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Temporal Argumentation Frameworks (TAF) represent a recent extension of Dung’s
abstract argumentation frameworks that consider the temporal availability of arguments.
In a TAF, arguments are valid during specific time intervals, called availability intervals,
while the attack relation of the framework remains static and permanent in time; thus,
in general, when identifying the set of acceptable arguments, the outcome associated with
a TAF will vary in time. We introduce an extension of TAF, called Extended Temporal
Argumentation Framework (E-TAF), adding the capability of modeling the temporal avail-
ability of attacks among arguments, thus modeling special features of arguments varying
over time and the possibility that attacks are only available in a given time interval.

E-TAF will be enriched by considering Structured Abstract Argumentation, using Dynamic
Argumentation Frameworks. The resulting framework, E-TAF�, provides a suitable model
for different time-dependent issues satisfying properties and equivalence results that per-
mit to contrast the expressivity of E-TAF and E-TAF� with argumentation based on abstract
frameworks. Thus, the main contribution here is to provide an enhanced framework for
modeling special features of argumentation varying over time, which are relevant in many
real-world situations. The proposal aims at advancing in the integration of time and
valuation in the context of argumentation systems as well.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Human commonsense reasoning is in many occasions the result of an analysis of alternatives and the evaluation of their
support. The study of this process suggested several formalisms that were introduced attempting to provide a way of mod-
eling this useful mechanism; notably, the field of argumentation has contributed with many proposals since ancient times
[12,14,39,35]. Thus, argumentation can be associated with the interaction of arguments for and against a claim supported by
some form of reasoning from a set of premises, with the purpose of ascertaining if that conclusion is acceptable.
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A variety of argument-based formalisms have emerged providing useful tools in areas such as legal reasoning, autono-
mous agents, and multi-agent systems [30,38,14,5,40,36,44,11]. In such environments, an agent may use argumentation
to perform individual reasoning to reach a resolution over contradictory evidence or to decide between conflicting goals;
but also, multiple agents may use dialectical argumentation to identify and settle differences, interacting via different
processes such as negotiation, persuasion, or joint deliberation. Many of such accounts of argumentation are based on Dung’s
foundational work characterizing Abstract Argumentation Frameworks [24] where arguments are considered as atomic
entities and their interaction is represented solely through an attack relation. In an effort to extend the knowledge represen-
tation abilities of the system, other research approaches have considered different possibilities of representation of the
internal structure of the arguments [13,29,26,37].

In many cases, commonsense reasoning requires the representation of time; thus, its consideration is also of relevance in
the modeling of the argumentation capabilities of intelligent agents [6,7,33]. Temporal Argumentation Frameworks (TAF)
[22,23] are a recent extension of Dung’s abstract frameworks that consider the temporal availability of arguments. In a
TAF, arguments are valid only during specific time intervals that are referred to as availability intervals; thus, when identify-
ing the set of acceptable arguments the outcome associated with a TAF will vary in time. Although arguments in TAF become
associated with availability intervals, the attack relation between them is assumed to be static and permanent in time, i.e., if
an argument is available at a given time any attack in which it participates effectively occurs.

In what follows, we will develop two formalisms starting from existing ones. We will take as point of departure the Tem-
poral Argumentation Frameworks, and then we will trim down the formalism of Dynamic Argumentation Frameworks to a
simpler framework; later, these two formalisms will be put together as a novel approach. We will briefly describe these two
changes below.

In Extended Temporal Argumentation Frameworks (E-TAF) we will add to TAFs the capability of modeling the availability of
attacks between arguments. This novel feature of E-TAF will allow to model special features of arguments varying over time,
where an attack can be only available in a given time interval with the intended meaning that the attacking argument is
more reliable than the attacked one in this interval.

The formalism of Structured Abstract Argumentation (SAA) is based on a simplified version of the recently introduced
Dynamic Argumentation Frameworks [41]. One of the technical contributions in their design is to consider structural ele-
ments for the arguments involved, thus expanding the representation capabilities of Dung’s frameworks but maintaining
a degree of abstraction. In this formalization, arguments are represented as structures standing for trees of smaller abstract
entities corresponding to individual reasoning steps. These individual reasoning steps may be considered as abstractions of
rules in a rule-based argumentation system without having to the make explicit use of a concrete knowledge representation
language. Using this type of frameworks with less abstract characteristics, we can enrich the E-TAF, and the resulting frame-
work E-TAF� will be able to provide a suitable model for different time-dependent issues, such as reliability, strength, or
skills; thus, these features can be associated with arguments to facilitate the building of applications in several real-world
situations.

The main contribution of this work is to provide an enhanced framework for modeling special features of argumentation
varying over time, which are relevant in many real-world situations. This proposal has also the aim of advancing in the inte-
gration of time and valuation in the context of argumentation systems. We are interested in preserving the generality of the
approach as much as possible, keeping it independent from any particular representation language, and considering the
internal structure of the arguments involved. Putting these developments in the theoretical context of computational argu-
mentation, we will also present some properties and equivalence results for contrasting the expressivity of E-TAF and E-TAF�

with classical abstract argumentation.
We can summarize the rest of the paper following the steps just described. Next, in Section 2, we will introduce the basic

elements of abstract argumentation; then, in Section 3, we will show how time availability of arguments affects abstract
argumentation, and in Section 4, the extension of E-TAF will show the addition of availability intervals to attacks. Later, in
Section 5, a framework for structured argumentation will be presented, and in Section 6 we will add temporal elements
to these type of frameworks. We will end this work reviewing the related literature and offering some conclusions.

2. Abstract argumentation

Dung presented in [24,25] the notion of Abstract Argumentation Frameworks (AF) as a way of concentrating on important
characteristics of a defeasible argumentation system from a bare bones, general point of view. In these frameworks, an argu-
ment is considered as an abstract entity with unspecified internal structure, and whose role in the model is determined only
by how it is related to other arguments through a relation of attack. This abstraction allows the definition of a number of
general argumentation semantics based on acceptability, which then can be applied to any concrete argumentation system
instantiating the AF.

Definition 1 (Argumentation Framework [25]). An argumentation framework (AF) is a pair hAR;Attsi, where AR is a set of
arguments, and Atts is a binary relation defined over AR (representing attack), that is, Atts # AR� AR.

Given an AF, an argument A is considered acceptable if it can be defended from all the arguments that attack it (attackers)
with arguments in AR. These intuitions are formalized in the following definitions, originally presented in [25].
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Definition 2 (Acceptability). Let AF ¼ hAR;Attsi be an argumentation framework, then:

– A set S # AR is said to be conflict-free in AF if there are no arguments A;B 2 S such that ðA;BÞ 2 Atts.
– An argument A 2 AR is considered acceptable with respect to a set S # AR in AF iff for each B 2 AR that attacks A there exists

an argument C 2 S such that ðC;BÞ 2 Atts; it is also said that B is attacked by S.
– A conflict-free set S # AR is said to be admissible in AF iff each argument in S is acceptable with respect to S.
– An admissible set S # AR is a complete extension of AF iff S contains each argument that is acceptable with respect to S.

From the above definitions, different semantics refining admissibility have been introduced by Dung [25]. Given
AF ¼ hAR;Attsi the following semantics were defined:

– preferred semantics: A set E # AR is a preferred extension of AF iff E is a # -maximal admissible set; or equivalently is a
# -maximal complete set. An argument A 2 AR is acceptable with respect to the preferred semantics iff A is in every
preferred extension E. It can be shown that there exists always at least one preferred extension.

– stable semantics: A set E # AR is a stable extension of AF iff E is a conflict free set and E attacks every argument in AR n E. An
argument A 2 AR is acceptable with respect to the stable semantics iff A is in every stable extension E. Every stable exten-
sion is a preferred extension, but the converse does not hold.

– grounded semantics: A set E # AR is the grounded extension of AF iff E is a # -minimal complete set. An argument A 2 AR is
acceptable with respect to the grounded semantics iff A is a member of the grounded extension E. There is always exactly
one grounded extension, and this extension is a subset of all preferred and stable extensions.

Notice that regarding the arguments to be accepted by each semantics, we are following a skeptical approach, i.e., when
more than one extension is possible we accept the arguments that belong to all of them. Dung [25] also presented a fixed-
point characterization of the grounded semantics based on the characteristic function F defined below.

Definition 3. Let hAR;Attsi be an AF. The associated characteristic function is defined as follows: F : 2AR ! 2AR:
FðSÞ¼def fA 2 ARjA is acceptable w:r:t: Sg

The following proposition suggests how to compute the grounded extension associated with a finitary AF (i.e., such that

each argument is attacked by at most a finite number of arguments) by iteratively applying the characteristic function start-
ing from ;.
Proposition 1 [25]. Let hAR;Attsi be a finitary AF. Let i 2 N [ f0g such that Fið;Þ ¼ Fiþ1ð;Þ. Then Fið;Þ is the least fixed point of F,
and corresponds to the grounded extension associated with the AF.
Example 1. Consider the AF ¼ hAR;Attsi graphically represented in Fig. 1, where AR ¼ fA; B;C;D; E; F;G;H; I; J;Kg and
Atts ¼ fðA;BÞ; ðB;CÞ; ðE; FÞ; ðF;DÞ; ðD; EÞ; ðH; IÞ; ðI;HÞ; ðH; JÞ; ðI; JÞ; ðJ;KÞg.

The sets E1 ¼ fA;C;G;H;Kg and E2 ¼ fA;C;G; I;Kg are admissible and complete. Finally, E1 and E2 are the maximal sets
verifying the previous conditions, and therefore they are preferred extensions of AR. As we can see, for a given argumentation
framework there may exist multiple preferred extensions. The intersection of these sets, fA;C;G;Kg, corresponds to the set of
accepted arguments according to the preferred semantics.

