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By means of a projector operator formalism we study the ground
state properties of the Anderson Impurity Hamiltonian. The
non-perturbative treatment of the model agrees with the pre-
vious one, obtained by Inagaki [Prog. Theor. Phys. 62, 1441
(1979)] by means of a perturbation expansion with respect the
hybridization term. We go beyond the Inagaki’s formalism to the
next leading order. It provides a very accurate calculation of the
energy spectrum in the total spinST = 0 sector and, in particular,
the ground state energy in the whole parameter space. For a one
body spinless system, the dependence of the ground state energy
as a function of the impurity level obtained by this procedure

remarkably agrees with analytical results. For the many body
case the occupancy of the impurity as a function of the parame-
ters is studied and it agrees with the corresponding one obtained
by using the Bethe ansatz and the Numerical Renormalization
Group solution of the Hamiltonian. The magnetization and sus-
ceptibility of the impurity is analyzed by studying the response
of the system to an external magnetic field, from which it is
possible to extract the Kondo temperature. The dependence of
the Kondo scale with the parameters of the model is in excellent
agreement with well-known results.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The Anderson impurity model (AIM)
[1] has received large attention in the last decades. In the
spin fluctuating regime it is equivalent to the Kondo Hamilto-
nian [2], capable of explaining the behavior of the resistivity
as a function of temperature of metals doped with 3d tran-
sition metal or 4f rare earth impurities. Furthermore, this
Hamiltonian has been on the base of the heavy fermion
physics. As the Hubbard Hamiltonian in infinite dimensions
can be transformed into a self-consistent renormalized one
impurity Anderson Hamiltonian, within the dynamical mean
field theory (DMFT) [3] this model has permitted as well
the study of several aspects of many-body physics as, for
instance, the metal non-metal transition taking place in vari-
ous systems. More recently the Kondo effect has received
great attention associated to the many-body properties of
highly correlated electronic nanosystem, as quantum dots
or structures of quantum dots [4, 5]. The model has been
exactly solved by using the Bethe ansatz formalism [6, 7].
Furthermore, the solution has also been found by a variety of

different numerical approaches as it is the case of Numerical
Renormalization Group (NRG) [8], Logarithmic Discretiza-
tion Embedded Cluster Approximation (LDECA) [9], and
Density Matrix Renormalization Group (DMRG) [10]. Sev-
eral algebraic methods and approximations were developed
to search the solution as, for instance, the slave bosons
(SB), the non and one crossing approximations (NCA, OCA)
[11–14], the renormalized perturbation theory (RPT) [15, 16]
and the local moment approach (LMA) [17, 18], among
others. A non-perturbative hybridization expansion of the
solution was early developed not only for the static ground
state properties [19, 20] but also for the dynamic ones [21].

Although the results obtained by the mentioned numeri-
cal approaches are very accurate, the approximated schemes
have been extensively used to obtain a rapid scanning of the
properties as a function of the model parameters.

The development of new powerful solutions of the AIM,
the most paradigmatic highly correlated electron model, is
a very active area of research as it is demonstrated by the
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publication of several recent papers [23–26]. The possibility
of treating complex nanosystems or molecules and corre-
lation in the bulk are the most important motivations that
justify these efforts. Within this context, here we extend the
treatment used by Inagaki [19] for searching the ground state
properties to the next leading order in the perturbation series.
With these additional contributions, the derived ground state
properties remarkably agree with the corresponding exact
ones derived from the Bethe ansatz and NRG approaches.
Furthermore, we obtain results not only in the mixed valence
regime and in the limit of an infinite bandwidth for the con-
duction electrons, as it was case in the Inagaki’s work, but
in the complete parameter space. In addition, we propose an
alternative algebraic way to get the system of self-consistent
equations.

The formalism reduces the relevant functional space to a
projected subspace of the total Hilbert space consisting of one
many body function characterized by a ground state Fermi
sea of N particles and an empty impurity.

To study the physics of the AIM operating in this pro-
jected subspace, the Hamiltonian has to be renormalized. A
self-consistent functional renormalization of this Hamilto-
nian permits to obtain the ground state properties, the Kondo
temperature, and the magnetic susceptibility as a function
of the parameters of the system. For a spinless one-body
system, where exact analytical results can be obtained, our
results show remarkable agreement with them. Within this
formalism, the incorporation of the many-body interaction
due to the double occupation does not introduce any for-
mal complexity in comparison to the one-body problem. The
algebra is essentially the same. For the many body case the
results of the method are also in very good agreement with
the well-known universal behavior of the Kondo regime.

