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1. Introduction

The biochemical industry has significantly risen along the last
two decades [1-3], with an increasing interest for synthesizing a
large amount of products by means of microorganisms [4]. Many
processes of the biochemical industry are often operated in a fed-
batch form [5]. The fed-batch operation is one of the most popular
in the biochemical industry. In this class of bioreactor the substrate
is gradually fed into the reactor, but the product is only removed
when the process has finished. The principal advantage is the
avoidance of substrate overfeeding, which can inhibit the growth
of microorganisms.

On the other hand, the fed-batch processes often present some
challenging problems that particularly complicate the control of
fermenters. For example, most of their dynamic mathematical
models are nonlinear and stiff due to the nature of bioprocesses,
responses of bioprocesses are slow [5], and typically include time-
varying parameters [3] whose variation is typically unknown [6].
These problems make the process control an arduous task [7,8].

In general, control is implemented to fed-batch reactors to
maintain the process at the desired operating conditions safely
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and efficiently, that means to provide a near ideal environment for
microorganisms to grow and produce a desired product.

In this type of bioreactors, an important issue of the control
problem consists in tracking the set point changes without causing
undesirable oscillations or taking long times for reducing the
tracking errors. Many efforts have been made in advanced control
for fed-batch fermentations in order to deal with the above
problems mentioned. Many papers in the literature have reported
applications of advanced control in fermentation processes [9-14]
concerning online adaptive control, optimal control, fuzzy control,
model predictive control (MPC) and nonlinear MPC, adaptive
extremum seeking control, etc.

These types of methods have gained increasing popularity
because of their strong capability in dealing with process non-
linearity, dynamics and optimization. However, the computational
time required to find the solution, the complexity of online
implementation, and the insufficient accuracy of online solutions
[5], limits its applications to bioprocesses.

The strategy presented in this paper has the advantage of using
discrete equations, and therefore a direct implementation in most
computer-driven systems is feasible; the methodology for the
design of the controller is easy, because the control action is
calculated from a system of linear equations; state equations are
utilized so the methodology can be extended to MIMO systems;
the nonlinear model is used, thus its performance is independent
of the operating point; and has a good performance in tracking the
set point changes, as can be seen in the simulation section of the
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present paper. Besides, because its simplicity and the mathema-
tical tools that it use, this methodology is applicable to many
systems, not only to bioprocess.

Consider a fed-batch reactor with an optimization goal of
maximizing the amount of the secreted protein at the end of the
process. This optimal control problem has been studied by many
authors [15-19]. The main objective of the present work is to
design a controller capable of achieving reproducibility between
successive batches while tracking previously-defined optimal
profiles. In this respect, a comprehensive approach able to track
optimal profiles is proposed. To accomplish this objective, the
following is assumed: (i) the process is properly represented
through a mathematical model; (ii) the desired optimal concen-
tration profiles are known; (iii) all the states variables can be
measured; and (iv), the control action that moves the system from
its current state to a desired one can be obtained.

In the proposed methodology, the system model is approxi-
mated by numerical methods and the control action is calculated
under the assumption that the reference profiles are known. Such
control action forces the system to move from its current state to
the reference one; and the conditions for achieving a zero tracking
error are obtained by solving a system of linear equations. The
trajectory tracking controller structure arises naturally derived
through a handcrafted procedure that is inferred by analyzing the
mathematical model of the process.

The paper is organized as follows. Section 2 describes the fed-
batch bioreactor and Section 3 develops the methodology for the
controller design. In Section 4, the controller parameters are
estimated through a Monte Carlo Experiment, and the efficiency
of the controller is demonstrated by means of simulated examples.
Main conclusions and remarks are summarized in the last section.

2. Fed-batch bioreactor

The system under study is a fed-batch bioreactor for the
production of a secreted protein, and was originally proposed by
[20]. The protein SUC2-s2 encodes both secreted and intracellular
forms of an invertase via two mRNAs [21]. A dynamic model of the
process has been developed by [20], together with an optimal
operation policy, which ensures the maximization of the foreign
protein production by means of a profile calculated for each state
variable.

