layer is
of the order of 10 - 20 Å. This is larger than the dimensions of
nanopores, which are often only a little wider than the diameters
of ions or of water molecules. Obviously, simple continuum mod-
els like the Gouy-Chapman theory are useless in this case, and new
models at the atomic level are called for.

In this work, we want to take a first step in this direction and con-
sider a fundamental case, a single ion in a metal or carbon nanotube.
Our work is partially motivated by recent experimental findings
which indicate, that pores with radii that are so small, that sol-
vated ions cannot enter, store charge more efficiently than wider
pores – in other words, their double-layer capacity per unit area
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is larger [1,2]. Kondrat and Kornyshev [3] explained these unex-
pected findings by the image interaction between the ions and the
walls of the pores. Based on these ideas, Rochester et al. [4] con-
structed a simple model, in which the walls of the pore were either
taken to be a perfect classical metal or a Thomas-Fermi metal, and
explained how the image interaction screens the Coulomb potential
of a point charge and thus enables a denser packing of ions. While
these explanations are certainly qualitatively correct, a description
at the atomic level is missing. An important step in this direction
has been taken by Merlet et al. [5] who studied the capacitance of
nanoporous carbon by molecular dynamics using a corse-grained
model of an ionic liquid, following earlier work by Shim and Kim
[6] along the same line. We start at a more fundamental level and
consider a single ion in a nanotube in order to understand its inter-
action with the tube and the screening of the charge. Therefore, we
have performed DFT (density functional theory) calculations for a
series of alkali and halide ions in nanotubes and investigated the
image interaction and the concomitant screening of the Coulomb
interaction quantitatively. First results for Na+ and Cs+ have been
published in [7]; here we focus on Li+, because of its importance
in battery technology [8,9], present first results for anions, and
provide details that were missing in the first paper. Again we shall
contrast the behaviour of carbon tubes with that of gold tubes,
since metals are known to screen charges much better than car-
bon [10,11]. For a related approach to lithium stored in graphite,
see the very recent article of Robledo et al. [12].

http://dx.doi.org/10.1016/j.electacta.2014.12.031
0013-4686/© 2014 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.electacta.2014.12.031
http://www.sciencedirect.com/science/journal/00134686
http://www.elsevier.com/locate/electacta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.electacta.2014.12.031&domain=pdf
mailto:wolfgang.schmickler@uni-ulm.de
dx.doi.org/10.1016/j.electacta.2014.12.031


12 L. Mohammadzadeh et al. / Electrochimica Acta 162 (2015) 11–16

Fig. 1. Examples of lithium ions inside of gold nanotubes (right) and carbon rings (left) investigated. The red lines on the right represent the unit cell.

2. Details of the investigated systems

As in our previous publication [7] we have investigated atoms
placed inside single-walled narrow carbon or gold nanotubes. In
particular, we have studied alkali and halogen atoms placed into
(6,6) and (8,8) gold nanotubes (AuNT)∞ – see [13,14], and (6,0),
(8,0) and (10,0) carbon nanotubes (CNT)r [15]. For the AuNT∞ we
have used cyclic boundary conditions to represent infinite tubes,
indicated by the superscript ∞, while the CNT are of finite size in
the axial direction (see Fig. 1), which we indicate by the superscript
r for ring. The CNTrs by themselves are not stable, therefore we sat-
urated the dangling bonds with hydrogen atoms. For comparison
we shall also present a few results for infinite (6,3)CNT∞, but a thor-
ough discussion of these tubes, which have metallic properties, will
be left to a future publication. The dimensions of the investigated
systems are given in Table 1; the technical details of the calculations
will be presented in the appendix.