In view of the accurate results obtained and the small
computational effort required to obtain them,(no more than
a few minutes on a workstation), the approach could be use-
ful to study more complex situations, as an impurity solver
within the spirit of the DMFT approach, to study many-body
interactions in the bulk, or to analyze systems of several
strongly interacting impurities.

The paper is organized as follows. In Section 2 we intro-
duce the model and the projector operator formalism to solve
it. In Section 3 we present and discuss the numerical evalua-
tions of different physical magnitudes. Finally, in Section 4
some conclusions are drawn.

2 Model and formalism The Anderson Hamiltonian
describes a system in which an interacting level is coupled
with a conduction band of electrons,

H =
∑

kσ

εknkσ +
∑

σ

Edndσ + Und↑nd↓

+
∑

kσ

Vkd
†
σ
ckσ + h.c., (1)

where nkσ = c
†
kσckσ is the number operator and c

†
kσ creates

a conduction electron with momentum k and spin σ in the

conduction band; the operators ndσ = d†
σ
dσ and d†

σ
refer to

an electron in the interacting localized impurity state char-
acterized by an energy Ed and Coulomb repulsion U. The
coupling of this level with the bath is taken into account by
the hybridization function given in terms of Vk by Δ(ω) ≡
π

∑
k
V 2

k
δ(ω − εk).

We are looking for the energy of the ground state, E0 and
the ground wave function, |ψ0〉, of the system of N-particles
satisfying the eigenvalue equation

H |ψ0〉 = E|ψ0〉. (2)

We define the projector operator P1 = ∏
kσ≤kF

nkσ , where
kF is the Fermi wave vector and P2 = 1 − P1. The operator
P1 gives a non-zero result only when it acts in the ground state
of a N-electrons Fermi sea. The action of the projectors is
then to split the Hilbert space of N-particles into two disjoint
subspaces, namely S1 which consists of only one state, |φ1〉 =∏

kσ≤kF
c
†
kσ|0〉, the ground state Fermi sea with no electrons in

the d-level and S2 with |φ2〉 representing the rest of the states
in the Hilbert space.

The renormalized Hamiltonian that operates on the
S1 subspace can be obtained by eliminating |φ2〉 of the
Schrödinger equation (2). The effective Hamiltonian is given
by [27]

H̃ |φ1〉 =
(

H11 + H12

1

E − H22

H21

)
|φ1〉 = E|φ1〉, (3)

where Hij = PiHPj. The only contribution to the Hamil-
tonian H21, that connects the space S1 to S2, comes from
the hybridization term in Eq. (1). Its operation destroys an
electron of the Fermi sea and promotes it into the impurity
generating a singlet state belonging to the S2 subspace:

|φkd〉 =
∑

σ

d†
σ
ckσ√
2

|φ1〉, (4)

where the factor
√

2 is included in order to normalize the new
state. Here and in what follows, we employ the notation k and
K for wave numbers below and above the Fermi level respec-
tively. We emphasize that the state |φkd〉 is, by construction,
a singlet ST = 0 as we discuss below. Applying 〈φ1| to the
left of Eq. (3) we obtain an equation for the energy E:

E = εT + 2
V 2

N

∑
k,k′

〈φkd| 1

E − H22

|φk′d〉, (5)

where εT = 2
∑

k
εk represents the energy of the ground state

of the Fermi sea. Also, in (5), we neglect the k dependence
of the hopping Vk = V/

√
N as usual, where the scaling by

1/
√

N is necessary to obtain finite contributions to the energy
of the Fermi sea-impurity hopping term.

It can be noticed that to get an explicit expression for
the eigenvalues in (5), it is sufficient to calculate the matrix
elements of the operator (E − H22)−1 between the states |φkd〉
corresponding to a singlet formed between Fermi sea holes
of momentum k and an electron at the impurity. These states
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are accessed by only one application of the different k con-
tributions of the Hamiltonian H12 to |φ1〉 in the S1 subspace.