The process is described by the following dynamic model [20]:

P=x(Pr—P)-%

ProvX—ty ()

X=puX— %

S= =Yg xuX+15=2
with
X (u(S) =552

Se— 58
v =515s
21.87S

HO) = 5104 5+625)
u=V ()

In Egs. (1-2), the state variables are: the amount of secreted
protein per culture volume unit (P), the total protein amount per
culture volume unit (Pr), the culture cell density (X), the culture
glucose concentration (S), and the culture volume (V). Besides, u is
the feed flow rate, Sr is the glucose concentration of the feed
stream, Ys/x is the yield of glucose per cell mass, and y, x4, and y are
the protein expression rate, the specific growth rate of the host

Table 1
Initial conditions for the state variables and model
parameters.
State variable/parameter Value
Py 0g/L
Pr, Og/L
Xo 1g/L
So 5g/L
Vo 1L
Sk 20 g/L
Ys)x 7.3
- Secreted protein
5~ N N e Total protein
Substrate
----- Culture cell density
41 ]
3t 4

STATE VARIABLES

TIME [h]

Fig. 1. Optimal profiles [Pres Pries Xre Srefl™s as determined by [16].

cell, and the protein secretion rate, respectively. The last three
variables depend on the culture glucose concentration (S), as
described by Eq. (2). The ratio u/V is the dilution rate. Initial
conditions for the state variables and model parameters are shown
in Table 1 [15].

In the current process, u is assumed to be the control variable,
as typically adopted in the literature. For further details, see
[22,23].

3. Controller design

The maximum amount of the secreted protein at the end of the
batch time was determined by [15], by solving an optimization
problem. The cost function was defined as follows:

maxo =P(t))V (1) ®

where t;=15 h is the final fermentation time. The optimal profiles
are represented as continuous functions in Fig. 1 [15], and are
taken as the reference trajectories throughout the work.

Below is presented the methodology for the controller design
in order to follow the optimal solution given by [15].

3.1. Problem definition

The main contribution of this paper is the developing of an
original control law able to track reference profiles that have been
previously-determined in the literature. The controller methodol-
ogy utilized for solving the problem consists of approximating
Eq. (1) through the Euler method. Therefore, the control problem
is reduced to the resolution of a system of linear equations. The
key to the proposed method is to find the conditions under which
the linear equation system has an exact solution. In order to
achieve this objective, the feed flow rate u is the only control
variable available.
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3.2. Controller design

The control action required to follow the state variable profiles
of Fig. 1 [Pres Prres Xrep S,ef]T is calculated on the basis of the
previously-described process model. To this effect, the discrete
version of Eq. (1) can be written through the Euler approximation
as:

po+ _ (5<">) (p(Tm _ P““) —u Pm)]

(S(”)) X® o P(’”}
x+1 _ X‘”)+T0 {M (S("))XWL%XW]
ST =SM 4 To [~ 7.3u(S™ )X 445 (20-5) |

(n+1) _
PT

“)

This system of linear equations can be rearranged in the
following matrix form:

n+1) (1)
pm (5<n>> (P(”’ —P(”’) _PmtU_p
Y x T To

n+1) n
P (S(")) xm _ P =P
- 74
= 5 (5)
X n+1) _ y(n)
X ,u(S“”)X(”) X T X
20-s™ n+1) _ ¢
v 7.3u (S“”)X('” SR LS TO—S' '

At every sample time, the linear system of Eq. (5) is used to
calculate the control action that ensures the tracking of the
optimal trajectories. As a first step, it is necessary to specify the
conditions under which the system has an exact solution.

Consider first, the immediately reachable value of each state
vector, as proposed here:

1 1) )
D = P — Ky (P — ™)
(n+1) _ pn+1) ) _ pm
P =PI — K, (P P
(n+1) _ y@m+1) M) _ x(m)
XD = XD Ky (xr’;f—x“)
sn+1) _ S(n+1) Ks (Si’;} _S(n)> (6)
In Eq. (6), each controller parameter fulfils 0 < K, < 1, where ,
represents every state variable, making the tracking errors tend to
zero when n—oo (see Appendix A). Then, the value of the state
variable in the next sample time is a function of: the reference

profiles (Af;} and Aﬁ';f* Dy, the actual state variable (A™) and the
controller parameters (K, ).

Remark 1. In Eq. (6) note that:
= If K,=0, the reference trajectory is reached in only one step.

= If 0 <K, < 1, the system will slowly reach the reference profiles
after several steps.