2.1. Technical Details

Periodic density functional theory (DFT) calculations based on
plane waves have been performed as implemented in the DACAPO
code [25]. The electron-ion interactions were accounted through
ultrasoft pseudopotentials [26], while the valence electrons were
treated within the generalized gradient approximation (GGA) in
the version of Perdew, Burke and Ernzerhof (PBE) [27]. The elec-
tron wave functions were expanded in a plane-wave basis setup
to a kinetic energy cutoff of 400 eV (450 eV for the density). Bril-
louin zone integration was performed using the Gamma point.
Spin polarization was considered in all the systems, but the results
showed no net spin. Infinite CNTs were also calculated using
the same computational parameters in the VASP code [28]. The
obtained results were similar. For the relaxations the conver-
gence criterion was achieved when the total forces were less than

Table 1
Dimension of the empty tubes. In the carbon tubes the number of hydrogen atoms
that saturate the dangling bonds equals half the number of carbon atoms. For the
gold tubes the length corresponds to the length of the unit cell.

system C atoms diameter/nm length/nm
(6,0)CNTr 24 0.484 0.500
(8,0)CNTr 32 0.637 0.500
(10,0)CNTr 40 0.789 0.500

Au atoms diameter/nm length/nm
(6,6)AuNT∞ 24 0.545 0.960
(8,8) AuNT∞ 32 0.732 0.969

40 meV/Å. Infinite gold nanotubes with and without ions were fully
relaxed, as well as the hydrogenated and infinite carbon nanotubes.

All the systems used were neutral, but we confirmed the loss or
gain of charge in the central atom by using Bader analysis method
[17]. We used a dipole-correction scheme [29] in the systems that
are not completely symmetric, in order to have a well-defined vac-
uum potential. The electrostatic part (ionic and Hartree potentials)
of the local potential was calculated, but the exchange-correlation
was not added. For the examination of the properties of a system
this is more desirable due to the fact that the electrostatic potential
converges more rapidly to the vacuum level than the total potential.

3. Results and discussion

3.1. Cation insertion

We have studied lithium, sodium, and cesium atoms, but we
focus on lithium, which had not been included in our first report
[7]. Initially we placed a neutral atom in the center. At the end of
the calculations, in all cases we discuss here, the Bader charge on
the ion was +1 within DFT error, and the stable position was at the
center of the ring. Table 2 gives the insertion energies defined as:

Eins = E(tube + ion) − E(tube) − E(atom) (1)

In our previous article we have argued that, in the absence of
chemical interactions, the insertion energies should obey the equa-
tion:

Eins = I1 − � + Eim (2)

where I1 is the first ionization energy (5.41 eV for Li), � is the work
function of the tube, and Eim is the image energy. This equation
immediately explains, why the insertion energies in the gold tubes
are more favorable than in the CNT, since metals screen an external
charge much better than carbon and hence provide larger image
energies. However, it does not explain the small values for the CNT,
nor the rather unsystematic variation with size. The application of
this equation is straightforward only for real infinite tubes, where
the work function does not change when an electron is transferred.
In the finite systems considered here the work function becomes
lower, as the electron is transferred from the alkali atom to the tube.
The same argument applies to the infinite AuNT∞, since in this case

Table 2
Insertion energies for Li+ in various nanotubes.

system (6,0)CNTr (8,0)CNTr (10,0)CNTr (6,6)AuNT∞ (8,8)AuNT∞

Eins/eV −0.1 −0.29 −0.20 −2.39 −2.51
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Fig. 2. Charge difference plots for a chlorine and a sodium atom in a (10,0) CNTr . Red (blue) indicates an excess of negative (positive) charge.

Table 3
Insertion energies Eins and the difference (Eins − I1) for alkali ions in (10,0) CNTr .

Li+ Na+ Cs+

Eins/eV −0.2 −0.64 −2.0
(Eins − I1)/eV −5.60 −5.78 −5.89

Table 4
Insertion energies Eins and the difference (Eins − I1) for alkali ions in (6,3)CNT∞ .

Li+/(6,3)CNT∞ Na+/(6,3)CNT∞

Eins/eV −1.07 −1.17
(Eins − I1)/eV −6.47 −6.31

one electron is transferred per unit cell. This effect is the greater,
the smaller the tube, and is also greater for the CNTs considered
here: the (8,0) and the (10,0) CNTrs are semiconductors even when
they are infinite, and the (6,0)CNTr, which would be metallic if it
were infinite, is greatly affected by charging because of its small
size [20,21]. Since it is impossible to follow the charging with DFT,
we cannot deduce the image energies. Below we shall show how
they can be obtained by a different route.