Furthermore, as we create the space S2 by successive
applications of the Hamiltonian to the ground state of the
Fermi sea, the space so created contains only states that are
eigenstates of the total spin operator ST = 0. This is a direct
consequence of the fact that the Hamiltonian commutes with
the total spin operator and consequently its application to
a ST = 0 state conserves this eigenvalue of the total spin.
Although, this procedure is not capable of reaching the com-
plete Hilbert space of the system, the ground state, our main
object of analysis, is contained in it as it is a singlet.

Although the inclusion of states with double occupancy
in the correlated d-level does not introduce any fundamental
problem, for simplicity we restrict our study to the infinite
Coulomb repulsion U limit.

Therefore, in order to find the inverse of E − H22 we
classify the ST = 0 sector as follows:

We applyH to the states |φkd〉 and considering that double
occupancy of the impurity level is prohibited by U, a new
state additional to |φ1〉 is generated:

|φkK〉 =
∑

σ

c†
Kσ

dσ|φkd〉. (6)

Both, |φkd〉 and |φkK〉, have a single particle–hole exci-
tation from the Fermi sea, where k (K) runs over all wave
numbers below (above) the Fermi level. In a similar way, we
generate the states that have two particle-hole excitations,

|φkKqd〉 =
∑

σ

d†
σ
cqσ√
2

|φkK〉, (7)

|φkKqQ〉 =
∑

σ

c†
Qσ

dσ|φkKqd〉, (8)

where q (Q) here as well runs over all wave numbers
below (above) the Fermi level. Although, in principle, the
wave number k (K) should not be considered because the
corresponding state is already unoccupied (occupied), this
restriction gives no contribution in the thermodynamical
limit, as we discuss below. Rearranging the set of states that
form the base of the ST = 0 sector of S2 in the following
order: {|φkd〉, |φkK〉, |φkKqd〉, |φkKqQ〉, . . . , |φk′d〉, |φk′K〉, . . .},
the matrix of E − H22 can be written as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εkd − V√
N

0 0 . . 0 0 .

− V√
N

εkK −
√

2V√
N

0 . . 0 0 .

0 −
√

2V√
N

εkKqd − V√
N

. . 0 −
√

2V√
N

.

0 0 − V√
N

εkKqQ . . 0 0 .

. . . . . . . .

. . . . . . . .

0 0 0 0 . . εk′d − V√
N

.

0 0 −
√

2V√
N

0 . . − V√
N

εk′K .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1 Scheme of processes that give rise to contributions of
O(V 4) order appearing in Eq. (15), when starting from the state
|φkd〉 and arriving to |φk′d〉.

where the energies representing the diagonal terms are

εkd = E − εT + εk − Ed

εkK = E − εT + εk − εK

εk′d = E − εT + ε′
k
− Ed

εk′K = E − εT + ε′
k
− εK

εkKqd = E − εT + εk − εK + εq − Ed

εkKqQ = E − εT + εk − εK + εq − εQ (9)

and the dots in the matrix stand for the infinite additional
particle–hole excitations.

As usual, the energy E is calculated relative to the energy
of the Fermi sea ground state εT .

In principle, it is possible to obtain all the matrix
elements, gij, of the resolvent operator G = (E − H22)−1.
However, to obtain the energy, given in (5), the calculation
only requires the diagonal gkk and non diagonal gkk′ elements
[28]. The scheme, represented in Fig. 1, shows the path con-
necting two states that are contiguous to S1 and have different
wave numbers, namely k and k′. The contribution to the
energy of this non-diagonal path that starts from a hole in
k and finishes with a hole in k′ is of the order of O(V 4/2D4)
times less than the diagonal contribution.

We begin by analyzing, in a first step, only the diagonal
contribution to the ground state energy. This term is, as we
will show, the most important one in the low-hybridization
regimes of the AIM . The matrix element gkk can be obtained
by analyzing the set of infinite equations that give the first
column of the matrix G:

εkd gkk −
∑

K

V√
N

gkK = 1

− V√
N

gkk + εkK gkK −
∑
q �=k

√
2V√
N

gkKq = 0

www.pss-b.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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−
√

2V√
N

gkK + εkKqd gkKq −
∑
Q�=K

V√
N

gkKqQ = 0

− V√
N

gkKq + εkKqQ gkKqQ = 0

... (10)

This system of infinite equations can be solved exactly
due to the tridiagonal form of the matrix of E − H22. By
eliminating the coefficients, from the last to the first, one can
inductively close an expression for the coefficient gkk

gkk = 1

εkd − V 2

N

∑
K

1

εkK−2 V2
N

∑
q

1

εkKqd− V2
N

∑
Q

1
εkKqQ−...