Considering Eq. (6), system (5) can be rearranged like (7), and
then written in a compact form as (8):

- pr+D g (P‘"' P‘"')—l’("'-
n (17) n B
. )((5( ))(pT _pmy_Tr TO
yvm
P oy P Kep PP PP
o w(ST)XT - To
X u(”): XD g (xM _ xmy _ x(n) (7)
0
205" ne 1) m) )y _ ()
Y )\ y(n) Sref} —KsSp =SS
73 (S )X 40
Au=>b ®)

In order that the system of Eq. (8) has an exact solution, the
column vector b must be a linear combination of the columns of A.
One way to ensure this is that vectors A and b be parallel. This

condition can be expressed as system (9) [24]; i.e. a system of four
nonlinear equations and a single unknown. Each term of Eq. (9)
belongs to A or b. In Eq. (9), the subscripts denote the position in
the array.

A _ by
As = by
Ay _ by
Ai = by )
Ay by
AT by
The unknown variable of this system is called “sacrificed

variable”. The values adopted by such variable forces the equation
system to have exact solution. The culture glucose concentration,
denoted as S+ 1, was taken as “sacrificed variable” because it is
directly related to all other state variables (see Eqs. (1,2)). The
following replacement can be made in system (8): S‘”f”) by s@+D

and Sﬁ’;} by S, Then, Eq. (9) can be expressed as follows:
l(s(ﬂ))(’)im Pi"i) ( (ﬂ+1\ K (P("} P("i) le)
Pl")
20_5™ — 73;4(5'"')X‘") (Sm+1) 1(5(59'; 75171))75(11))
() (n) 1 n+1) () () (1)
pm u/(S )X — O(P —Kp. (PT —P7 )—P >
20—TS‘”’ OIS f(n+1) r(er{) (n) (n) (10)
73u(S™ )X - (S — Ko (St — ™) —5™)
R A
20-5M 7.3;4(5‘"’)X‘”’+%(S$“'71(5(5(62’—S'”))—S‘”J)

Eq. (10) establishes the conditions that ensure an exact solution
for the model of Eq. (7), where S®is the unknown variable. In
Eq. (10), S¥ is obtained at the current sampling time, while S{.* "
can be calculated through Taylor approximations of zero, first, or
second order; i.e.:

(i) Zero-order

Sirh =i (11)

(ii) First-order
s _gn—1)
Si+D _ g djezT ~ S 4 ( ez TO"Z )To
SeV~2sg -5 (12)

(iii) Second-order
(s 255" -567%)
2

SurD S (Sw-sa )+ a3

By alternatively using Eq. (11), or Eq. (12), or Eq. (13), the
system of Eq. (10) has only one unknown:S{?. Finally, in Eq. (9),
S‘rgf”’ is replaced by S"*" (Eq. (13)); and SS;} is replaced by S,
thus leading to the following system of equations:

Pn+1) K (FU'I) P(n)) P(ﬂ)

pm X(SLZ))(P;-H) —P(n))_ = : To
Vv

(1) n_ pmy _ p(m
P w(s® X<ﬂ>_PTref Koy (P;TrEf PP
ym ) ez 0

u =
X(m U1+17 K (XUIJ X‘”') X(m
Y u (sg))x(n) _ ref TD
20-5™

v 73”(5(“)))((")_’_1.55';;'“.575?,; "70.5%; 2 _Kg(S® —sm)—s™

(14)

Eq. (14) allows the calculation of the control action, u, which
makes the tracking errors tend to zero in every sampling time. The
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control action is obtained by least squares [24], i.e.:
-1
u= (ATA) A"b (15)

Remark 2. The difference between the reference and the real
profiles is called tracking error, and is given by:

16 = (P~ ) 4 (P2 —P) 1 (2 —x)’ ¢ (st -5’

(16)

Theorem 1. If the system behavior is ruled by (7) and the controller
is designed by (15), then, eé™—0, n—oo, when profile tracking
problems are considered. Proof of Theorem 1 and the convergence
to zero of tracking errors can be seen in Appendix A.

3.3. Monte Carlo Randomized Algorithm

In the field of systems and control, probabilistic methods have
been found useful especially for problems related to robustness of
uncertain systems [25]. One of these methods, the Monte Carlo
Randomized Algorithm, is widely used in many fields such as the
radioactive decay, systems of interacting atoms, the traffic on
roads, etc [26]. In the control area, Monte Carlo methods allow
to estimate an expectation value and they provide effective tools
for the analysis of probabilistically robust control schemes.

