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Abstract In this work we develop a theoretical quantum mechanical model
for describing the plasmon excitations in nanostructures. This model is based
in the electronic density according to the Density Functional Theory (DFT).
We derive an expression for finding an approximation to the dispersion relation
in a nanostructure from the complete Hamiltonian of the system. We apply this
expression to an aluminium nano-ring showing how great, and not negligible,
the ionic-interaction term is.
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1 Introduction

In recent years many novel nano-devices have been developed making necessary
the study of nanostructures of different geometrical shape. In these nanostruc-
tures the plasmon generation and decay requires special attention due to their
implication in the variation of the electrical and optical properties of the solid
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Centro Atómico Constituyentes (CNEA)
Av. Gral Paz. 1499 (C.P. 1650) Buenos Aires
Tel.: +54-011-6772-7655
Fax: +54-011-6772-7121
E-mail: gallardo@tandar.cnea.gov.ar

J. L. Gervasoni
Instituto Balseiro
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[1–5]. In addition, the study of creation and decay of plasmons is a very impor-
tant field of research particularly in quantitative chemical analysis of surface
and interface layers of solids [6–11] which revealed recently to be a useful tool
for nanostructure characterization [12–15]. All these new developments require
more accurate information on the process of plasmon generation and decay,
and due to the very small dimension of the nanostructures, their shapes take
on a very important role.

Usually, the study of plasmon excitations in solids is dealt by means of
the dielectric model for which all the electrical properties of the material are
contained in a function of the angular frequency ω and the wave number
k, known as the dielectric function ε. This model is very appropriate and
suitable when the number of atoms in the nanostructure is enough to make a
clear distinction between the surface and the volume [16–20]. But it takes no
account for the local fields resulting from the electronic density fluctuations
and their interaction with the ionic lattice, phenomena which were advised
earlier [21–30]. Such fluctuations are a very relevant issue in the case of very
small nanostructures (i.e. with one or more dimensions in the order of one
or two atoms) where the electronic charge distribution could change strongly
along the space coordinates. Then, describing the electrical properties of these
solids with a macroscopic magnitude may be inappropriate. Such is the case
of fullerene and carbon nano-tubes [31–33].

In the late 60s and early 70s, Hohenberg, Kohn and Sham stated that the
microscopic properties of a solid quantum system can be expressed in terms
of its electronic charge density without lack of information [34,35]. These Ho-
henberg, Kohn and Sham’s theorems gave rise the Density Functional Theory
(DFT) [36–39] that allows to develop a model in which the nano-system prop-
erties are expressed in terms of the local electronic density, instead of the
dielectric function.

In this work we develop a model based in the local charge density for
describing the plasmon field. We derive a Hamiltonian expression for the plas-
mon field of a nanostructure. Then we use this model to study the dispersion
relation of an one-atom-thick aluminium nanoring.

2 Theoretical Model

We develop the theoretical treatment in the frame of the Hamiltonian formal-
ism, which describes the behaviour of the electronic density variations within
a plasmon field by means of a quantum mechanical Hamiltonian [40,16,19,20].
According with it, the Hamiltonian per unit volume of the electronic gas has
the form [40]:

h =
∑
µ,ν

ρ
(m)
o

2
ΥµΥµ +

α

2

∂Rµ
∂xµ

∂Rν
∂xν

+ V(x) (1)

where Υµ and Rµ are the momentum and coordinate conjugate quantities

respectively, ρ
(m)
o (x) is the system initial mass density distribution, α is the
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elasticity factor [40] and the electrostatic energy V(x) is given by

V(x) =
1

2
φ(x)ρ(x) (2)

being φ(x) and ρ(x) the electrostatic potential and the charge density of the
system, respectively, as a function of the coordinate position vector x. We
assume that the ionic charge density ρ+o (x) remains static and the system
performs small oscillations: δρ = −ρ−o (x)∆(x), where ρ−o (x) is the initial elec-
tronic charge density, and ∆(x) =

∑
µ ∂Rµ/∂xµ the elastic deformation of the

electronic gas. We get

ρ(x) = ρ+o (x)− ρ−o (x)

[
1 +

∑
µ

∂Rµ
∂xµ

]
(3)

As we are interested in collective oscillation phenomena, we work these ex-
pressions in the momentum space with the transformations:

Υµ(x) =
∑
k

V µk e
−ik·x (4)

Rµ(x) =
∑
k

Qµke
ik·x (5)

The potential energy of the system is related with the electric potential, thus
we need to make also the transformation φ(x) =

∑
k φke

ik·x, where we as-
sumed that the plasma waves are all longitudinal (i.e. Qk ‖ k) [41], and write
the equation 2 in the form:

V(x) = 2π
∑
k

(
1

k2N

)
[ρ+o (x)− ρ−o (x)]2 − 2π

∑
k,k′

eik·xQkQk′

−2πi

(
1

k
+ k

∑
q

1

qN

)∑
k

Qkρ
−
o (x)[ρ+o (x)− ρ−o (x)]eik·x (6)

Taking into account eqs. 4, 5 and 6 we write eq. 1 in the form:

H =
1

2

∑
k,k′

VkVk′χ(k, k′)− 1

2

∑
QkQk′kk

′δk,−k′

−2π
∑
k,k′

QkQk′ξ(k, k
′)− 2πi

∑
k

Qkν(k) + εo (7)

with

χ(k, k′) =

∫
ρ(m)
o (x)ei(k+k′)·xd3x (8)
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ξ(k, k′) =
k′

k

∫
[ρ−o (x)]2ei(k+k′)·xd3x (9)

ν(k) =

(
1

k
+ k

h
(2)
N

N

)∫
ρ−o (x)[ρ+o (x)− ρ−o (x)]eik·xd3x (10)

and

εo = 2π
h
(2)
N

N

∫
[ρ+o (x)− ρ−o (x)]d3x (11)

where h
(2)
N is the N -th order generalized harmonic number of 2, defined by

h
(2)
N =

∑N
k 1/k2. Each of the first and third terms in eq. 7 can be separated

into two sums with terms with k = −k′ and terms with k 6= −k′, taking into
account the factors

χ(k,−k) =

∫
ρ(m)
o (x)d3x

ξ(k,−k) =

∫
[ρ−o (x)]2d3x

to write the Hamiltonian in eq. 7 as a sum of two terms, H = Ho +HI , where

Ho =
µ

2

∑
k

VkV−k +

[
4π

∫
[ρ−o (x)]2d3x + αk2

]
QkQk′ + εo (12)

and

HI =
∑

k,k′;k′ 6=−k

{
1

2
PkPk′χ(k, k′)− 2πQkQk′ξ(k, k

′)

}
(13)

with µ =
∫
ρ
(m)
o (x)d3x, the total electronic mass. The expression 12 indi-

cates that Ho is the Hamiltonian of an harmonic oscillator [42,43,40], from
which we obtain the dispersion relation ω(k):

ω2
k =

{
4π

∫
[ρ−o (x)]2d3x + αk2

}
µ−1 (14)

Now we apply the second quantization, defining the operators Vk and Qk:

Vk = i

√
ωk
2µ

(a†k + a−k)

Qk =
1√

2ωkµ
(ak + a†−k)
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where a†k and ak are the k-mode plasmon creation and absorption operators
respectively. Then, Ho takes the form:

Ho =
1

2

∑
ωk

(
a†kak +

1

2

)
+ εo

and we also write HI :

HI = − 1

4µ

∑
k,k′;k′ 6=−k

√
ωkωk′χ(k, k′)

[
a†ka
†
k′ − a

†
ka−k′ − a−ka

†
k′ + a−ka−k′

]
−π
µ

∑
k,k′;k′ 6=−k

1
√
ωkωk′

ξ(k, k′)
[
akak′ + aka

†
−k′ + a†−kak′ + a†−ka

†
−k′

]
− 2πi√

2ωkµ

∑
k

ν(k)
[
ak + a†−k

]
(15)

The first and second terms in the equation 15 are extra-diagonal elements
of the Hamiltonian matrix and the third one is a dispersive term [41] due to
the interaction between the electron and the ionic core.

In order to solve this Hamiltonian, we have to find out a way to diago-
nalize it, i.e. by means of a canonical transformation of the creation (a†) and
absorption (a) operators, that will convert the total Hamiltonian to a diagonal
form. Nevertheless, due to the extremely dense-matrix form of the interaction
term HI , the task of diagonalizing H is very difficult. We note however, that
the whole expression for H is a one-body Hamiltonian anyway.