In this example there is no stable extension, as there are cycles of odd length. When there are no cycles of odd length, the
stable extensions coincide with the preferred extensions.
Fig. 1. Argumentation framework.
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The set E0 ¼ fA; C;Gg is admissible, since it defends all the arguments it contains. E0 is also complete since it contains all
the arguments in AR defended by E0. Finally, it can be verified that E0 is the minimal set satisfying the previous conditions,
and therefore it corresponds to the grounded extension of AR.

Finally, the grounded extension for the example in Fig. 1 can be obtained by applying the fixed point characterization
from Proposition 1.
F0ð;Þ ¼ ;
F1ð;Þ ¼ Fð;Þ ¼ fA;Gg
F2ð;Þ ¼ FðfA;GgÞ ¼ fA;G; Cg
F3ð;Þ ¼ FðfA;G;CgÞ ¼ F2ð;Þ
3. Modeling temporal argumentation with TAF

Modeling time has been a concern of researchers in Artificial Intelligence for many decades (see for instance [1] for a
landmark paper in the area). Reviewing that research is out of the scope of this paper and we refer the interested reader
to [45,28]. In the area of Argumentation in Artificial Intelligence, the first attempts to introduce temporal argumentative
reasoning can be traced to [6,7,33,22]. Next, we will recall the basis of [23].

Timed Abstract Frameworks (TAF) [22,23] incorporate time to abstract frameworks adding that dimension to
arguments; thus, arguments are valid only during specific intervals of time that are called availability intervals. Attacks
between arguments are considered only when both the attacker and the attacked arguments are simultaneously
available. Therefore, when identifying the set of acceptable arguments, the outcome associated with a given TAF may
vary accordingly to time.

To represent time, we assume that a correspondence was defined between the time line and the set of positive real num-
bers including 0, represented as Rþ ¼ fx 2 Rj0 6 xg. A time interval, representing a period of time without interruptions, will
be then represented as defined below. Notice that we use ‘–’ instead of ‘,’ as a separator for legibility reasons.

Definition 4 (Time Interval). Given a; b 2 Rþ, a time interval, or just an interval, is a set of positive real numbers. We consider
four possible time intervals:
ða� bÞ¼def fx 2 Rþja < x < bg
ða� b�¼def fx 2 Rþja < x 6 bg
½a� bÞ¼def fx 2 Rþja 6 x < bg
½a� b�¼def fx 2 Rþja 6 x 6 bg
As is usual, any of the intervals shown is considered empty if b < a, and the interval ½a� a� represents the point in time fag.
For the infinite endpoint, we use the symbolþ1, as in ½a�þ1Þ, to indicate that there is no upper bound for the interval, and
an interval containing this symbol will always be closed by ‘‘)’’.

To model discontinuous periods of time we introduce the notion of time intervals set. Although a time intervals set
suggests a representation as a set of sets (set of intervals), we chose a flattened representation as a set of reals (the set of
all real numbers contained in any of the individual time intervals). Thusly, we can directly apply traditional set operations
and relations on time intervals sets.

Definition 5 (Time Intervals Set). A time intervals set, or just intervals set, is a finite set S of time intervals.
Note that S # Rþ; when convenient, we will use the set of sets notation for time intervals sets. Concretely, a time interval

set S will be denoted as the set of all disjoint and # -maximal individual intervals included in the set. For instance, we will
use fð1� 3�; ½4:5� 8Þg to denote the time interval set ð1� 3� [ ½4:5� 8Þ. We now formally introduce the notion of Timed
Argumentation Framework, which extends Dung’s AF by incorporating the availability function. This function will be used to
capture those time intervals where arguments are available.

Definition 6 (Timed Argumentation Framework). A timed argumentation framework (or simply TAF) is a triple
U ¼ hAR;Atts;Avi, where AR is a set of arguments, Atts is a binary relation defined over AR (representing attack), and
Av : AR�!}ðRþÞ is an availability function for timed arguments, such that AvðAÞ is the set of availability intervals of an
argument A.

Notice that we assume that a set S of intervals is equivalent to the set of time points associated with every interval in S.
Thus, the image for Av is }ðRþÞ.

Example 2. Fig. 2 depicts the TAF U ¼ hAR;Atts;Avi where:



Fig. 2. TAF corresponding to Example 2.
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AR ¼ fA;B;C;D; E; F;G;H; I; J;Kg
Atts ¼ fðA;BÞ; ðB; CÞ; ðE; FÞ; ðF;DÞ; ðD; EÞ; ðH; IÞ; ðI;HÞ; ðH; J; Þ; ðI; J; Þ; ðJ;KÞg:
Av ¼ fðA; f½0� 30�gÞ; ðB; f½10� 50�gÞ; ðC; f½0� 60�gÞ; ðD; f½10� 30�gÞ; ðE; f½10� 30�gÞ;

ðF; f½0� 30�gÞ; ðG; f½0� 90�gÞ; ðH; f½10� 50�gÞ; ðI; f½20� 30�gÞ; ðJ; f½20� 30�gÞ;
ðK; f½20� 30�gÞg
The following definitions formalize argument acceptability in TAF, and are extensions of the acceptability notions
presented in Section 2 for AF. Firstly, we present the notion of t-profile, binding an argument to a set of time intervals, which
constitutes a fundamental component for time-based acceptability.
Definition 7 (T-Profile). Let U ¼ hAR;Atts;Avi be a TAF. A timed argument profile for A in U, or just t-profile for A, is a pair
ðA;T AÞ where A 2 AR and T A is a set of time intervals where A is available, i.e., T A # AvðAÞ. The t-profile ðA;AvðAÞÞ is called
the basic t-profile of A.
Definition 8 (Collection of T-Profiles). Let U ¼ hAR;Atts;Avi be a TAF. Let ðX1;T X1 Þ; ðX2;T X2 Þ; . . . ; ðXn;T Xn Þ be t-profiles. The
set S ¼ fðX1;T X1 Þ; ðX2;T X2 Þ; . . . ; ðXn;T Xn Þg is a collection of t-profiles iff it verifies the following conditions:

(i) Xi – Xj for all i; j such that i – j;1 6 i; j 6 n.
(ii) T Xi

– ;, for all i such that 1 6 i 6 n.

Since the availability of arguments varies in time, the acceptability of a given argument A will also vary in time. To do this,
it is necessary to introduce two new concepts corresponding to the intersection and inclusion of t-profiles, denoted as
t-intersections and t-inclusions, formalized below:

Definition 9 (t-intersection). Let U ¼ hAR;Atts;Avi be a TAF. Let S1 and S2 be two collections of t-profiles. We define the
t-intersection of S1 and S2, denoted S1\tS2, as the collection of t-profiles such that:
S1\tS2 ¼ fðX;T X \ T X0 ÞjðX;T XÞ 2 S1; ðX;T X0 Þ 2 S2; and T X \ T X0 – ;g
Definition 10 (t-inclusion). Let S1 and S2 be two collections of t-profiles. We say that S1 is t-included in S2, denoted as S1 # tS2,
if for any t-profile ðX;T XÞ 2 S1 there exists a t-profile ðX;T 0

XÞ 2 S2 such that T X #T 0
X .

The following definitions reformulate Dung’s original formalization for abstract argumentation considering t-profiles
instead of arguments. First, we will extend the notion of conflict-free set to t-profiles in a TAF, and then we will define
how an argument is defended over time.

Definition 11 (t-conflict-free). A collection S of t-profiles is said to be t-conflict-free in a TAF U if there are no t-profiles
ðA;T AÞ; ðB;T BÞ 2 S such that ðA;BÞ 2 Atts and T A \ T B – ;.
Definition 12 (Defense of A from B by S). Given U ¼ hAR;Atts;Avi, let S be a t-conflict-free collection of t-profiles, and A;B 2 AR,
with t-profiles ðA;AvðAÞÞ and ðB;AvðBÞÞ respectively. The defense t-profile of A from B w.r.t. S, denoted as T B

ðAjSÞ is defined as
follows:
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T B
ðAjSÞ¼def AvðAÞ \

[
C2fXjðX;T X Þ2S; ðX;BÞ2Attsg

AvðBÞ \ T C
Intuitively, A is defended from the attack of B when B is not available, plus those intervals where the attacker B is available
but it is in turn attacked by an argument C in the set S. The following definition captures the defense profile of A, but con-
sidering all its attacking arguments.
Definition 13 (Acceptable t-profile of A w.r.t. S). Let U ¼ hAR;Atts;Avi be a TAF, let S be a collection of t-profiles. The acceptable
t-profile for A w.r.t. S, denoted as T ðAjSÞ is defined as follows:
T ðAjSÞ¼def

\
B2fXjðX;AÞ2Attsg

ðAvðAÞ n AvðBÞÞ [ T B
ðAjSÞ
where T B
ðAjSÞ is the time interval where A is defended of its attacker B by S. Then, the intersection of all time intervals in which

A is defended from each of its attackers by the set S, is the time interval where A is available and is acceptable with respect to
S.

Now, we introduce versions of admissibility and completeness suitably extended for the context of temporal argumenta-
tion frameworks.

Definition 14 (t-admissible/t-complete). Given the TAF U ¼ hAR;Atts;Avi:

– A collection S of t-profiles is t-admissible in U iff for all ðA;T ðAjSÞÞ 2 S it holds ðA;T ðAjSÞÞ is an acceptable t-profile of A w.r.t. S.
– A t-admissible collection S is a t-complete extension of U iff S contains all the t-profiles that are acceptable with respect to S.

As in the framework proposed by Dung, we can define now the acceptability semantics for TAF.

Definition 15. Let U ¼ hAR;Atts;Avi be a TAF, we can define the t-preferred semantics, t-stable semantics, and t-grounded
semantics as follows:

– t-preferred semantics: A collection E of t-profiles is a t-preferred extension of U iff E is a # t-maximal t-admissible collection
of t-profiles.