Because of its nature, these types of algorithms can give an
erroneous result with a nonzero probability. So, it could be posed
the natural question of how many simulations must be performed
to be sure of finding the correct answer. Under a sufficiently large
sample size N, a probabilistic statement can be made as shown
below:

Theorem 2. [25]: Let ¢, 6 € (0, 1), where ¢ is an a priori specified
accuracy, and s, the confidence interval. If

1
N> { log 5 } (a7)
T-¢

then, the empirical maximum satisfies the following inequality with
probability greater than 1-5,

Prob, {](A) sjm} >1—¢ (18)
That is,
Proby.... N){ProbA {](A) < ]max} >1 —e} >1-5 (19)

where | is the performance function and ]max, the empirical max-
imun. For further details, see [25].

The theorem says that the empirical maximum is an estimate of
the true value within an a priori specified accuracy ¢ with
confidence & if the sample size N satisfies Eq. (17). The algorithm
may not produce an approximately correct answer, but the
probability of this event is no greater than §. It is worthy to
emphasize that, in Theorem 2, the sample size N is finite and
moreover is not dependent on the size of the uncertain set B, the
structured set of uncertainty matrices, and the probability density
function f,(4), but only on ¢ and é. In the next Section, Eq. (17) is
used to estimate the number of simulations.

4. Results and discussion

In this Section, the effectiveness of the proposed control law is
verified through simulation examples. Five tests are implemented:
in the first one, the optimal controller parameters are synthesized
through a Monte Carlo Experiment; secondly, the controller
performance under normal operating conditions and in different

initial conditions are shown; in third place, a perturbation in the
control action is included; then, the system is disturbed with a
step change; and finally, a Monte Carlo Randomized Algorithm is
applied in order to verify the performance of the proposed
controller under parameter uncertainty.

4.1. Monte Carlo experiment

In this subsection, the Monte Carlo method is applied to select
an optimal set of controller parameters. The bioreactor behavior
directly depends on the adjustment parameters Kp, Kpr, Kx and Ks.
The method is developed as follows: i) M random values of each
parameter are selected; ii) a cost function that evaluates the
controller performance is set; and iii) the optimal parameters are
determined by means of an optimization procedure. A widely used
method consists of defining the cost corresponding to the tracking
error, which is calculated as the sum of the squared differences
between the reference and real profiles of all state variables [27].

The cost function is equal to the cumulative squared error,
which can numerically be approximated as follows:

#ref 4

c=1y 3 - Lot o)

j=1i=1

ref(z) _A(') (20)

where A represents a given state variable, Ay is the reference
profile for A, #ref the number of points of the reference profile and
To is the sample time (in all over this paper it is adopted as 36 s). In
the case of the culture glucose concentration, the following
difference between the profiles is assumed:

(sw-sm)’ @1

In the bioreactor, this function has four terms. Although the
optimum is not guaranteed, the Monte Carlo Experiment provides
an approximate solution based on a large number of trials (M). In
this paper, it is adopted a confidence value (5) of 0.01, and an
accuracy of 0.007 (&). Then, from Eq. (17), it is necessary to make
1000 simulations. Hence, 1000 values of each parameter ranging
from O to 1 were simulated. This parameter range ensures
convergence to zero tracking error [28].

In Fig. 2 the values of the cost function are represented for each
simulation. The lowest cost is obtained in simulation number 800,
where the parameter values were:

Kp = 023, KPT = 014, Kx = OSZ,KS =0.23.

This algorithm to tune the controller parameter is one of the
contributions of the present paper. It is noteworthy that it is a very
effective technique for controller tuning because its simplicity and
its capability of being implemented online.

4.2. Normal operation conditions

The controller performance is tested when the process is
operated under normal conditions (Situation A). The initial condi-
tions are detailed in Table 1. The optimal controller parameters
obtained in the previous section are used. Fig. 3 shows the tracking
of the reference trajectories without undesirable oscillations. To
better reveal the performance of the control law, the tracking error
(see Eq. (16)), is shown in Fig. 4.

A second experience (situation B) was carried out by modifying
the initial conditions of the bioreactor, which were set 10% below
the values corresponding to Situation A. Fig. 5 shows the error in
the profile of the culture glucose concentration (“sacrificed vari-
able™). This error is required to follow the reference profiles of the
remaining state variables, as is explained in Section 3.2.