3 Application and results

When studying the plasmon generation and decay in macroscopic systems, we
usually refer to surface and volume as two very distinguishable qualities of the
solid, making the difference between surface plasmons and bulk plasmons, as
the electron oscillations occur in the surface of the material, or as they occur
inside the material, respectively. The case of an object formed by a one-atom
thick linear array is different, because it is difficult to define a surface that
separates the bulk from the external media. Therefore, we can not distinguish
between surface and bulk plasmons. The electronic gas oscillations generates
linear plasmon because they move along a single dimension.

Such plasmons were studied with the theoretical model of the uni-dimensional
electron gas conforming the so-called uni-dimensional plasmons [44,45] (as an
idealized form of linear plasmons). In spite of the few theoretical studies on this
kind of plasmons, they were observed experimentally by inelastic scattering of
slow electrons across metallic nanowires of atomic thickness [46].

We must be aware of really dealing with one-dimensional plasmons be-
cause our electron-gas is three-dimensional, even though the oscillations that
it generate move in one dimension [46].
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3.1 The aluminium nano-ring

Our purpose is to apply our theoretical model to an one-atom-thick aluminium
nano-ring, according to real geometrical dimensions [47]. The advantages of the
ring geometry are the symmetry and periodicity. In an array forming a collar
made of equal and equidistant atoms, each of them is completely equivalent
to any other, there are no borders neither bounds and if the number of atoms
is large enough, we neglect locally the curvature of the array (then a = aẑ),
and the collar seems to be a linear array of atoms: Rµ(x + a) = Rµ(x) ( see
figure 1) from which we get the periodicity condition

k = 2πn/a (16)

with a the distance between two consecutive atoms and n an integer. From
an experimental point of view, is possible to obtain nanorings made of carbon
[48], zinc oxide from magnetic-field-curved nano-ribbons [49], Zn2SnO4 from
an evaporation method [50], and aluminium by using carbon nano-tubes as
mould [47]. These latter are unstable, because as they separate from the mould,
they dismantle or fold into a zigzag [51].

As another consequence of the periodicity, we need to integrate the expres-
sions 8, 9, 10 and 11 just in one cell (which is the portion of ring containing an
atom) and then multiplying by the number of atoms na, instead of integrating
in all the space occupied by the ring:

∫
ring

... = na
∫
cell

...; therefore from now
on, we suppress the subindex cell, and we assume that all the integrations are
restricted to one cell.

The unperturbed Hamiltonian does not change, but the expression 14 is
now:

ω2
k =

{
4π

∫
[ρ−o (x)]2d3x + αk2/na

}
µ−1 (17)

and the last contribution of the perturbed term HI is:

−2πina
∑
k

(
ak + a†−k

)
ν(k)

In addition, the factors χ, ξ and ν in equations 8, 9 and 10 have com-
plex exponents of the form ei2πmz/a, being m an integer, and can be written
as the sum of two terms ei2mz/a = i sin (2πmz/a) + cos (2πmz/a). However,
the electronic charge density, has the profile of a pair function, as we see in
the bottom-right corner of figure 1, therefore, the sine part vanishes when
integrated with integer powers of the density, remaining just the cosine com-
ponent.

Therefore, taking into account the eq. 16, all these factors become:

χn,n′ =

∫
[ρ(m)
o (x)] cos[(2π(n+ n′)

z

a
)]d3x (18)
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Fig. 1 A one-atom thick aluminium nano-ring, and its treatment as a nano-wire in Quantum
Espresso. The schematic representation of a generic twelve-atoms nano-ring (bottom left
corner). The local curvature of the nano-ring is neglected and it locally seems to be a linear
array of atoms called nano-wire (upper left corner). In order to calculate the electronic
density of the system, the DFT pack Quantum Espresso (QE) allow us to represent the nano-
wires as a periodic succession of special user-customized dimension cells called supercells
(upper right corner). The electronic density distribution in an aluminium nano-wire where
atoms are separated at a = 5.0 au. is computed by QE and is plotted on grayscale showing
different density areas (centre right). The electronic charge density profile along z-axis in a
single supercell is a pair function of z (bottom right).