This change of the work function upon charging should depend
only on the size of the ring, not on the nature of the ion. We can
therefore compare the insertion energies of various cations in a ring
of given size. According to eq. (2) the difference (Eins − I1) should be
constant, since the image energy should depend on the size of the
ring only. Table 3 shows the results for the (10,0)CNTr, the largest
tube we investigated; for this tube there are no deformation effects
for Cs. Within the usual DFT accuracy, the difference (Eins − I1) is
indeed almost constant.

As discussed above, the nanotubes discussed so far are semicon-
ducting, so that the electron is transferred from the alkali atom to
the conduction band of the ring. In contrast the chiral (6,3)CNT∞

show a metallic conductivity; therefore we expect the insertion
energies into these tubes to be substantially larger. This is indeed
so (see Table 4); the two alkali ions investigated in this system also
obey the relation (Eins − I1) ≈ const .

3.2. Results for anions

It is of great interest to contrast the insertion of cations with
those of anions. We have therefore performed calculations for Cl, Br,
and I in order to see, if their behavior differs essentially from that of
the alkali ions. Explicit calculations were performed for (10,0)CNTr.

All anions are stable at the center of the tube. The charge dif-
ference plots, shown in Fig. 2, look similar to those for the alkalis,

Table 5
Bader charges, energies of insertion Eins, electron affinities EA , and the sum Eins + EA

for several halide atoms in (10,0)CNTr . All energies are in eV. As explained in the
text, we think that the Bader charges are misleading.

atom Cl Br I

Bader charge −0.70 −0.66 −0.58
Eins −1.49 −1.22 −0.85
EA 4.63 3.37 3.07
Eins + EA 2.14 2.15 2.22

but with the sign of the charges interchanged. In both cases one
sees the ion in the center surrounded by its image charge, which is
localized near the carbon atoms, but somewhat closer to the ion in
the center.

For an interpretation of the results it is of great importance to
know the charge on the anions. The position at the center of the
tubes indicates that the ions are not chemically bonded to the tubes;
so there is little electronic overlap, and the charge should be well
defined. However, as recently discussed by our group [16], charge
analysis based on DFT calculations can result in artificial partial
charges distributed on atoms that are not chemically bonded. There
are various ways to obtain charges from DFT; we have performed
a Bader analysis [17] and obtained partial charges for all anions
(see Table 5), whose absolute value decreases slightly down the
periodic table. However, the electronic densities of states (DOS)
show a different result. In all cases investigated, the DOS of the p
electrons of the halides are almost completely filled, indicating that
the charge on the ion is close to -1. Fig. 3 shows this for the case of
Br−; conversely, the DOS of the Na+ 3s orbital lies above the Fermi
level and is empty.

The charge analysis based on DFT results being contradictory,
we shall try to determine the charge through a physical argument
based on energies – after all, DFT has been optimized to give the cor-
rect energies. If charge transfer were complete, and the energetics
governed by electrostatics, they would be given by:

Eins = � − EA + Eim complete charge transfer (3)

where EA is the electron affinity. Since the image energy should
depend on the size of the ring only, this would imply that the sum
Eins + EA is constant – and this is indeed the case (see Table 5). Given
the different sizes and insertion energies, this is unlikely to be a
coincidence. Also, as we shall see below, the Coulomb potential
generated by the ions also indicates that they are fully ionized.
Therefore we shall assume in the rest of this article that the halide
ions carry unit negative charge.
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Fig. 3. Densities of states for a Na+ and a Br− ion placed inside a (10,0)CNTr

So why is it so simple to obtain the charges for the cations,
and so difficult for the anions? In Bader analysis the estimation of
the charges is based on a division of the electronic density and its
attribution to specific atoms, which always involves an element of
arbitrariness. [18,19]. For the cations the situation is simpler since
an electron is missing, and the electronic density in the center is
lower. In the case of the anions the electronic density within the
tube is high, and there is no strict criterion to attribute it to the
halide atom or to the carbon ring. In essence: it is easier to observe
that something is missing, than to divide something that is present
into various parts.