– t-stable semantics: Given a collection E ¼ fðYi;T ðYi jEÞÞj1 6 i 6 ng of t-profiles that satisfies t-conflict-freeness, E is a t-stable
extension of U iff for all X 2 AR n fYij1 6 i 6 ng with t-profile ðX;T XÞ it holds that:
T X n
[n
i¼1

T ðYi jEÞ ¼ ;

t-grounded semantics: A collection E of t-profiles is the t-grounded extension of U iff E is a # t-minimal t-complete collec-
–
tion of t-profiles.

Regarding the arguments to be sanctioned in each semantics, we will take the skeptical approach, i.e., when more than
one extension exist we will accept the arguments that belong to all of them. Skeptical acceptability for the three semantics
described can be defined as follows:

Definition 16. Let U ¼ hAR;Atts;Avi be a TAF, and let fE1; E2; . . . ; Eng be the set of t-preferred (t-stable) extensions of U. An
argument A 2 AR is acceptable under t-preferred (t-stable) semantics with a t-profile ðA;T AÞ iff T A ¼

Tn
i¼1T ðAjEiÞ and T A – ;.

An argument A 2 AR is acceptable under t-grounded semantics in the time interval T ðAjEÞ iff ðA;T ðAjEÞÞ 2 E, where E is the t-
grounded extension.

As in abstract frameworks, the equivalence between a # t-maximal t-complete extension and # t-maximal t-admissible
sets holds; and, t-preferred extensions are equivalently defined as t-complete # t-maximal sets. The formal statement of
these equivalences appears below; the proof follows directly from the definitions.

Proposition 2. Let U ¼ hAR;Atts;Avi be a TAF, and let E be a collection of t-profiles. Then, E is a # t-maximal t-admissible
collection of t-profiles iff E is a # t-maximal t-complete extension.

Also, the t-stable, t-preferred, and t-complete semantics admit multiple extensions, whereas the t-grounded semantics
ascribes a single extension to a given argument system. In particular, the fixed point characterization for grounded semantics
proposed by Dung can be directly applied to TAF by considering the following modified version of the characteristic function.

Definition 17. Let hAR,Atts,Avi be a TAF. Let S be a collection of t-profiles. The associated characteristic function is defined as
follows:
FðSÞ¼def fðA;T ðAjSÞÞjA 2 AR and ðA;T ðAjSÞÞ is the acceptable t-profile of A w:r:t: Sg
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Note that there exist always an t-grounded extension, and the t-grounded extension is a t-subset of all t-preferred and t-
stable extensions; also, a t-stable extension is also a t-preferred extension and a t-preferred extension is also a t-complete
extension.
Example 3. Suppose we want to establish the acceptability of C in the TAF U presented in Example 2. As it was shown in
Example 1, by considering only the Atts relation we could conclude that the argument C is acceptable.

Let us analyze the acceptability of the argument C in the time interval AvðCÞ in each semantics of TAF. First we analyze the
t-preferred extension, next the t-stable extension and finally the t-grounded extension. The collections of t-profiles
S1 ¼ fðA; f½0—30�gÞ; ðB; fð30—50�gÞ; ðC; f½0—30�; ð50—60�gÞ; ðF; f½0—10ÞgÞ; ðG; f½0—90�gÞ; ðH; f½10—50�gÞ; ðK; f½20—30�gÞg:

S2 ¼ fðA; f½0—30�gÞ; ðB; fð30—50�gÞ; ðC; f½0—30�; ð50—60�gÞ; ðF; f½0—10ÞgÞ; ðG; f½0—90�gÞ; ðH; f½10—20Þ; ð30—50�gÞ;
ðI; f½20—30�gÞ; ðK; f½20—30�gÞg:
are t-admissible, since they defend every t-profile they contain, i.e., for the specific time intervals involved. S1 and S2 are also t-
complete since they include all the t-profiles defended by C in their associated time intervals. Finally, it can be verified that S1

and S2 are the maximal sets satisfying the previous conditions, and therefore both of them correspond to the t-preferred
extension; also, as we can see, it is possible to obtain multiple t-preferred extensions. The intersection of these collections
results in a collection of accepted t-profiles. For the particular example given above, we have
S1\tS2 ¼ fðA; f½0� 30�gÞ; ðB; fð30� 50�gÞ; ðC; f½0� 30�; ð50� 60�gÞ; ðF; f½0� 10ÞgÞ; ðG; f½0� 90�gÞ; ðH; f½10� 20Þ; ð30

� 50�gÞ; ðK; f½20� 30�gÞg:
In this example there is no t-stable extension, as there are odd length cycles. When there are no cycles of odd length, the t-
stable extension coincides with the t-preferred extension. For example, suppose now that we want to establish the accept-
ability of C in the TAF U presented in Example 2. As shown in Example 1, by considering only the Atts relation we could con-
clude that the argument C is acceptable. Let us obtain the t-grounded extension of U by applying the fixed point
characterization (see Fig. 3).
F0ð;Þ ¼ ;

F1ð;Þ ¼ fðA; f½0� 30�gÞ; ðB; fð30� 50�gÞ; ðC; f½0� 10Þ; ð50� 60�gÞ; ðG; f½0� 90�gÞ; ðH; f½10� 20Þ; ð30� 50�gÞ; ðF; f½0
� 10ÞgÞg

F2ð;Þ ¼ fðA; f½0� 30�gÞ; ðB; fð30� 50�gÞ; ðC; f½0� 30�; ð50� 60�gÞ; ðG; f½0� 90�gÞ; ðH; f½10� 20Þ; ð30� 50�gÞ; ðF; f½0
� 10ÞgÞg

F3ð;Þ ¼ F2ð;Þ
Consequently, F2ð;Þ is the t-grounded extension of U. Next, we describe how the temporal availability of C was obtained in
F2ð;Þ by applying the Definitions 12 and 13 starting from F1ð;Þ. By applying Definition 12:
T B
ðCjF1ð;ÞÞ ¼ AvðCÞ \

[
ðA;T AÞ2fðX;T X ÞjðX;T X Þ2F1ð;Þ; ðX;BÞ2Attsg

ðAvðBÞ \ T AÞ ¼ f½0� 60�g \ ðf½10� 50�g \ f½0� 30�gÞ

¼ f½0� 60Þg \ ½10� 30� ¼ f½10� 30�g
By Definition 13:
Fig. 3. Representation of the arguments associated with Example 3 in a time line.
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T ðCjF1ð;ÞÞ ¼ ðAvðCÞ n AvðBÞÞ [ T B
ðCjF1ð;ÞÞ ¼ f½0� 10Þ; ð50� 60�g [ f½10� 30�g ¼ f½0� 30�; ð50� 60�g
4. E-TAF: extending TAF with time intervals for attacks

Our presentation up to this point assigns a temporal availability to arguments, indicating the temporal interval where the
argument is available to support its conclusion; but, the effectiveness of the argument is still static, i.e., its ability to support
its conclusion does not change in the time interval in which is available. However, there are domains where the effectiveness
of the argument can vary in time; for example, the reliability of the information used for recommending a particular
investment changes as time passes.

Considering this fluctuation of the effectiveness through the time, it is clear that the success of an attack between two
arguments depends on the time interval in which that attack occurs; therefore, the success of an attack will depend on
the time subinterval when the attacker is more effective than the argument receiving that attack. This situation is local to
the pair of arguments in conflict; simultaneously, in its time interval, the attacker could be performing an attack to a
different argument but its attack being effective in a different subinterval of its availability. Therefore, in the case described,
two attacks performed by the same argument have different time intervals of effectiveness associated; for this reason, it is
necessary to associate time to the argument and the attack separately.

Associating time intervals to attacks is an important extension of the representation capabilities of a TAF. This separation
allows to model what–if scenarios to analyze different situations where, for instance, the effectiveness of attacks and the
availability of arguments and attacks change. We will illustrate these situations below.

We now introduce Extended Temporal Argumentation Frameworks (E-TAF) adding that capability to TAFs; thus, this
framework takes into account not only the availability of the arguments as in TAFs but adds the consideration of the avail-
ability of the attacks each argument delivers. That is, as the example that follows illustrates, an argument might be available
for consideration but the attack it carries might not.

In certain situations regulated by law, there is the concept of statute of limitations. This is a legislative act that sets a time
limit on legal action in certain cases; that is, an enactment in a common law legal system that sets the maximum time after
an event that legal proceedings based on that event may be initiated. All systems of law have statutes restricting the time
within which legal proceedings may be brought. The periods prescribed may vary according to how serious the offense was,
some crimes never prescribe, and the time limitations can be extended in special situations.1 One reason for having a statute
of limitations is that over time evidence can be corrupted or disappear; thus, the best time to bring a lawsuit is while the
evidence is not lost and as close as possible to the alleged illegal behavior. Another reason is that people want to get on with
their lives and not have legal battles from their past come up unexpectedly. The injured party has a responsibility to quickly
bring about charges so that the process can begin. Examples of offenses regulated by statute of limitation laws are fraud,
medical malpractice, debt collection, wrongful death, etc.

Consider the following situation: John has left debts unpaid in Alabama, US, during 2008. He has canceled them in 2009, but
he paid his debts with counterfeited US dollars, committing fraud. This fraud was detected on January 1, 2010. A possible
argument exchange for prosecuting John could be as follows:

� Arg1: (Plaintiff) John left debts unpaid in Alabama in 2008, therefore the availability of the argument Arg1 is [January 1,
2008�þ1).
� Arg2: (Defendant) John paid all his debts in Alabama for 2008, thus Arg2 is available in the time interval [January 1,

2009�þ1).
� Arg3: (Plaintiff) John did not cancel his debts in Alabama for 2008, as he paid them with counterfeited US dollars, committing

fraud, so Arg3 is available in [January 1, 2010�þ1).