ξn,n′ = 2π
n′

n

∫
[ρ−o (x)]2 cos[(2π(n+ n′)

z

a
)]d3x (19)

νn =
ana
2π

(
1

n
+
nh

(2)
N

N

)∫
ρ−o (x)(ρ+o (x)− ρ−o (x)) cos

[
2πnz

a

]
d3x (20)

And from eq. 15 we can write down HI in the form:

HI = I1

(
a†ka
†
k′ − a

†
ka−k′ − a−ka

†
k′ + a−ka−k′

)
+I2

(
akak′ + aka

†
−k′ + a†−kak′ + a†−ka

†
−k′

)
+iI3

(
ak + a†−k

)
(21)

where, the c-numbers I1, I2 and I3 are:
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I1(n, n′) = −
√
ωnωn′

4µ

∫
ρ(m)
o (x) cos

[
2π(n+ n′)

z

a

]
d3x (22)

I2(n, n′) = − 2π2

µ
√
ωnωn′

n′

n

∫
(ρ−o (x))2 cos

[
2π(n+ n′)

z

a

]
d3x (23)

I3(n) = − ana√
2ωnµna

(
1

n
+ n

h
(2)
N

N

)

×
∫
ρ−(x)[ρ+(x)− ρ−(x)] cos

[
2πn

z

a

]
d3x (24)

From the eq. 17 we obtain the available modes ωn:

ω2
n =

4π
∫

[ρ−o (x)]2d3x + 4π2αn2/a2na∫
ρ
(m)
o (x)d3x

(25)

In order to find the plasma oscillation frequencies for the nanoring, we need to
find an approximate value for the electronic charge and mass densities ρ−o and

ρ
(m)
o , as a function of the spatial coordinates. These two densities are related

via

ρ−o (x)

ρ
(m)
o (x)

=
qe
me

being qe and me the electron charge and mass respectively.
The charge density ρ+o (x) in eq. 20, represents the atomic ionic cores. The

aluminium atom has thirteen electrons, from these, just the 3s2 and 3p1 are in
the conduction band. The atomic nucleus, of charge +13qe, is then screened
by ten electrons, remaining the core with a net charge +3qe. The ionic string
inside the electronic cloud can suffer length variations, but these variations
are in any case very small and we can neglect them, thus we consider the ionic
cores as fixed points:

ρ+o (x) = 3qe

ring∑
j

δ(x− xj)

where xj is the coordinate vector of the j-th core. As before, integrating in a
cell this expression becomes:

ρ+o (x) = 3qeδ(x− xo) (26)

where xo is the coordinate of the core in the cell.
Another subject we must deal with, is the number N of modes we should

consider in the above sums. According to the Pines criterion [41] all the sums
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should be limited up to k, where k � kc, and the critic value kc is given by
kc = ωp/vF , with vF , the Fermi velocity of the solid. The justification of this
criterion is based in the fact that for k greater than the critic value, there
are no collective modes of the electron gas, but individual collisions with the
electrons of the conduction band [41,52]. Such criterion can be used just in an
approximated way, until we calculate the numerical value of the modes:

kc =
ωpme

kF h̄

In atomic units, this gives kc = ωp/kF . Using our data for the aluminium
kF = 0.92 au., ωp = 15.3, we get kc ≈ 16.6; this is, the value of nc coming
from the periodicity of the ring geometry:

2πnc/a ≈ 16.6⇒ nc ≈ 13

where we used a = 5 au. , therefore, we limit the sums just to a few modes,
say n = 0, ..., 5.

3.2 Density calculation for an aluminium nanoring

The calculation of the electronic charge and mass densities starting from the
atomic orbitals is a very complex task, even for an 1-dimensional array. How-
ever, it is possible to perform a numerical approximation with computer tech-
niques implementing DFT. In this work we use the Quantum Espresso (QE)
pack for DFT calculations [53]. We recall that in our approximation, the ring
locally is approached to a linear array, which is very useful because rings are
not allowed in QE, but periodical structures are. These periodical structures
can be real crystalline lattices or user-defined non conventional cells known in
the QE jargon as supercells.

We calculate the electron density of an orthogonal square base supercell
with a side of 50 au. to keep the wires away enough each other, to avoid mixing
of electrons from different wires, and 5 au. height, according to the dimensions
of the real nanorings obtained experimentally [47] (see figure 1).