As it can be seen in Fig. 5, the initial substrate concentration
value is quite different from the normal operation; and the glucose
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Fig. 2. Cost function for 1000 sets of parameters. The lower cost is highlighted.
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Fig. 4. Situation A: Tracking errors (Eq. (6)).

concentration does not track the reference profile at the beginning
of the process. However, after the second hour of operation, the
real profile tends to the reference one. Fig. 6 displays the tracking

SUBSTRATE [g/L]

Real Substrate
Reference Substrate

TIME [h]

Fig. 5. Culture glucose concentration: reference and real profiles and the sacrificed
variable, S,,.

0.1

Situation A
Situation B ||

0.09

0.07 H 4

0.06 | 1

0.04 B

TRACKING ERROR [g/L]
o
&

TIME [h]

Fig. 6. Tracking errors of both situations, A and B, represented by Eq. (16).

error of both situations A and B. The tracking error remains
acceptably bounded in both cases.

4.3. Perturbation in the control action

So as to demonstrate the controller performance, a random
perturbation in the control action is included. In this work, a
random perturbation using MATLAB® is employed. The control
action is affected with a 20% of its value. The function used was
“random (norm, 0, 0.2)", which is a random white noise that results
in non-zero-mean Gaussian disturbances [29]. The control action
is calculated through Eq. (22) in each sampling time.

Uperturbed = Uunperturbed > (random ('norm’, 0, 0.2)4-1) (22)

The following figures illustrate the previously described results.
The control action with white noise is shown in Fig. 7, and the
controller performance is evaluated through the tracking error
(Fig. 8).

As shown in Fig. 8, when a Gaussian disturbance is introduced,
the tracking error increases. Nevertheless, the tracking error is still
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Fig. 7. Control action with non-zero-mean Gaussian disturbances.
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—— Without white noise
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!
|
il
10 15

Fig. 8. Tracking error of the controller with white noise compared with the
controller without the white noise.

0.2

TIME [h]

low and bounded compared with those obtained by other authors
in the literature, as will be seen in the next section.

4.4, Step disturbance in the feed flow rate

Another proof for checking the controller performance consists
in introducing a step-change perturbation. As proposed by [19], a
feed flow rate 16.67% higher than calculated is adopted. Fig. 9
compares the normal operation of the proposed controller (named
Unperturbed), the operation under the step disturbance (Per-
turbed), and the result given by [19].

Fig. 10 shows that the tracking error obtained with the
proposed controller is lower than those obtained by [19]. In
addition, if the proposal of [19] is compared with the controller
of Section 4.2 (situation B), when the controller has different

3 Perturbed ' E
------- Unperturbed
Tebbani (2008) A
2.5 E

N
T
!

FEED FLOW RATE [L/h]
-~

0.5

TIME [h]

Fig. 9. Comparison of the control actions provided by each controller: perturbed
with a step, unperturbed and the controller of Tebbani et al. [19].

Tebbani (2008)
Unperturbed
Perturbed

TRACKING ERROR [g/L]

TIME [h]

Fig. 10. Comparison of tracking errors (left ordinate axis: perturbed and unper-
turbed cases; right axis: Tebbani et al. [19]).

nominal initial conditions, it is observed that the proposed con-
troller has better performance, although it was operated from
other initial conditions.

Compared to [19], the methodology proposed here does not
need to perform any linearization. Furthermore, the implementa-
tion of the algorithm in digital systems is natural due to the use of
discrete equations. However, the principal advantage of our
proposal is that it has improved the results of [19], since the
tracking errors have been highly decreased.

4.5. Performance of the controller under parameter uncertainty
In this subsection, a Monte Carlo simulation is performed to

demonstrate the effectiveness of the controller from the statistical
viewpoint [30-32], under parameter uncertainty. The parameters
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Fig. 11. State variables for the 1000 simulations of the Monte Carlo Experiment.
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Fig. 12. Cost function for 1000 sets of the system parameters, Ysx and Sg, of the
Monte Carlo Experiment.

of the bioreactor are: the glucose concentration of the feed stream
(Sr) and the yield of glucose per cell mass (Ysx). In order to prove
the robustness of the controller designed, those parameters are
varied N times in a range of + 15% of its nominal values.

As in Section 4.1, it is adopted a confidence value (§) of 0.01, and
an accuracy of 0.007 (e). Then, from Eq. (17), it is necessary to
make 1000 simulations.

Fig. 11 shows the state variables for the 1000 simulations. This
figure shows clearly that the performance of the controller is good,
because all state variables tend to the reference profiles without
undesirable oscillations, although there are a 15% of uncertainly in
the bioreactor parameters.