+2 V2
N

1
εkKkd−...

(11)

The term in the diagonal energy εkKkd (last writen term
in equation 11) takes into account the contribution coming
from the creation of a second hole in the state k. This term
is, in fact, of the order 1/N where N is the number of sites.
It is clear that in the thermodynamical limit, N → ∞, its
contribution can be neglected in comparison to the one given
by the sum

∑
q
.

This continuous fraction, in a finite system, gives the
complete set of energies of the singlet states that satisfy the
Schrödinger equation (2). When the thermodynamical limit
is taken, each denominator runs over a continuous set of
particle-hole excitations. By realizing that this continuous
fraction has terms that repeat the structure of previous ones,
as for example the term with

∑
Q

in equation 11 that has the
same form as the one with

∑
K

, but with the energy shifted,
one can re-write this infinite continuous fraction in a simpler
form using two auxiliary functions as follows:

gkk(E) = 1

E + εk − Ed − F0(E + εk)
, (12)

where the function F0 satisfies the self-consistent functional
relationship

F0(E) = V 2

N

∑
K

1

E − εK − F1(E − εK)
,

F1(E) = 2
V 2

N

∑
k

1

E + εk − Ed − F0(E + εk)
. (13)

The self-consistent condition represents a non-
perturbative treatment to obtain the ground state energy of
the many-body Anderson Hamiltonian.

At this point we can make contact with the early solution
found by Inagaki [19]. The self-consistent system given by
equation in (13) agrees with Eq. (3) of Ref. [19] and rep-
resents the core of their treatment, which includes all the

d

k

k

K

k'

(a) (b)

Figure 2 Diagrams for the perturbation expansion of the ground
state energy. (a) and (b) represent the second-order and one example
of crossing sixth-order contributions, respectively. The dashed lines
represent the electrons at the impurity site while the solid ones
represent a conduction electron line to the right and a hole line to
the left.

diagrams with non crossing conduction lines as shown if
Fig. 2a. As we mention in the introduction, we go beyond
this approximation including the non diagonal element gkk′ .
This is equivalent to include the crossing diagrams sketched
in Fig. 2b that contribute to the ground state energy. The
non diagonal elements expressed in terms of the auxiliary
functions F0 and F1 are given by

Q1(E) = 2
V 2

N

∑
k,k′ �=k

gkk′ (E), (14)

where the non diagonal element gkk′ is

gkk′ (E)

= V 4

N2

∑
kk′K

1

E + εk′ − Ed − F0(E + εk′ )

× 1

E + εk′ − εK − F1(E + εk′ − εK)

× 1

E + εk + εk′ − εK − Ed − F0(E + εk + εk′ − εK)

× 1

E + εk − Ed − F0(E + εk)

× 1

E + εk − εK − F1(E + εk − εK)
,

which gives in total, taking into account the V 2 in Eq. (14),
a contribution of the order V 6/N3.

The same kind of crossing diagrams were included in
the context of dynamical properties like the impurity Green
function [22] within the so-called Post-NCA theory. With
this inclusion the Post-NCA approximation, as well as the
present contribution, contains the sum of infinite numbers of
skeleton diagrams and is exact up to order O(1/ν2) where ν

represents the degeneracy of the impurity level.
When F0 and F1 are calculated through an iterative

numerical convergent process imposed by the fulfillment of
Eq. (13), it is possible to obtain the ground state energy of

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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the system by the solution of Eq. (5) that can be written as

E = F1(E) + Q1(E). (15)

In what follows we discuss the impurity properties
derived by the numerical solution of the Eq. (15).

3 Numerical results In this section, we present
the numerical results obtained using this formalism. In
particular, we analyze the dependence of the ground state
energy and the occupancy of the impurity as a function of the
energy of the d-level. Furthermore, we extend the method to
include a finite magnetic field and study the magnetization
and susceptibility of the impurity.