The Quantum Espresso pw.x tool is able to calculate a 3-dimensional ma-
trix with the electronic density values as a function of the coordinates, and
as expected, as bigger the matrix, accurate the density [54]. This QE density
matrix provides data for numerically integrate the density.

The centre-right of figure 1 shows the electron density of a nanowire seg-
ment as obtained by Quantum Espresso, the darker the colour, the higher the
density; the white spots in the centre depict the atom ionic cores.

In our numerical QE matrix we expect the electron density tends smoothly
to zero as the integration element goes away from the nanowire. Nevertheless,
this is not true: the numerical values of the electron density oscillate around
zero in these regions. This is a lack of precision in QE, and is due to the plane
wave decomposition of the electronic eigenstates, that does not compensate
completely in the low-density region (See figure 2). Anyway, the value of the
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Fig. 2 Electronic density oscillation along supercell x-axis inter-wire space, where it ex-
pected to vanish softly.

Table 1 Calculated values of ωn from the integration of a 1200×1200×120 matrix density.

n ωn[au] ωn [eV ] I3(n)
0 0.4736686 12.84116 -
1 0.4736686 12.84116 1.91614
2 0.4736686 12.84116 0.77654
3 0.4736687 12.84116 1.27174
4 0.4736687 12.84116 1.77312
5 0.4736687 12.84116 2.27869

integral of the electronic density q =
∫
ρ−o (x)dxdydz is useful to control the

quality of the QE matrix. The value of this integral extended to a cell must
be approximately equal to 3 au., ie. the total value of the charge of the free
electrons for an atom of aluminium.

The Table 1, shows the obtained results for a ring made of na =16 atoms
and a cell divided into 1200×1200×120 matrix elements. The plasma frequency
(2nd column) is ωo = 12.8eV , which lays between the values of the bulk
plasmon ωp = 15.3eV and surface plasmon ωs = 11.1eV frequencies for the
aluminium. As seen in the table, the term proportional to n2 makes no a
significant contribution to the values of ωn. In addition, the integral value of
the charge give us q =2.95 au.

The factor I3(n) (last column), is obtained from the integration of eq.
24 and shows clearly that this term is not negligible, which means that the
interaction between the ionic network of the ring and the free electrons is very
strong. Due to their values, not even a perturbation analysis is applicable [42,
43].
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Table 2 Factors I1(n, n′) and I2(n, n′) multiplied by 103, for values n, n′ such as n + n′

= 1,..., 5. For a density matrix of dimension 1200×1200×120.

n n′ I1(n, n′) × 103 I2(n, n′) × 103

0 1 3.24694 0.00000
0 2 -0.16748 0.00000
0 3 0.00785 0.00000
1 1 -0.16748 -4.49818
1 2 0.00785 0.00000
1 3 0.00259 0.00000
2 1 0.00785 8.17224
2 2 0.00259 0.00607
2 3 0.00159 0.00000

In the Table 2, we list the factors I1(n, n′) and I2(n, n′) obtained by the
integrals in eqs. 22 and 23 respectively. The values I1 and I2 are very small
compared with ω (first column in table 1), and that is the reason of being
neglected.

4 Concluding remarks

We developed a method that is suitable for the study of plasmon phenomena
in nanostructures with strong electronic density variations or whether the
interaction between the electrons and the ionic core is relevant.

With this method we find a first approximate value for the oscillation
modes of the plasma, which is between the values for bulk and surface plas-
mons. We also found, that the ionic arrangement behind the electronic cloud
interacts strongly with it. The significance of this interaction was predicted in
the past [24,22]. Unfortunately, there were no experiments of plasmon excita-
tions in nanowires reported until the date to compare our theoretical values.

A good numerical approximation to the matrix density is required and QE
is not suitable due to its slowness; the time for the calculations to perform in-
creases linearly with each dimension, ie. it increases cubically with the increase
of the three dimensions [54].

In addition, we remark that we have chose an appropriate geometry where
the integral factors I1 and I2 are negligible. This could not be true for any other
geometric arrangement, then, the complete Hamiltonian H = Ho +HI should
be considered, which implies to take into account extra-diagonal elements of
a highly dense matrix.

Finally, the factor α that we have used here, corresponds to the bulk or
macroscopic aluminium. Its contribution is not appreciable in this nano-ring
but in order to improve precision we should take into account the scale effects
that acts on it [55].
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