In principle, we could calculate the image energies Eim from eq.
(3). However, just like eq. (2) this equation holds exactly only for
an infinite tube, whose workfunction does not change when it is
charged. Our calculations are for a finite ring, and the value of the
workfunction changes during charging; here it should increase as
the anions are charged, since electrons are taken away from the
tube; therefore we refrain from trying to calculate the image energy
from eq. (3).

3.3. Screening of the Coulomb potential

The Coulomb potential generated by the ion along the axis of
the tube determines the interaction with other ions. Kondrat and
Kornyshev [3] pointed out that this potential is strongly screened
by the image force, and we have confirmed this by DFT calculations
in our previous publication [7]. We have repeated these calcula-
tions for the anions and for Li+. Fig. 4 shows the screened Coulomb
potential along the axis of a (10,0)CNTr for all ions investigated. At
short distances the potentials of the anions differ a little because of
the extended radii of the p orbitals, which increase down the peri-
odic table. Otherwise the potentials for all particles are the same
within DFT accuracy. Only at large distances there may be a small
difference between the cations and the anions, the potential of the
former decaying somewhat more slowly. This could be caused by
the polarizability of the large anions.

3.4. Effective position of the image charge

In double layer theory the apparent position of the image plane
xim plays an important role: it characterizes the effect of the
electrode on the double layer capacity. In essence, the response of
the electrode is like that of a classical metal whose surface is at the
position xim [22]. For a nanotube, the corresponding concept is the
effective radius of the image cylinder surface Rim, which we define
as the cylindrical classical metal surface, which would generate
the same potential along the axis as the real tube. For a classical
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cylindrical metal tube of radius R the potential on the cylinder axis
is given by [4,23]:

�(z) = 2
R

∞∑
m=1

exp(−kmz/R)
km|J1(km)|2 (4)

where z is the distance from the center of the ion, km denotes the
roots of the Bessel function J0(km) = 0, and J1 is the Bessel function
of first order. The effective image radius Rim can be obtained by
fitting the radius R from eq.(4) to the potential curve obtained by
DFT as shown in Fig. 4. As can be seen from Fig. 5, the fit is quite
good, and enables us to characterize the screening properties of
various nanotubes.

In Table 6 we have collected the screening properties of various
nanotubes. The characteristic property is the difference between
the radius R of the tube, defined by the position of the nuclei, and
the image radius Rim. The larger this difference, the better is the
screening; it decreases, as the rings become smaller since there
are fewer electrons to screen the charge. As we observed before
[7], gold as a metal screens the charge much better than carbon.
Note that the (8,8)AuNT∞ screens the charge better than the thinner
(6,6)AuNT∞, because it has more electrons. For comparison we also
give the distance between the effective image plane of Au(111) and
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Table 6
Dimensions, effective image radii, and classical image energies for univalent ions in
various nanotubes.

system Rim/nm R/nm (R − Rim)/nm Eim/eV

(10,0)CNTr 0.238 0.395 0.157 −2.64
(8,0)CNTr 0.190 0.316 0.126 −3.33
(6,0)CNTr 0.138 0.240 0.102 −4.63
(8,8)Au∞ 0.178 0.366 0.188 −3.53
(6,6)Au∞ 0.144 0.272 0.128 −4.36

the first layer of Au atoms: it is 2.06 Å, and thus still a little larger
than the corresponding distance R − Rim in the thickest gold tube
investigated. We note in passing, that for planar metal surfaces the
image plane is usually not referred to the first layer of atoms, as we
did here, but to the conventional surface, which lies half a lattice
spacing in front of the first layer of ions.