According to Alabama’s statute of limitations, the attack from Arg3 to Arg2 would be valid just until January 1, 2012 (that
is, 2 years from the moment it was discovered). Note that Arg3 is valid by itself (as the fraud was committed anyway), but the
statute of limitations imposes a time-out on the attack relationship between arguments Arg3 and Arg2; thus, John would be
not liable of prosecution for committing fraud if the dialog would have taken place in 2012, as the attack from Arg3 to Arg2

would cease to be applicable.
Next we formalize the definition of the proposed extension of TAF, which provides the elements required to capture timed

attacks between timed arguments.

Definition 18 (Extended TAF). An extended timed abstract argumentation framework (or simply E-TAF) is a 4-tuple
H ¼ hAR;Atts;ArgAv ;AttAvi where:

(i) AR is a set of arguments.
(ii) Atts is a binary relation defined over AR representing attack.
statute of limitations may vary in different countries; for the case of the US see for instance http://www.statuteoflimitations.net.

http://www.statuteoflimitations.net
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(iii) ArgAv : AR�!}ðRþÞ is the availability function for timed arguments.
(iv) AttAv : Atts�!}ðRþÞ is the availability function for timed attacks, where AttAvððA;BÞÞ# ArgAvðAÞ \ ArgAvðBÞ.

Items (i), (ii), and (iii) represent the TAF part of the extended framework. The item mentioned in (iv),
AttAvððA;BÞÞ# ArgAvðAÞ \ ArgAvðBÞ, ensures that the availability of the attack cannot exceed the availability of the argu-
ments involved, and Rþ is the set of positive real numbers plus 0. To simplify the notation, we will continue using AvðAÞ
for ArgAvðAÞ and we will use T ðA;BÞ for AttAvððA;BÞÞ.

Example 4. Consider the E-TAF H ¼ hAR;Atts;ArgAv ;AttAvi in Fig. 4
AR ¼ fA;B;C;D; E; F;G;H; I; J;Kg
Atts ¼ fðA;BÞ; ðB;CÞ; ðE; FÞ; ðF;DÞ; ðD; EÞ; ðH; IÞ; ðI;HÞg:

ArgAv ¼ fðA; f½0� 30�gÞ; ðB; f½10� 50�gÞ; ðC; f½0� 60�gÞ; ðD; f½10� 30�gÞ; ðE; f½10� 30�gÞ; ðF; f½0� 30�gÞ; ðG; f½0

� 90�gÞ; ðH; f½10� 50�gÞ; ðI; f½20� 30�gÞ; ðJ; f½20� 30�gÞ; ðK; f½20� 30�gÞg
AttAv ¼ fððA;BÞ; f½15� 30�gÞ; ððB; CÞ; f20� 50�gÞ; ððH; IÞ; f½20� 25�gÞ; ððI;HÞ; f½20� 30�gÞ; ððD; EÞ; f½20

� 30�gÞ; ððE; FÞ; f½20� 30�gÞ; ððF;DÞ; f½20� 30�gÞ; ððH; JÞ; f½20� 25�gÞ; ððI; JÞ; f½20� 25�gÞ; ððJ;KÞ; f½20� 25�gÞg
The following definitions are extensions of the Definitions 11–13, taking into account the availability of attacks.
Definition 19 (at-conflict-freeness). Let H ¼ hAR;Atts;ArgAv ;AttAvi be an E-TAF. A set S of t-profiles is called at-conflict-free
in H if there are no t-profiles (A, T A), (B, T B) 2 S such that ðA; BÞ 2 Atts and
T A \ T B \ T ðA;BÞ – ;
Definition 20 (Defense of A from B by S). Given an E-TAF defined as H ¼ hAR;Atts;ArgAv ;AttAvi; S a collection of t-profiles, and
A;B 2 AR, with t-profiles ðA;AvðAÞÞ and ðB;AvðBÞÞ respectively. The defense t-profile of A from B w.r.t. S, denoted as T B

ðAjSÞ is
defined as follows:
T B
ðAjSÞ¼def

[
ðC;T C Þ2fðX;T X ÞjðX;T X Þ2S; ðX;BÞ2Attsg

ðT ðB;AÞ \ T ðC;BÞ \ T CÞ
From the previous definitions, the notion of acceptable t-profile of A w.r.t. S in E-TAF coincides with the corresponding def-
inition in TAF.
Fig. 4. An example of E-TAF.
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Definition 21 (Acceptable t-profile of A w.r.t. S). Given an E-TAF H ¼ hAR;Atts;ArgAv;AttAvi, let S be a set of t-profiles. The
acceptable t-profile for A w.r.t. to S, denoted as T ðAjSÞ is defined as follows:
T ðAjSÞ¼def

\
B2fXjðX;AÞ2Attsg

ðAvðAÞ n T ðB;AÞÞ [ T B
ðAjSÞ
Thus, this definition reflects that the intersection of all time intervals in which A is defended from each of its attackers by
the set S, is the time interval where A is available and is acceptable with respect to S. The acceptability formalization for TAF
directly applies to E-TAF. In the same way that the original definition of t-conflict-free was recast into at-conflict-free, we pro-
ceed to characterize the notions of at-admissible and at-complete. Given the H ¼ hAR;Atts;ArgAv;AttAvi, we can define now
the semantics for E-TAF as follows:

– at-preferred semantics: A collection E of t-profiles is an at-preferred extension of H iff E is a # t-maximal at-admissible col-
lection of t-profiles.

– at-stable semantics: Given a collection E ¼ fðYi;T ðYi jEÞÞj1 6 i 6 ng of t-profiles that satisfies at-conflict-freeness, E is a at-
stable extension of H iff for all X 2 AR n fYij1 6 i 6 ng with t-profile ðX;T XÞ it holds that T X n

Sn
i¼1T ðYi jEÞ ¼ ;.

– at-grounded semantics: A collection E of t-profiles is the at-grounded extension of H iff E is a # t-minimal at-complete col-
lection of t-profiles.

Regarding the arguments to be accepted in each semantics, we will take the skeptical approach, i.e., when more than one
extension is possible we will accept the arguments that belong to all of them in the common time interval they are active.
Skeptical acceptability for the three semantics described can be defined as follows:

Definition 22. Let H ¼ hAR;Atts;ArgAv ;AttAvi be an E-TAF, and let fE1; E2; . . . ; Eng be the set of at-preferred (at-stable)
extensions of H. An argument A 2 AR acceptable under at-preferred (at-stable) semantics with a t-profile ðA;T AÞ iff
T A ¼

Tn
i¼1T ðAjEiÞ and T A – ;.

An argument A 2 AR is acceptable under at-grounded semantics in the time interval T ðAjEÞ iff ðA;T ðAjEÞÞ 2 E, where E is the
at-grounded extension.

Extending the notion presented in Proposition 2, the equivalence between a # t-maximal at-complete extension and # t-
maximal at-admissible collections of t-profiles holds; and, at-complete extensions are equivalently defined as at-complete
# t-maximal collections of t-profiles. The formal statement of these equivalences appears below; the proof follows directly
from the definitions.

Proposition 3. Let H ¼ hAR;Atts;ArgAv ;AttAvi be an E-TAF, and let E be a collection of t-profiles. Then, E is a # t-maximal at-
admissible collection of t-profiles iff E is # t-maximal at-complete extension.

The fixed point characterization for grounded semantics proposed by Dung can be applied to E-TAF just by considering the
following modified version of the characteristic function.

Definition 23 (Characteristic function). The associated characteristic function for H ¼ hAR;Atts;ArgAv ;AttAvi is defined as
follows:
FðSÞ¼def fðA;T ðAjSÞÞjA 2 AR and ðA;T ðAjSÞÞ is the acceptable t-profile of A w:r:t: Sg

The relations between at-grounded extensions, at-preferred extensions, at-stable extensions, and at-complete extensions

is given in the following proposition.
Proposition 4. Let H ¼ hAR;Atts;ArgAv ;AttAvi be an E-TAF, then:

(1) There always exists an at-grounded extension.
(2) An at-preferred extension is also an at-complete extension.
(3) An at-stable extension is also an at-preferred extension.
(4) The at-grounded extension is a t-subset of all at-preferred and at-stable extensions.
Example 5. Suppose we want to establish the acceptability of C in the E-TAF H presented in the Fig. 4. As shown in Example
1, by considering only the relation Atts we could say that the argument C is acceptable.

Now we analyze the acceptability of the argument C in the time interval AvðCÞ in each semantics of E-TAF. First we
analyze the at-preferred extension, next the at-stable extension and finally the at-grounded extension. The sets of t-profiles
are at-admissible, since they defend every t-profile that they contain, i.e., for the specific time intervals involved.
S1 ¼ fðA; f½0—30�gÞ; ðB; f½10—15Þ; ð30—50�gÞ; ðC; f½0—30�; ð50—60�gÞ; ðF; f½0—20ÞgÞ; ðD; f½10—20ÞgÞ; ðE; f½10—20ÞgÞ;
ðG; ½0—90�gÞ; ðH; f½10—25�; ð30—50�gÞ; ðIfð25—30�gÞ; ðJ; fð25—30�gÞ; ðK; f½20—30�gÞg
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S2 ¼ fðA; f½0—30�gÞ; ðB; f½10—15Þ; ð30—50�gÞ; ðC; f½0—30�; ð50—60�gÞ; ðF; f½0—20ÞgÞ; ðD; f½10—20ÞgÞ; ðE; f½10—20ÞgÞ;
ðG; f½0—90�gÞ; ðH; f½10—20Þ; ð30—50�gÞ; ðIf½20—30�gÞ; ðJ; fð25—30�gÞ; ðK; f½20—30�gÞg
S1 and S2 are also at-complete since they include all the t-profiles defended by C in their associated time intervals. Finally, it
can be verified that S1 and S2 are the maximal sets satisfying the previous conditions, and therefore both of them correspond
to the at-preferred extension. As we can see, its possible to obtain multiple at-preferred extensions. The intersection of these
sets results the set of accepted t-profiles, then
S1\tS2 ¼ fðA; f½0—30�gÞ; ðB; f½10—15Þ; ð30—50�gÞ; ðC; f½0—30�; ð50—60�gÞ; ðF; f½0—20ÞgÞ; ðD; f½10—20ÞgÞ; ðE; f½10—20ÞgÞ;
ðG; f½0—90�gÞ; ðH; f½10—20Þ; ð30—50�gÞ; ðIfð25—30�gÞ; ðJ; fð25—30�gÞ; ðK; f½20—30�gÞg
In this example there is no at-stable extension, as there are odd length cycles. If there is no cycle of odd length, the at-stable
extension coincides with the at-preferred extension.