The performance function is defined as

#ref 4 NEYYRY
] =T, Z Z (Aref(l) AU)) (23)
i=1

j=1i 2

where A represents a given state variable, Ay is the reference
profile of A, #ref the number of points of the reference profile and
To is the sample time. In the case of the culture glucose concen-
tration, the difference between profiles is assumed as in Eq. (18).

Fig. 12 depicts the performance function for 1000 sets of the
system parameters, Ysx and Sr. It is shown that the tracking errors,
reflected in the performance function J, remain bounded. Then, it
follows that if 1000 simulations with different values randomly
chosen of Sf and Ygx are carried out, and the tracking errors
remains bounded, there is a 99% probability that the performance
of the controller will be good whatever the parameter values in a
range of + 15%.

5. Conclusions

A new control law for tracking the optimal concentration
profiles in a fed-batch bioreactor has been presented. The pro-
posed method allowed the control of a nonlinear system. The
conditions for synthesizing the control actions able to minimize
tracking errors were obtained by analyzing a system of linear
equations.

A contribution of this work involves the application of a Monte
Carlo method that successfully found the controller parameters.
The different tests carried out in this work prove the good
performance of the proposed controller design procedure, even
when compared with a controller of the literature. In fact, the
system behavior was tested under the presence of disturbances,
reaching better performance than those obtained by [19]. Monte
Carlo simulation results are provided to demonstrate the effec-
tiveness of the controller in the presence of parameter uncertainty.
Besides, the adopted control technique does not use the linearized
model, consequently its performance is independent of the oper-
ating point. In general, such methodology can be applied to many
nonlinear systems, making it a promising technique for its
application to several processes of the biochemical industry.
Moreover, the present methodology has the advantage of using

Please cite this article as: Romoli S, et al. Tracking control of concentration profiles in a fed-batch bioreactor using a linear
algebra methodology. ISA Transactions (2015), http://dx.doi.org/10.1016/j.isatra.2015.01.002



http://dx.doi.org/10.1016/j.isatra.2015.01.002
http://dx.doi.org/10.1016/j.isatra.2015.01.002
http://dx.doi.org/10.1016/j.isatra.2015.01.002

8 S. Romoli et al. / ISA Transactions B (AEEE) ERE-EER

discrete equations, and therefore a direct implementation in most
computer-driven systems is feasible.
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Appendix A

Proof of Theorem 1. If the system behavior is ruled by (7) and the
controller is designed by (15), then, e -0, n— oo, when profile
tracking problems are considered. Eq. (14) is rewritten in a
compact form as (A.1)

A] bl
Ay b,
) _
As u™ = bs (A1)
A4 b4

Then, solving (A.1) by means of least squares

ym _ Arb1+Asby +Asbs +Asb,

AT +AS+AS+A; B2
From (A.1):
2—2:2—2 = bs Z%Ag (A3)

Replacing (A.3) in (A.2)

um — ﬁ_x(ﬁ?) (p(T"J _p(ro) _ (P;me Ky (P;’;} —P‘”>) —P‘”)/T0>

Ay P(ﬂ)/v(")
(A4
Replacing (A.4) in (7)
PIHD = P —Kp (P —P™ )+ To (PP —P™) [ (S )|
(A.5)
Then, the tracking error is
ep(n+1):P(rzf+1)—I)(n+1) (AB)
where (A.5) is replaced
epns 1 = Kpepm —To (P‘{” —P““) [;("” —x (sf;;))} (A7)

The Taylor approximation of 4™ in the desired value I(Sé@’) is

n) _ (n) dy (n) __ c(n)
X _X<Sez ) +d5‘s = SW (s —sW) =5, (S Sez )

0<ai<1 (A.8)

Replacing (A.8) in (A.7)

d
e =Koeyn - To (P~ [ (52) + 1] (57 -st2) ~<(s2)]
s=s
epnn = Kpepn +To (PP~ P“”)% (s -s@) (A9)
S= SA%_/
Boundednonlinearity Esm

Analogously, for Pr, from (A.1):
A2 _ b2 _A4
As ~by ~ D=2

Ay by by

A Tby PN

Az b3 by

Replacing (A.10) in (A.2)
o™ =A%(bz/Az)+A2bz +A5(ba/A2) + A5 (b2 /A2) _b

A+ AL LA A2 A,
v (SE)X® = (P —Kp, (P —P) — P /To)
= T (A11)
PPV

Replacing (A.11) in (7)
P(n+1) —_pm +T [ My _ (5 xm + po+ 1) —Kp. (P™ _p™
T =T oV YV Pez Tror Pr\FTy =T