While the equation (15) gives, in principle, the complete
set of eigenvalues in the ST = 0 space, in what follows we
restrict our analysis to the ground state energy.

For this purpose, we transform the discrete self-
consistent system (13) into a continuous one,

F0(ω) = 1

π

∫ ∞

0

dε
Δ(ε)

ω − ε − F1(ω − ε)
,

F1(ω) = 2

π

∫ 0

−∞
dε

Δ(ε)

ω + ε − Ed − F0(ω + ε)
. (16)

To solve the self-consistent equations, we consider the
hybridization function to be a step function Δ(ε) = Δθ(D −
|ε|) where Δ = πV 2/2D, and 2D is the bandwidth,

F0(ω) = Δ

π

∫ ω

−D+ω

dε

ε − F1(ε)
,

F1(ω) = 2Δ

π

∫ ω

−D+ω

dε

ε − Ed − F0(ε)
. (17)

From now on, we set the hybridization Δ = 1 as the unit
of energy.

It is clear from Eq. (15), that, if the correction Q1 is
not taken into account, the auxiliary function F0 diverges
logarithmically near the ground state energy.

On the other hand, it is easy to verify that if the subspace
S1 is defined by the state

|φ̃1〉 = 1√
2

(d†
↑c

†
kF ↓ − d†

↓c
†
kF ↑)

∏
kσ<kF

c
†
kσ|0〉, (18)

that is an eigenstate of the total ST = 0 operator, one arrives to
exactly the same system of self-consistent equations Eq. (13).
The only difference is given by the equation that determines
the ground state energy that becomes

E − Ed = F0(E) + Q0(E), (19)

where Q0(E) represents the non diagonal contribution and
it can be obtained in a similar way used to evaluate Q1(E).
As the value of the ground state energy does not depend

-7 -6 -5 -4 -3 -2 -1 0 1
w

-6

-4

-2

0

F
1(w

)

E
d
 = -2

E
d
 = -4

E
d
 = -6

Figure 3 Converged function F1 for several values of the d-level
energy. Band width D = 10. The dotted line represents the linear
funcion y = ω. The unit of energy is taken to be Δ = 1.

upon the particular form in which the Hilbert space has been
partitioned to obtain it, we conclude from Eq. (17) that, if the
correction Q0 is not taken into account, the function F1 also
diverges near the ground state energy.

In Fig. 3, we show the converged function F1 and a graph-
ical solution of Eq. (15) for several values of the energy of
the d-level. In the first iteration, starting from F0 = 0, it is
clear that the function F1 diverges at the value of the impurity
energy Ed . During the self-consistent process, this singular
behavior is shifted due to the hybridization.

However, increasing the resolution of the figure in the
region where the solution is apparently found, a substructure
appears, as can be seen in Fig. 4 showing two extra singu-
larities in the function F1. The real solution is contained in
this subtle structure, as depicted in the figure. The ground
state energy is the one with the lowest energy. The other two
solutions cannot be considered as eigenvalues of the Hamil-
tonian, and they appear as a consequence of the widening of
the poles, caused by the introduction of an imaginary part
in the denominators of Eq. (16) in order to regularize its
behavior.

In order to show the relative magnitude of the correc-
tion Q1 to the ground state energy in Eq. (15), in Fig. 5 we
show the ground state energy calculated with and without
correction, for a particular value of the hybridization Δ = 1
and D = 10. As we have pointed out, the relative importance
of the correction increases as the hybridization grows with
respect to the other parameters. Moreover, it is important to
remark that in the finite U case, not presented here, the cor-
rection is of the order of V 4/N2, which increases its relative
importance with respect to the V 6/N3 correction of the infi-
nite U case, in the low hybridization regimes. We remark that
even in this case where the correction is relatively small, it

www.pss-b.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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-2.7686 -2.7684 -2.7682 -2.768
w

-2.79

-2.78

-2.77

-2.76

-2.75

-2.74

-2.73

F 1(w
)

E
d
 = -2

Figure 4 Amplified region of the converged function F1 near to the
ground state energy. The dotted line represents the linear function
y = ω. Parameters idem Fig. 3.

can compete with the Kondo temperature. From now on the
results presented will include this correction.

The algebraic structure of the formalism we are propos-
ing is essentially the same for a one-body or a many-body
problem. As a consequence it is extremely interesting to
apply it to obtain the ground state energy of the one-body
spinless version of the AIM and to compare the results
obtained with the exact Green function solution of this model
[29].