Suppose now we want to establish the acceptability of C in the E-TAF H presented in Example 4. As shown in the AF of
Example 1, by considering only the Atts relation we could say that the argument C is acceptable. Let us obtain the at-
grounded extension of H by applying the fixed point characterization.
F0ð;Þ ¼ ;

F1ð;Þ ¼ fðA; f½0—30�gÞ; ðB; f½10—15Þð30—50�gÞ; ðC; f½0—20Þ; ð50—60�gÞ; ðG; f½0—90�gÞ; ðH; f½10—20Þ; ð30—50�gÞ;
ðI; fð25—30�gÞ; ðJ; fð25—30�gÞ; ðK; fð25—30�gÞ; ðF; f½0—20ÞgÞ; ðD; f½10—20ÞgÞ; ðE; f½10—20ÞgÞg

F2ð;Þ ¼ fðA; f½0—30�gÞ; ðB; f½10—15Þð30—50�gÞ; ðC; f½0—30�; ð50—60�gÞ; ðG; f½0—90�gÞ; ðH; f½10—20Þ; ð30—50�gÞ;
ðI; fð25—30�gÞ; ðJ; fð25—30�gÞ; ðK; fð25—30�gÞ; ðF; f½0—20ÞgÞ; ðD; f½10—20ÞgÞ; ðE; f½10—20ÞgÞg

F3ð;Þ ¼ F2ð;Þ
Consequently, F2ð;Þ is the at-grounded extension of H.
Next, we describe how the temporal availability of C was obtained in F2ð;Þ by applying the Definitions 20 and 21 from

F1ð;Þ.
By applying Definition 20:
T B
ðCjF1ð;ÞÞ ¼

[
ðA;AvðAÞÞ2fðX;AvðXÞÞjðX;AvðXÞÞ2F1ð;Þ;ðX;BÞ2Attsg

ðT ðB;CÞ \ T ðA;BÞ \ AvðAÞÞ ¼ f½40—50�g \ f½20—50�g \ f½15—30�g

¼ f½20—30�g
Applying Definition 21 we obtain:
T ðAjF1ð;ÞÞ ¼ ðAvðCÞ n T ðB;CÞÞ [ T B
ðCjF1ð;ÞÞ ¼ f½0—20Þ; ð50—60�g [ f½20—30�g ¼ f½0—30�; ð50—60�g
From the previous examples, it follows that argument C is accepted only for the time intervals {½0—30�; ð50—60�}.
Given an E-TAF H ¼ hAR;Atts;ArgAv ;AttAvi, and an argument A 2 AR, we will use At � PRHðAÞ;At-STHðAÞ, and At-GRHðAÞ to

denote the set of intervals on which A is acceptable in H according to at-preferred, at-stable, and at-grounded semantics
respectively, using again the skeptical approach where it corresponds. Formally, At-PRHðAÞ ¼ T PrH

A , where (A,T PrH
A ) is in every

at-preferred extension of H; At-STHðAÞ ¼ T StH
A , where (A,T StH

A ) is a member of every at-stable extension for the E-TAF H; and
At-GRHðAÞ ¼ T GrH

A , where (A,T GrH
A ) is in the at-grounded extension for the E-TAF H.

The following property establishes a connection between acceptability in our extended temporal framework E-TAF and
acceptability in Dung’s frameworks.2

Lemma 1. Let H ¼ hAR;Atts;ArgAv;AttAvi be an E-TAF and let a 2 Rþ representing a point in time. Let H0a ¼ hAR0a;Atts0ai be a
Dung abstract framework obtained from H in the following way: AR0a ¼ fA 2 ARja 2 T Ag and Atts0a ¼ fðA;BÞ 2 Attsja 2 T ðA;BÞg.
Let E a collection of t-profiles in H, and E0a ¼ fXjðX;T ðXjEÞÞ 2 E and a 2 T ðXjEÞgðthus; E0a # AR0aÞ. It holds that, if E is an at-preferred
extension (respectively an at-stable extension or an at-grounded extension) w.r.t. H, then E0a is a preferred extension (respectively a
stable extension or a grounded extension) w.r.t. H0a.

Intuitively, the AF H0a represents a snapshot of the E-TAF framework H at the time point a, where the arguments and
attacks in H0a are those that are available at the time point a in H. Then, this Lemma states that an at-preferred extension
(respectively an at-stable extension or the at-grounded extension) E for E-TAF at the time point a coincides with a preferred
extension E0a (respectively a stable extension or the grounded extension) of H0a.
ofs are included in Appendix A.
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The converse of the statement of Lemma 1 does not hold. The fact that Ea is an extension with respect to Ha does not
guarantee that E is an extension with respect to H, since we only have the certainty that E satisfies the conditions to be
an extension in the time point a.

Lets see a counterexample. Given a E-TAF H ¼ hAR;Atts;ArgAv ;AttAvi, where:

– AR ¼ fA;Bg,
– Atts ¼ fðA; BÞg,
– ArgAv ¼ fðA; f½0—40�Þg; ðB; f½30—60�gÞg, and
– AttAv ¼ fððA;BÞ; f½30—35�gÞÞg.

If we have a collection of t-profiles E ¼ fðA; ½0—40�Þ; ðB; ½30—60�Þg and assuming that we take into account the time point
a ¼ 50, then we obtain a set of argument Ea ¼ fBg that is an extension with respect to Ha, but does not guarantee that E is an
extension with respect to H. Indeed, E is not a conflict-free collection of t-profiles, since the argument A attacks the argu-
ments B in the time interval ½30—35�.

5. Adding structure to abstract argumentation: structured argumentation frameworks

We will now present a form of structured argumentation that maintains a degree of abstraction, but allows to represent
the internal structure of an argument. This framework will permit to take into account the information (reasoning steps and
evidence) that forms the argument’s structure that supports a particular conclusion; these elements are not available in the
fully abstract level.

There are several reasons for moving from an abstract argumentation framework to a structured argumentation frame-
work that retains some degree of abstraction, namely: (1) introducing the internal structure of the arguments through a set
of reasoning steps and the evidence, gives the possibility of seeing these structured arguments as a generalization of different
systems of structured argumentation, such as ABA [16], ASPIC+ [37], Logical Argumentation [13], or DeLP [29], without com-
mitting to a particular one; (2) considering the internal structure of arguments allows to consider the aggregation (accrual)
of the arguments that support the same conclusion; and (3) the meta-information associated with each piece in the structure
(in this case time availability and reliability), permits to obtain extra information about the argument, by propagating and
combining the meta-information associated with the elements of its structure.

Structured Abstract Argumentation Frameworks (SAF) are a simplified version of the Dynamic Argumentation Frameworks
(DAF) [41] where argumental structures are conceived as structures standing for trees of smaller abstract entities represent-
ing individual reasoning steps, called arguments. In what follows, we will reintroduce the elements of the framework
presented in Rotstein et al. [41] necessary for our work.

The original DAF was designed with the purpose of dealing with dynamics through the consideration of a varying set of
evidence. Depending on the contents of the current set of evidence, some arguments will be active and some others will be
inactive. Once the set of arguments that are active is ascertained, the situation can be handled as an instance of a Dung’s
abstract framework; thus, in this sense, these frameworks can be considered as an extension of Dung’s frameworks.

To obtain a SAF, we will simplify the DAF formalism by integrating the evidence as part of the set of arguments, as we will
mention below. The dynamics of the framework will be handled through the specification of the temporal availability of the
arguments, as shown in the next section. Therefore, a SAF C becomes an enriched AF with the usual components hAR;Attsi,
but with the addition of structure for arguments, and a preference criterion J to determine when an attack is successful
becoming part of the Atts relation [42,2,3].

The formalism we are introducing for SAF departs from the terminology used in Dung’s abstract frameworks as we
explain in the following paragraph. The arguments with structure in a SAF are called argumental structures, and the
constituent elements are called arguments, where an argument is an abstract entity representing an indivisible reasoning
step connecting a set of premisses with a claim; thus, an argument’s premises provide backing for the claim. Both, premises
and claim, are assumed to be expressed in a language L that will remain unspecified and will depend on the domain of appli-
cation. We will assume sentences in L as literals, and use the complement notation to express contradictory literals such as a
and �a. The following definition, adapted from [41], formalizes the notion of argument.

Definition 24 (Argument). Given a language L, an argument A is a reasoning step concluding a 2 L from a set of premises
fb1; . . . ; bng 2 2L, where bi – a, bi – �a; bi – bj, for 1 6 i; j 6 n. Given an argument A 2 Args, we will write clðAÞ and prðAÞ to
denote its claim and the set of premises involved in it, respectively; also, we will write interfaceðAÞ ¼ hprðAÞ; clðAÞi to refer to
this pair of elements that characterize the argument A. Evidence will be considered as arguments where the set of premises is
empty, i.e., if A is evidence then prðAÞ ¼ ;.