—P{/To)]

PID =P — K (P —P) 4T [y —y (S (A12)
Then, calculating the tracking error as

eP{rnH) :Pgrt:;l)—P(TnJr]) (A]3)

where (A.12) is replaced

e,,(TnH) :KPTeP(T"’ —TOX(") [W(n)—lp(si‘g))] (A.14)

The Taylor approximation of ™ in the desired value w(S(e’?) is

= (52) + 2 (s7-s2)

S=S +&(S"M-sG) =S:

derivativeatamidpoint

0<e<1 (A.15)

Replacing (A.15) in (A.14)
epnt = Kp,epn —ToX™ {y/ (s2)+%, _ . (s -s)—w (sgy)}

(5<n> _ Sg))
-

€s(n)

d
m %Y
X s (A.16)

€P1Tn +1) = KpTelmi + Ty

S=S:

Boundednonlinearity

Analogously, for X, from (A.1):

A3_b3 _A4
14—4—5 :>b4—}\—3b3
A]_b] _b3
/T4_b74:>b1 _1T3Al
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As~ by T As A17)
Replacing (A.17) in (A.2)
m _ AT(03/As) + A5 (b3 /As) +Asbs +Af(bs/As) _bs
AT+ AZ+AZ A2 A;
- u (Sg)>x(ﬂ) _ (Xs;;r 1 _ Ky (X(rg} _X(n)) —X(")/To)
- X(n)/v(”)

(A.18)

Replacing (A.18) in (7)
X0+ — x™ T, [M(mxm) _ ﬂ(5$>> X™

ref
XD = XD — K (X = X™) +To (1™ ()

(X0 = K (X =X™) =X™/To ) |

(A.19)

Then, calculating the tracking error as
eX(n+1) :X§2f+l)_x(n+]) (AZO)
where (A.19) is replaced

ey =Kxee,, —ToX™ [,A") - ”(sg;’)] (A21)

The Taylor approximation of 4™ in the desired value y(sg;) is

n(52) % (%)

S=50+0(s" -sW) =S,

derivativeatamidpoint

0<6<1 (A.22)

Replacing (A.22) in (A.21)

Exmn+1) = Kxextm — TOX(H) |:/4 (Sg)) +% S—s, (S(n) _Sg;)) _”(Sg)):|

ey = Kxeym + TOX(”’Z—” (s‘"’-sf;;’) (A.23)
$=50 e —
Boundednonlinearity Esm
In the same way, for S, from (A.1):
A] _ b] _ b4
A ~hy TP
Ay by by
A b Ak
A3 b3 by
1T4 = F4 = b3 = 1T4A3 (A24)
Replacing (A.24) in (A.2)
4 _ AT(ba/A2)+A5(ba/Ay)+A3(ba/As)+Asbs _ by
AT+ AL 4AZ A2 A4
7.3/4(")X(n)+ S(n+1)_Ks S(ﬂ)_s(ﬂ) _S(ﬂ)/TO
_ (s (s —s™) ) 25

(20-5m) v

Replacing (A.25) in (7)

1
SED g™y Ty [— 7.3u™X™ +7.3uMX™ (S DKl =S™) 75(’”}

To

SIHD — g+ D _ (st _sm) (A.26)
Then, calculating the tracking error as
1
egary =Spp ) —S"HD (A27)
where (A.26) is replaced, leading to
g =SS0 S
es(n+1) = I(Ses(n) (A28)
Finally, joining (A.9),(A.16),(A.23) and (A.28):
pm _ pmdr
€pn+1) Kp 0 0 0 €pn ( T )dS’S: Si
. . mdy
eP(T ! = 0 KPT 0 0 eP(T) + To X & S=S: €sm
Exm+ 1 0 0 Kx O Exm
X(md_u’
€gn+1) 0 0 0 Ks €gm aSls_s,
Linearsystem 0
Boundednonlinearitythattendstozero
(A.29)

Eq. (A.29) represents a linear system and a bounded nonlinear-
ity that tends to zero when 0 < K, < 1 and n— oo, thus proving that
the tracking errors tend to zero [28]. =
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