The integral self-consistent equations obtained for the
spinless system are given by Eq. (13) without the factor 2
in the definition of F1 due to the inexistance of the spin. In
Fig. 6, we compare the results obtained for the ground state
energies E of the interacting version (V �= 0) with respect

-4 -3 -2 -1 0

E
d

-4,5

-4

-3,5

-3

-2,5

-2

E
-E

0

Without correction.
With correction.

Figure 5 Ground state energy for D = 10 and Δ = 1 as a function
of the d-level energy, with and without the correction as calculated
with Eq. (14).

-5 -4 -3 -2 -1 0 1 2 3 4 5

E
d

-1.5

-1.25

-1

-0.75

-0.5

Ε 
− 

Ε
0

Projection method
one-body solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

E
 -

 E
0

Figure 6 Top panel: Energy difference between the interacting
(V �= 0) and the non-interacting (V = 0) spinless AIM as a function
of Ed for D = 20 (top panel) and as a function of the hybridization
(bottom panel) for D = 10 and local energy Ed = −3.

to the non-interacting one E0 (V = 0). The value of E0 =
Ed〈nd〉o naturally depends on the occupation of the isolated
impurity given by a step function; 〈nd〉o = 1 for Ed < 0 and
zero in other case.

An inspection of the figure permits to verify the perfect
agreement between the two approaches for all values of Ed ,
certifying the correctness of the formalism.

A second relevant test that validates the method is related
to the electronic occupation of the impurity 〈nd〉 as a function
of its local energy. According to the Hellmann–Feynman the-
orem, the occupation at the impurity can be extracted from
the ground state energy by a simple derivation with respect
to the d-level energyEd :

dE

dEd

=
〈

dH

dEd

〉
= 〈nd〉. (20)

In Fig. 7, we show the impurity occupation as a func-
tion of the impurity level in the limit of infinite bandwidth,
D → ∞, and the corresponding ones obtained from the
Bethe ansatz approach. The Bethe ansatz expression for the
occupancy for infinite Coulomb repulsion can be obtained
from Ref. [33].

In Fig. 8, we present the values of the occupancy for a
finite bandwidth within our formalism (squares) and, for the
same set of parameters, those obtained with the Numerical
Renormalization Group (solid line).

From the previous figures we conclude that the results
are in excellent agreement with those obtained from exact
methods. It is important to stress that various approximated
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Figure 7 Occupation of the impurity as a function of the impurity
local energy Ed for two selected values of the hybridization in the
limit of the infinite bandwidth, D → ∞. Squares and dots are the
results of the present projection method while the solid line stands
for the Bethe ansatz solution.

treatments of the AIM do not give reliable results for the
occupation. This is the case of the slave-bosons formalism
or perturbation theory up to second order in V neglecting spin
flip, see Fig. 2 of Ref. [30]. Our present treatment of the model
adequately takes into account, not only the Coulomb repul-
sion at the d-level, but also the spin flip processes within a
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0,8

0,9

1

<
 n

im
p>

Projection method
NRG

Figure 8 Occupation of the impurity as a function of the impurity
local energy Ed . Squares represent the present projection method
while the solid line stands for the NRG calculations for the same
set of parameters, D = 10.

non-perturbative theory that runs over, in principle, the whole
set of particle–hole excitations.

Finally, we add a magnetic field B to the system and
analyze the magnetization and susceptibility of the impu-
rity. Under the effect of a magnetic field, the Hamiltonian
becomes

H =
∑
k↑

εk↑nk↑ +
∑
k↓

εk↓nk↓ + Ed↑nd↑ + Ed↓nd↓

+ Und↑nd↓ +
∑

kσ

Vkd
†
σ
ckσ + h.c., (21)

where εi↑ = εi − μBB/2 and εi↓ = εi + μBB/2 and similar
expressions for Edσ . In what follows, we use μB = 1 .

The state |φ1〉 is now a magnetic one due to the increase
of the number of conduction electrons with spin up with
respect to the spin down ones, while keeping constant the
Fermi energy.