We say that an argument B supports an argument A if the claim of the argument B is part of the premises of the argument
A. Formally:

Definition 25 (Supporting Argument). An argument B is a supporting argument for an argument A iff clðBÞ 2 prðAÞ, and when
clðBÞ ¼ b we say that B supports A through b. Given a set Args of arguments, an argument Ai transitively supports an
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argument Ak within Args iff there is a sequence ½Ai; . . . ;Ak� of arguments in Args where clðAjÞ 2 prðAjþ1Þ, for every j such that
i 6 j 6 k� 1.

An important relation between arguments is the one that reflects that they might support conflicting conclusions.
Formally:

Definition 26 (Conflict between Arguments). Given a set Args of arguments, the set ffl # Args� Args denotes a conflict
relation over Args, verifying A1 ffl A2 iff clðA1Þ ¼ clðA2Þ, where �a denotes the complement of a.

Like in DAF, arguments in SAF can be aggregated into argumental structures. These are defined as follows, introducing
constraints correspond to sound, non-fallacious argument structures (for full details see [41]).

Definition 27 (Argumental Structure). Given a set Args of arguments and a conflict relation ffl defined over Args, an
argumental structure in Args for a claim a is a tree of arguments A verifying:

– Top Argument: The root argument Atop 2 Args, called top argument, is such that clðAtopÞ ¼ a, and is noted as topðAÞ.
– Node: A node is an argument Ai 2 Args such that for each premise b 2 prðAiÞ there is exactly one child argument in Args

supporting Ai through b.
– Premise Consistency: There are no a; b 2 prðAÞ such that �a ¼ b.
– Consistency: There are no A;B 2 argsðAÞ such that A ffl B.
– Non-Circularity: No argument A 2 argsðAÞ transitively supports an argument B 2 argsðAÞ if clðBÞ 2 prðAÞ.
– Uniformity: If A 2 argsðAÞ is a child of B 2 argsðAÞ in tree A and A supports B through b, then A is a child of every

Bi 2 argsðAÞ in tree A such that b 2 prðBiÞ, supporting Bi through b.

For any argumental structure A, we will write argsðAÞ to denote the set of arguments in A. Extending the notation, we
will also write clðAÞ ¼ a to denote the claim of A, and prðAÞ to denote the set of premises of arguments in A. We will denote
StrðArgs;fflÞ the set of all argumental structures w.r.t. Args and ffl.

In Definition 27, the property of consistency invalidates inherently contradictory argumental structures. The requirement
of non-circularity avoids taking into consideration structures yielding infinite reasoning chains. Finally, the restriction of
uniformity does not allow heterogeneous support for a premise throughout a structure.

Example 6. Let Args be a set of arguments, where Args ¼ fA1;A2;A3;A4;B1;B2;B3;B4;C1;C2g,ffl¼ fðA1;B1Þ; ðB4;C1Þg, and A;B,
and C are three argumental structures from StrðArgs;fflÞ, as depicted in Fig. 6, where:
topðAÞ ¼ A1 and argsðAÞ ¼ fA1;A2;A3;A4g
clðA1Þ ¼ a;prðA1Þ ¼ fb; cg; clðA2Þ ¼ b;prðA2Þ ¼ fdg;
clðA3Þ ¼ c;prðA3Þ ¼ ffg; clðA4Þ ¼ f ;prðA4Þ ¼ fg; hg
clðAÞ ¼ a;prðAÞ ¼ fd; g; hg
topðBÞ ¼ B1 and argsðBÞ ¼ fB1; B2; B3; B4g
clðB1Þ ¼ t;prðB1Þ ¼ f� a;ug; clðB2Þ ¼� a; prðB2Þ ¼ fvg;
clðB3Þ ¼ u;prðB3Þ ¼ fpg; clðB4Þ ¼ p;prðB4Þ ¼ fx; yg
clðBÞ ¼ t;prðBÞ ¼ fv; x; yg
topðCÞ ¼ C1 and argsðCÞ ¼ fC1; C2g
clðC1Þ ¼� t;prðC1Þ ¼ fqg; clðC2Þ ¼ q;prðC2Þ ¼ frg;
clðCÞ ¼� t; prðCÞ ¼ frg
It is important to stress that, within an argumental structure, given the Uniformity requirement, a premise of an
argument cannot be supported by different arguments. For the sake of simplicity, in the sequel we will refer to argumental
structures just as ‘‘structures’’.

Not any subset of the set of arguments of a given structure is a substructure of it; that is, the arguments that are part of a
substructure they should form a structure themselves following the requirements of Definition 27. Formally:

Definition 28 (Substructures). Let Args be a set of arguments and A;A0# Args be two argumental structures. We will say that
A0 is an argumental substructure of A iff argsðA0Þ# argsðAÞ.

The defeat relation in SAF, called attack in abstract frameworks, can be obtained through the application of a preference
relation over the structures forming conflicting pairs (called attacks in SAF). When adding a preference criterion over
conflicts, this relationship can be refined into a defeat relation between arguments.

Note that the attack relation in a Dung’s abstract argumentation framework assumes that the attack is always successful
becoming a defeat in the terminology used in a SAF; meanwhile, in a SAF, the conflict has to be resolved using a preference
criterion, so that it becomes a defeat. We will now introduce successively Conflict, Preference, and Defeat. Formally:



Fig. 5. Representation of the temporal attack relations.

Fig. 6. Representation of a argumental structures (Example 6).

Fig. 7. Attack and defeat between argumental structures (Example 7).
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Definition 29 (Conflict between structures). Let StrðArgs;fflÞ a set of structures, and let A;A0 2 StrðArgs;fflÞ be two structures. We
will say that A is in conflict with B, denoted as A 	 B, iff there is an argumental substructure B0 of B such that
topðAÞ ffl topðB0Þ. The structure B0 is called the disagreement substructure.
Definition 30 (Preference). Let StrðArgs;fflÞ a set of structures, and let A;B 2 StrðArgs;fflÞ be two structures in StrðArgs;fflÞ. Given a
preference relation ‘ J ’ defined over StrðArgs;fflÞ, we will say that A is at least as preferred as B when the relation is satisfied.

This relation usually codifies semantic notions of argument comparison. For a syntactic criterion that could be adapted to
SAF see [42,43].

Definition 31 (Defeat between structures). Let StrðArgs;fflÞ a set of structures, and let A;B 2 StrðArgs;fflÞ be two structures in
StrðArgs;fflÞ. We will say that A defeats B, iff A 	 B with disagreement structure B0 of A such that AJB0.

The following example illustrates the definitions just introduced.

Example 7. In Example 6, A is in conflict with BðA 	 BÞ, since B has a substructure B0 that contains the argument B2, and
since as a and � a are contradictory A ffl B0 (Fig. 7 shows the chosen B0 inside a dotted triangle). If the preference criterion
sanctions that AJB0, the result is that A defeats B.

Also in Example 6, B is in conflict with CðB 	 CÞ, since C is trivially a substructure of itself, and considering C as the B0 of
the definition above(again, Fig. 7 shows the required B0 inside a dotted triangle) we see that B ffl C assuming logical
contradiction between t and � t. Furthermore, if the preference criterion determines that BJ C, it results that B defeats C.
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Definition 32 (Structured Argumentation Framework). A Structured Argumentation Framework C is a tuple hArgs;ffl; J i,
where Args is a set of arguments,ffl is a conflict relation, and J is a preference criterion defined over the set of all argumen-
tal structures StrðArgs;fflÞ.

All the semantic notions, such as acceptability and the usual argumentation semantics, can be obtained for SAF just by
instantiating Dung’s abstract framework AF ¼ hAR;Attsi with the set of all argumental structures StrðArgs;fflÞ as the set AR
and the defeat relation among structures as the Atts relation. We will not explore this issue any further in this paper.

6. ETAF�: E-TAF over argumental structures

Many applications of argumentation require the explicit treatment of time; usually, temporal information is not directly
associated with arguments, but instead it is attached to the basic pieces of knowledge (e.g., claims, rules, premises) from
which arguments are built. Other interesting features of arguments, such as valuation, may also vary in time, causing the
availability of attacks to change dynamically. As with temporal information, valuation can be associated with individual
components of an argument, and propagated through a suitable valuation function as information attached to the whole
argument [19].

We move in that direction by replacing E-TAF abstract arguments with SAF argumental structures. As we will see next,
this expanded framework, referred to as E-TAF�, is expressive enough to capture temporal availability and the notion of val-
uation varying over time as well, associated with individual steps (called arguments in SAF) from which the argumental
structures are built. Argumental structures’ availability and valuation are obtained by integrating the corresponding infor-
mation attached to the arguments composing them.

The instantiation of E-TAF’s arguments with SAF’s argumental structures gives us the ability of studying the temporal
availability and valuation of argumental structures as a function of its internal components. Thus, we will be able to deter-
mine how each component affects these features of an argumental structure. Temporal availability and valuation factors are
associated with SAF arguments through the formal notion of s�-argument, as we define below.

Definition 33 (s�-argument). Let C ¼ hArgs;ffl; J i be a SAF, called the subjacent structured argument framework. We say
hA;T A; tAi is a s�-argument for the claim a in C whenever:

(i) A 2 Args is an argument in C (see Definition 24) such that clðAÞ ¼ a.
(ii) T A # Rþ is the time interval set in which A is available.

(iii) tA : Rþ�!½0;1� is a function that expresses the valuation of A over time.