3.5. Image energies

The calculation of the effective image radii makes it possible to
estimate the image energy experienced by the ions. For a unit point
charge at the center of a tube with radius a the image energy can
be obtained from elementary electrostatics. Using atomic units it
is given by:

Eim = − 1
�a

∫ ∞

0

K0(x)
I0(x)

dx ≈ −0.436
a

(5)

where K0 and I0 denote the corresponding Bessel functions. The
resulting energies are given in the last column of Table 6; they are
of the order of a few eV, and become more negative as the radius
of the tube becomes smaller – with the exception of (6,6)AuNT∞

for reasons mentioned above. These energies should be compared
with the free energies of solvation, which for a Li+ ion in aqueous
solution is of the order of -5.4 eV. When an ion enters from the bulk
of the solution into these narrow tubes, it loses a sizable part of its
solvation sheath, but gains the image energy; in addition, the ion in
the tube interacts with the electrode potential, which can change
the energy by an amount of the order of electron volts. Obviously,
in order to obtain a more exact estimate of the energy of transfer
from the bulk of the solution into a nanotube, on has to perform
calculations for ions and solvent within the tubes.

3.6. Relation to Thomas-Fermi model

In a perfect metal the image plane is identical with the metal sur-
face. The Thomas-Fermi model is a simple model for a non-perfect
metal, in which an electric field can penetrate the electrode sur-
face, and decays exponentially with the Thomas-Fermi length L;
in this case the effective image plane lies a distance L behind the
metal surface [24]. As mentioned above, on planar surfaces of a
bulk metal the conventional surface lies half a lattice spacing in
front of the first layer of atoms. In real metals, the effective posi-
tion of the image plane lies in front of the metal surface, so that the
Thomas-Fermi model cannot be applied – it would correspond to a
negative Thomas-Fermi length, which is unphysical. However, on
graphite the image plane lies behind the metal surface, so that the
Thomas-Fermi model can be applied in a qualitative way. However,
because of the strong nonlinear response of graphite, the appli-
cation requires a length L which depends on the strength of the
external field or, equivalently, the surface charge density.

On single wall carbon nanotubes the conventional definition of
the surface cannot be applied, since there is no lattice. Therefore,
it is customary to take the cylinder, on which the atoms lie, as the
surface. As we have shown above, the effective image cylinder lies
inside this surface, so the Thomas-Fermi model cannot be applied.

However, this may be different for multiwalled nanotubes, where
the conventional definition of the surface may be used. We think,
that for mesoscopic models it is best to use the effective image
radius calculated by our procedure, and use classical electrostatics.

4. Conclusions

In this work we have continued our investigation of ion inser-
tion into narrow nanotubes by DFT with the aim to understand
the double layer in confined electrochemical systems. In particular
we considered alkali and halide ions, and contrasted the screening
properties of carbon and gold nanotubes. As expected, the gold
tubes screen external charges much better than the carbon tubes. In
all cases considered, the position of the ions was stable at the cen-
ter of the tube. For the cations it was easy to determine that they
carry unit positive charge. In contrast, Bader analysis indicated par-
tial negative charges on the halogens. However, physical reasoning
based on the energetics and the screening properties, indicate a
negative unit charge on the anions. An interpretation of the ener-
gies of insertion is rendered difficult by the fact that in the small
systems considered the work function of the tubes changes as they
are charged or discharged. In the electrochemical situation the ions
already enter as ions into the tubes; therefore the most important
energy is the image energy which the ions experience inside the
tube. We managed to calculate these energies by an indirect route:
First we obtained the effective image radius of the tube, which char-
acterizes their screening properties, and from these we obtained
the image energies. They are of the order of several electron volts,
and thus of the same order of magnitude as the hydration energies
of simple ions.

Our results explain, why narrow tubes store ions more effec-
tively than wider tubes: The image energy lowers the energy of the
ions inside the tube, and the screening of the charge lowers ion-
ion interactions substantially. Our work should be considered as a
first, successful step towards a model for the double layer in narrow
tubes and pores.
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