The magnetic version of the equation for the energies,
Eq. (5), neglecting the non diagonal terms becomes

E(B) = εT (B) + V 2

N

∑
k↑

〈φk↑d↑| 1

E − H22

|φk↑d↑〉

+ V 2

N

∑
k↓

〈φk↓d↓| 1

E − H22

|φk↓d↓〉 + O(V 6/N3),

(22)

where the state |φk↑d↑〉 (|φk↓d↓〉) represents the state when
a conduction electron with spin ↑ (spin ↓) is promoted to
the impurity. Here, εT (B) stands for the ground state energy
of the system without any electron in the impurity level in
the presence of the magnetic field B and O(V 6/N3) represent
the non diagonal contribution. Following the same procedure
sketched previously, we arrive to the spin dependent set of
self-consistent integral equations:

F0↑(ω) = V 2

N

∑
K↑

1

ω − εK − F1↑(ω − εK) − F1↓(ω − εK)
,

F0↓(ω) = V 2

N

∑
K↓

1

ω − εK − F1↑(ω − εK) − F1↓(ω − εK)
,

F1↑(ω) = V 2

N

∑
k↑

1

ω + εk − Ed + B/2 − F0↑(ω + εk)
,

F1↓(ω) = V 2

N

∑
k↓

1

ω + εk − Ed − B/2 − F0↓(ω + εk)
.

(23)

Finally, the ground state energy can be determined by
the solution of the spinless degenerate version of Eq. (15).
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Figure 9 Comparison of the results obtained by the projection
method and the Bethe ansatz for the impurity contribution to the
magnetization Mimp in units of gμB as a function of B/T1. The
local level is taken to be Ed = −4. The scale T1 is defined in the
main text.

In what follows, we focus on the impurity magnetiza-
tion. According to the usual definition [31], to obtain it we
subtract from the total magnetization of the system the mag-
netization of the isolated Fermi sea. Therefore, the impurity
contribution to the magnetization, Mimp, is given by

Mimp(B) = − ∂

∂B
(E(B) − εT (B)). (24)

In Fig. 9, we show the impurity contribution to the mag-
netization in units of gμB, as a function of B. We chose
Ed = −4 to compare our results with the exact Bethe ansatz
(BA) results for the Kondo model [32]. The selected value
of the energy level Ed corresponds to the Kondo regime,
in which charge fluctuations are frozen, and the Anderson
model maps onto the Kondo one.

Following the notation introduced by Andrei in Ref. [32],
we define the energy scale T1, that characterizes the strong
coupling regime [27], from the susceptibility at zero temper-
ature,

χimp(B = 0) ≡
√

2πe

T1

. (25)

It can be noticed from Fig. 9 that the agreement with the
BA is very good. For small values of B as compared with
T1, we obtain a linear dependence of the magnetization with
respect to the applied field. This agrees with the expected
behavior of the Kondo problem indicative of a screened impu-
rity spin. On the other hand, for larger fields, we obtain the
characteristic slow asymptotic approach to the value gμB/2
of saturation which also agrees with the well-known loga-
rithmic corrections [32, 7, 34].
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Figure 10 Energy and magnetization as a function of B/T1 in the
strong coupling regime for Ed = −3.5. The quadratic and linear
shapes respectively are clearly captured. From the inverse of the
slope of the magnetization, we obtain the energy scale to be T1 =
0.1070 in the present case.

At this point, we have to mention that in addition to
NRG calculations, the LMA [35] and recent progress in the
RPT [36] can also deal with the magnetization of the single
impurity Anderson model.

In Fig. 10, we show the energy and magnetization depen-
dence with the applied magnetic field for small values of the
field compared with the energy scale T1. As was previously
mentioned, we obtain a quadratic and linear dependence of
the energy and magnetization respectively that agrees with
the expected behavior of these magnitudes in the strong cou-
pling regime.

From the definition of the low energy scale T1, it is natural
[27] to relate it with the usual Kondo scale, TK. The depen-
dence of TK with the parameters of the Hamiltonian can be
extracted, for instance, from the Poor Man’s Scaling of the
Anderson model [27],

TK =
√

DΔ eπEd/2Δ, (26)

that in units of the hybridization energy Δ becomes TK =√
D eπEd/2.