The set of s�-arguments over C will be denoted ArgsC, and C will be referred to as the subjacent SAF.
Definition 34 (Subjacent Argument(s)). Let C ¼ hArgs;ffl; J i be a SAF. Given a s�-argument A ¼ hA;T A; tAi we will define a
function subjð
Þ that will return the argument in C involved in the s�-argument, i.e., subjðhA;T A; tAiÞ ¼ A. Thus,
clðsubjðhA;T A; tAiÞÞ ¼ clðAÞ, and prðsubjðhA;T A; tAiÞÞ ¼ prðAÞ will be the claim and the set of premises of hA;T A; tAi.

As in SAF, arguments may be in conflict, however in E-TAF� conflict depends on the availability of the arguments involved.
Therefore, two s�-arguments supporting contradictory information will be in conflict only when their time availability over-
laps, i.e., over the intersection of the temporal intervals in which they are available; that is, we will restrict the conflict rela-
tion ffl to the temporal intervals where both s�-arguments are available simultaneously.

Definition 35 (Conflict between s�-arguments). Let C ¼ hArgs;ffl; J i be a SAF. Given a set ArgsC of s�-arguments, the relation
ffl# ArgsC � ArgsC denotes a conflict relation over Args, propagating ffl, the conflict relation of the subjacent
C : hA;T A; tAifflhB;T B; tBi iff subjðhA;T A; tAiÞ ffl subjðhB;T B; tBiÞ, (i.e., A ffl B), where T A \ T B – ;, and ffl is conflict relation
in the subjacent framework C.

Once the definition of s�-arguments introduced as a reasoning step labeled with temporal availability in a time interval
set T , and the valuation factor over T is defined, we will introduce the notion of s�-structure in E-TAF�. Informally, a
s�-structure A is a tentative proof (as it relies to some extent on valuation that varies over time) from a consistent set of
s�-argument s, supporting a given conclusion Q, and specifying its valuation degree over time.

Definition 36 (s�-structure). Let C ¼ hArgs;ffl; J i be a SAF. Let ArgsC be a set of s�-arguments and letffl be a conflict relation
over ArgsC. We say that ðA;T A; tAÞ is a s�-argumental structure, or just a s�-structure, supporting a conclusion a, iff

– subjðAÞ is an argumental structure over C, and clðtopðsubjðAÞÞÞ ¼ a.
– T A ¼

Tn
i¼1T Ai

where T Ai
is the time interval for s�-argument that corresponds to hAi;T Ai

; tAi
i 2 A; if T A ¼ ; we say that

the A is inactive.
– tA : Rþ�!½0;1�, such that tAðtÞ ¼minftAi

ðtÞj1 6 i 6 ng, where tAi
ðtÞ corresponds to the s�-argument hAi;T Ai

; tAi
i 2 A.



M.C.D. Budán et al. / Information Sciences 290 (2015) 22–44 37
The set of all s�-structures w.r.t. ArgsC andffl is denoted as StrðArgs;fflÞ. We extend the notation subj(
) to a set A # StrðArgs;fflÞ
as subjðAÞ ¼ fsubjðAÞjA 2 Ag, notice that subjðAÞ is a subset of Args from the subjacent SAF C. When no confusion is possible,
we will also extend clð
Þ; prð
Þ, and interfaceð
Þ to clðAÞ; prðAÞ, and interfaceðAÞ to refer to the claim, the premises, and the
interface of A.
Definition 37 (s�-substructure). Let StrðArgs;fflÞ be a set of s�-arguments, and two s�-structures ðA;T A; tAÞ; ðA0;T A0 ; tA0 Þ in
StrðArgs;fflÞ; ðA0;T A0 ; tA0 Þ is a s�-substructure of ðA;T A; tAÞ iff subjðA0Þ# subjðAÞ. We will use the notation
ðA0;T A0 ; tA0 Þ# ðA;T A; tAÞ to indicate this relation when no confusion is possible.

The property of the s�-substructure relation expressed in the proposition below is obvious from the definition of s�-
structure.

Proposition 5. Let StrðArgs;fflÞ be a set of s�-arguments, given two s�-arguments ðA;T A; tAÞ; ðA0;T A0 ; tA0 Þ in StrðArgs;fflÞ, where
ðA0;T A0 ; tA0 Þ is a s�-substructure of ðA;T A; tAÞ then T A #T A0 and tA 6 tA0 .

Finally, the definition of attack relation is analogous to that in SAF.

Definition 38 (Conflict between s�-structures). Given StrðArgs;fflÞ, and s�-structures ðA;T A; tAÞ; ðB;T B; tBÞ 2 StrðArgs;fflÞ, such
that T A \ T B – ;, then ðA;T A; tAÞ is in conflict with ðB;T B; tBÞ, denoted ðA;T A; tAÞ 	 ðB;T B; tBÞ, iff there exists a s�-
substructure ðB0;T B0 ; tB0 Þ of ðB;T B; tBÞ such that topðAÞ ffl topðB0Þ. Furthermore, the s�-substructure ðB0;T B0 ; tB0 Þ is called
the disagreement s�-substructure.

To formalize the notion of acceptability of a s�-structure in E-TAF�, we have to consider that E-TAF� is a parameterized
version of E-TAF w.r.t. a SAF C in which we rely on compositional features for capturing time availability and valuation of
arguments. As a consequence, we can use the same 4-tuple characterizing E-TAF in order to formalize E-TAF�, provided that
a SAF characterization is also given.

Definition 39 (E-TAF�). Let C ¼ hArgs;ffl; J i be a SAF. Then an E-TAF� is a tuple W ¼ hStrðArgs;fflÞ;	;AttAv ;Pi where:

(i) StrðArgs;fflÞ is a set of s�-structures.
(ii) 	 is a conflict relation between s�-structures;

(iii) Given ðA;T A; tAÞ 	 ðB;T B; tBÞ, with the s�-substructure ðB0;T B0 ; tB0 Þ as the disagreement s�-structure of ðB;T B; tBÞ
with ðA;T A; tAÞ, then the availability of the attack is:
AttAvðððA;T A; tAÞ; ðB;T B; tBÞÞÞ¼defT A \ T B0
We will simplify the notation using T ðA;BÞ instead of the more complex expression AttAvðA;T A; tAÞ; ðB;T B; tBÞ. Notice
that an attack from ðA;T A; tAÞ to ðB;T B; tBÞ is available only in the time intervals where the valuation of ðA;T A; tAÞ is
greater or equal than the valuation of ðB;T B; tBÞ. This is reflected in the following definition.

Definition 40 (Defeat between s�-structures). Given the E-TAF� W, defined as W ¼ hStrðArgs;fflÞ;	;AttAv ;Pi, and
ðA;T A; tAÞ; ðB;T B; tBÞ 2 StrðArgs;fflÞ which are in conflict having ðB0;T B0 ; tB0 Þ# ðB;T B; tBÞ as the disagreement substructure,
we say that ðA;T A; tAÞ defeats ðB;T B; tBÞ in the time interval T ðA;B0Þ, if tA P tB0 over that time interval.

Clearly, the notions of defense and acceptability for E-TAF� can be defined in a similar way as was defined for E-TAF, taking
into account the interactions between s�-structures and the reliability function associated with each of them.

Definition 41 (Defense of ðA;T A; tAÞ from ðB;T B; tBÞ by S). Let W be an E-TAF� defined as W ¼ hStrðArgs;fflÞ;	;AttAv ;Pi, let
ðA;T A; tAÞ and ðB;T B; tBÞ be two s�-structures where ðA;T A; tAÞ 	 ðB;T B; tBÞ, and let S be an at-conflict-free set of
s�-structures such that S # StrðArgs;fflÞ. The defense t-profile of ðA;T A; tAÞ from ðB;T B; tBÞw.r.t. S, denoted as T B

ðAjSÞ is defined
as follows:
T B
ðAjSÞ¼def

[
ðC;T C ;tCÞ2fðX;T X ;tXÞ2S;jT ðX;AÞg

ðT ðB;AÞ \ T ðC;BÞ \ T CÞ
Definition 42 (Acceptable t-profile of ðA;T A; tAÞw.r.t. S). Let W be an E-TAF� defined as W ¼ hStrðArgs;fflÞ;	;AttAv ;Pi, let S be a
set of s�-structures such that S # StrðArgs;fflÞ. The acceptable t-profile for ðA;T A; tAÞ w.r.t. to S, denoted as T ðAjSÞ is defined as
follows:
T ðAjSÞ¼def

\
ðB;T B ;tBÞ2fðX;T X ;tXÞjT ðX;AÞg

ðT A n T ðB;AÞÞ [ T B
ðAjSÞ
where T B
ðAjSÞ is the time interval where ðA;T A; tAÞ is defended by S of its attacker ðB;T B; tBÞ.

Thus, this definition reflects that the intersection of all time intervals in which an argument is defended from each of its
attackers by the set S, is the time interval where the argument is available and it is acceptable with respect to S. Now using
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the elements from the above definition. The at-preferred, at-stable, and at-grounded semantics for E-TAF� can be character-
ized in a similar way as done for E-TAF.

As illustrated by the example in Fig. 5, it is possible for two otherwise conflicting arguments in an E-TAF to be accepted with
respect to at-grounded semantics over different time intervals where the conflict does not appear; for instance, this happens
when the attack relation is available in a proper subset of the time where the attacked argument is available. In practice, this
situation may arise when the existence of the conflict between arguments depends on time, as was the case in the example
represented in Fig. 5. For instance, two arguments supporting, respectively, traveling in vacations and buying a new car
may be in conflict in certain time intervals where the person cannot afford both expenditures; but, the conflict does not exist
in other intervals where the person has the money for both things (i.e., the attack is not available in these intervals).

However, this situation cannot happen when the availability of attacks varying over time is consequence of valuation (or
more generally, strength) of arguments varying over time, as is the case with E-TAF�. Recalling that the notation
At-STWððA;T A; tAÞÞ;At-PRWððA;T A; tAÞ), and At-GRWððA;T A; tAÞ), is used to denote the set of time intervals on which
ðA;T A; tAÞ is acceptable according to at-stable, at-preferred, and at-grounded semantics respectively in W, the following
lemma establishes formally that two s�-structure cannot coincide in time if both belong to the same extension in a given
semantics.