In Fig. 11, we analyze ln(T1) as a function of Ed for two
selected values of the bandwidth D. As it can be seen, we
obtain a linear dependence (dashed lines) with an excellent
regression coefficient of the order of 0.99999. The slope of
both set of parameters, corresponding to D = 10 and D =
20, is the same, α = 1.545 ± 0.001. It can be noticed that α

differs from π/2 by only 2%.
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Figure 11 Evolution of logarithm of T1 with Ed , for two different
values of the bandwidth D. The inset shows the scaled energy T ′ =
e−πEd/2T1 as a function of D′ = √

D.

The explicit expression of T1 can be written as T1 ∼
A(D) eπEd/2, with a pre-actor that only depends on D.

The inset of Fig. 11 shows the scaled energy T ′ =
e−πEd/2T1 as a function of D′ = √

D. The dashed line rep-
resents a linear regression, again with a great accuracy, with
a slope of 0.484 ± 0.001.

Finally, according to the results obtained we can write
the mathematical expression of T1 as

T1 =
√

8πe TK, (27)

which is a clear indication that the present formalism can
deal with the model in its strong coupling regime [27].

4 Summary and conclusions We propose an alge-
braic non-perturbative formalism to solve the Anderson
Hamiltonian, which consists in operating in a projected sub-
space of the total Hilbert space of one many-body function
characterized by a ground state Fermi sea of N particles
and an empty impurity. For simplicity we have restricted the
discussion to the infinite Coulomb repulsion U. We were
able to show that this treatment, including non-diagonal
contributions, corresponds to an extension of previous calcu-
lations proposed to obtain the ground state properties of the
Hamiltonian [19]. To operate in the projected subspace the
Hamiltonian has to be renormalized. A self-consistent func-
tional renormalization of this Hamiltonian permits to obtain
the ground state energy and all the static properties of the
system; the electronic occupation as a function of the local
energy of the impurity, the magnetization, the magnetic sus-
ceptibility and the Kondo temperature. We were able to show
that the formalism perfectly captures the well-known trends
of the model within the whole range of parameters. Concep-
tually these same ideas can be applied to obtain the Green
function of the system and all the dynamical properties. This
would require working not only in the S = 0 subspace, some-

thing that in principle can be done with this method. An
extension to incorporate more complex system as structures
of impurities and magnetic molecules adsorbed on metallic
substrate is now been considered. The particular properties
of the bulk density of states at the Fermi level neighborhood
can be incorporated in a trivial way as it only modifies the
function to be integrated in the functional self-consistent pro-
cesses. This permits to introduce the peculiarities of magnetic
impurities adsorbed on a graphene substrate or on any other
system described by a highly frequency dependent density
of states at the vicinity of the Fermi energy. The use of this
formalism to obtain the ground state energy of a periodical
system, like the Hubbard model is currently being studied.

Acknowledgements This work was partially supported by
PIP 00273, of CONICET, and PICT R1776 of the ANPCyT,
Argentina. We a knowledge financial support from the brazilian
agencies CNPq and FAPERJ(CNE). The authors are grateful to L.
O. Manuel, A. A. Aligia, G. B. Martins and C. A. Büsser for useful
discussions and P. Cornaglia for the NRG data.

References

[1] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[2] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[3] A. Georges, G. Kotliar, W. Krauth, and M. Rosenberg, Rev.

Mod. Phys. 68, 13 (1996).
[4] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-

Magder, U. Meirav, and M. A. Kastner, Nature 391, 156
(1998).

[5] M. A. Davidovich, E. V. Anda, C. A. Busser, and G. Chiappe,
Phys. Rev. B 65, 233310 (2002).

[6] P. B. Wiegmann and A. M. Tsvelick, J. Phys. C, Solid State
Phys. 16, 2281 (1983).

[7] A. M Tsvelick and P. B. Wiegmann, Adv. Phys. 32, 453
(1983).

[8] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[9] E. V. Anda, G. Chiappe, C. A. Busser, M. A. Davidovich, G.

B. Martins, F. Heidrich-Meisner, and E. Dagotto, Phys. Rev.
B 78, 085308 (2008).

[10] F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys.
Rev. B 79, 235336 (2009).

[11] N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987).
[12] Th. Pruschke and N. Grewe, Z. Phys. B, Condens. Matter 74,

439 (1989).
[13] K. Haule, S. Kirchner, J. Kroha, and P. Wölfle, Phys. Rev. B
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