Proposition 6. Given the E-TAF� W ¼ hStrðArgs;fflÞ;	;AttAv;Pi and the two s�-structures ðA;T A; tAÞ; ðB;T B; tBÞ 2 StrðArgs;fflÞ. If
the s�-structure ðA;T A; tAÞ defeats ðB0;T B0 ; tB0 Þ over the time interval T A \ T B0 , where ðB0;T B0 ; tB0 Þ is a s�-substructure of
ðB;T B; tBÞ then it holds that:

� T PrW
A \ T PrW

B ¼ ;,
� T StW

A \ T StW
B ¼ ;, and

� T GrW
A \ T GrW

B ¼ ;.

The key of the proof is to consider the disagreement s�-substructure ðB0;T B0 ; tB0 Þ of ðB;T B; tBÞ. Even if the attack of
ðA;T A; tAÞ against ðB;T B; tBÞ is not available in certain time intervals, we can indeed ensure that the arguments are not
simultaneously accepted, since in those intervals it will be an available attack from the disagreement s�-substruc-
ture ðB0;T B0 ; tB0 Þ back to ðA;T A; tAÞ. Notice that if the attack of ðA;T A; tAÞ against ðB;T B; tBÞ is not available then it means
that the disagreement s�-substructure ðB0;T B0 ; tB0 Þ is more reliable than ðA;T A; tAÞ.

It can be shown that the at-stable (respectively at-preferred or at-grounded) intervals set associated with a s�-structure is
a subset of the at-stable (respectively at-preferred or at-grounded) intervals set of any of its s�-substructures. Formally:

Proposition 7. Given the E-TAF� W ¼ hStrðArgs;fflÞ;	;AttAv ;Pi and the two s�-structures ðA;T A; tAÞ; ðA0;T A0 ; tA0 Þ 2 StrðArgs;fflÞ,
such that ðA0;T A0 ; tA0 Þ is a s�-substructure of ðA;T A; tAÞ. Then:

� T PrW
A0 � T PrW

A ,
� T StW

A0 � T StW
A , and

� T GrW
A0 � T GrW

A .

In the next example we show how the different elements introduced previously can be used to analyze acceptability in
E-TAF�.

Example 8. Let us consider the following set of s�-arguments:
ArgsC ¼

hA1; f½0—60�g; t1i hB2; f½0—50�g; t6i
hA2; f½0—80�g; t2i hB3; f½10—90�g; t7i
hA3; f½0—30�g; t3i hB4; f½0—80�g; t8i
hA4; f½0—40�g; t4i hC1; f½0—90�g; t9i
hB1; f½0—100�g; t5i hC2; f½0—60�g; t10i

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
where the valuation functions are defined below:
t1ðaÞ ¼ :5 t6ðaÞ ¼
:7 a < 15
:3 15 6 a 6 40
:9 a > 40

8><
>:

t2ðaÞ ¼ 1 t7ðaÞ ¼
1 a < 50
:8 a P 50

�

t3ðaÞ ¼ :9 t8ðaÞ ¼ :7
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t4ðaÞ ¼ :7t9ðaÞ ¼
1 a < 20
:1 20 6 a 6 60
:7 a > 60

8><
>:

t5ðaÞ ¼ 1t10ðaÞ ¼ 0:9
The set of s�-structures obtained from the set of s�-arguments is defined as follows (see Fig. 9):

� ðA;T A; tAÞ where T A ¼
Tn

i¼1T Ai
¼ f½0—30�g and its corresponding valuation function tA ¼minftAi

ðtÞj1 6 i 6 n; t 2 T Ag,
the process for obtaining tA is depicted in Fig. 8.
� ðB;T B; tBÞ where T B ¼

Tn
i¼1T Bi

¼ f½10—50�g and its corresponding valuation function tB ¼minftBi
ðtÞj1 6 i 6 ng is

depicted in Fig. 10.
� ðC;T C; tCÞ where T C ¼

Tn
i¼1T Ci

¼ f½0—60�g and its corresponding valuation function tC ¼minftCi
ðtÞj1 6 i 6 ng is

depicted in Fig. 10.

Note that, in this example the reliability function of the s�-structure ðB;T B; tBÞ and its substructure ðB0;T B0 ; tB0 Þ are the
same, i.e., minftBi

ðtÞj1 6 i 6 ng for every time point t, where tBi
ðtÞ is t9ðtÞ, and t10ðtÞ coincides with t9ðtÞ, which is the

reliability function of ðB0;T B0 ; tB0 Þ.
Atts ¼ fððA;T A; tAÞ; ðB;T B; tBÞÞ; ððB;T B; tBÞ; ðC;T C; tCÞÞg
AttAvðððA;T A; tAÞ; ðB0;T B0 ; tB0 ÞÞÞ ¼ fa 2 Rja 2 f½0—30�g and tBðaÞP tAðaÞg ¼ f½15—30�g
AttAvðððB;T B; tBÞ; ðC;T C; tCÞ; ÞÞ ¼ fa 2 Rja 2 f½10—50�g and tB0 ðaÞP tCðaÞg ¼ f½20—50�g
This framework coincides with the E-TAF presented in Example 4, Fig. 4, for which argument acceptability was already
analyzed.
7. Related work

As discussed in the introduction, reasoning about time is a major concern in commonsense reasoning, being also a valu-
able feature when modeling argumentation capabilities for intelligent agents [7]. There have been also recent advances in
modeling time in argumentation frameworks (e.g. [23,33]). However, to the best of our knowledge, there exists no other
abstract argumentation approach for reasoning jointly with time and valuation factors as the one presented in this paper,
combining features of TAF and SAF in a single, unified framework.

Recent research has led to Temporal Argumentation Frameworks (TAF) that extend Dung’s AF by considering the temporal
availability of arguments [22,23]. In TAF, arguments are valid only during specific time intervals (called availability intervals).
Thus, when identifying the set of acceptable arguments the outcome associated with a TAF may vary in time. The TAF frame-
work allows to model so-called ‘‘intermittent arguments’’, useful in the context of argumentation dynamics. Even though
arguments in TAF are associated with availability intervals, in contrast with our approach their attacks are assumed to be
static and permanent in time.

In [46], an argumentative approach to reasoning about the trustworthiness of information sources is presented. In con-
trast with our approach, time is not considered explicitly, and meta-argumentation [15] (which allows Dung’s AF to reason
about itself) is used to model trust. In contrast, our approach considers valuation functions whose outcomes are based on
time intervals. In [37,34], Prakken and Modgil present a very rich formalization for adding structure to abstract argumenta-
tion. His research has some parallels with the underlying notions in SAF, although it is much more encompassing than ours
Fig. 8. Valuation function associated with A.



Fig. 9. Instance of an E-TAF� (corresponding to Example 8).

Fig. 10. Representation of the valuation functions tA , tB , tC .
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(considering argument schemes, rationality postulates, etc.). In contrast, our main motivation for structuring arguments was
to empower the expressivity of our approach when dealing with valuation.

Associating special constraints or additional information with attacks (as done in this research work) is an idea which has
also been explored in other settings. In [47], Villata et al. explore a conceptualization of abstract argumentation in terms of
successful and unsuccessful attacks, such that arguments are accepted when there are no successful attacks on them. They
characterize the relation between attack semantics and Dung’s approach, defining as well a recursive algorithm for attack
semantics using attack labeling. More recently [27], applications of argumentation to model social networks have come
to rely on votes on attacks in order to determine the status of the arguments involved. In our approach, attacks are labeled
with time intervals, which is indeed a distinctive feature in comparison with other approaches. It must be noted that the use
of time as done in our approach could also be consistently added to the different extensions of Dung’s discussed before.

In recent research, assigning valuation to arguments has also resulted in other approaches in which probabilities are used,
as the one presented in [31]. This is a powerful probabilistic approach to argumentation, where logical arguments can be
qualified by the probability that the premises are true, and the resulting argument graphs can be instantiated by probabilistic
logical arguments. Extensions of the argument graph can be qualified by the probability of the logical arguments, and
inconsistencies can arise in the probability assignments from multiple sources. In contrast with this approach, in our analysis
we do not rely on probabilities, but rather on numerical values propagated within an abstract structured argumentation
framework. Additionally, the work in [31] does not consider time as part of the resulting formalization.

Two important approaches that share elements of our research appear in Barringer et al. [9,10]. In the first one [9], they
studied the relationships of support and attack between arguments through a numerical argumentation network, where
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they considered both the strength of the arguments, as well as the strength that carry the attack and support between them.
This work puts close attention to the relations of support and attack between arguments, and to the treatment of cycles in an
argumentative network. In addition, they offered different motivations for modeling domains in which the strengths can be
time-dependent, presenting a brief explanation of how to deal with this issue in a numerical argumentation network. In [10],
the authors presented a temporal argumentation approach, where they extend the traditional Dung’s networks using tem-
poral and modal language formulas to represent the structure of arguments. First, they introduced the concept of usability of
arguments defined as a function that determines if an argument is usable or not in a given context, and this status may be
changed over time depending on the context dynamics. They also improved the representational capability of the formalism
using the ability of modal logic to represent accessibility between different argumentative networks; in this way, the modal
operator is treated as a fibring operator to obtain a result for another argumentation network context, and then apply it to
the local argumentation network context. As it was mentioned, these represent two research lines that have points in com-
mon with our work; however, our motivation is to present a less abstract framework through the structured argumentation
frameworks, providing in this way representational advantages. These additional capabilities will open new research lines
such as (i) choosing a concrete structured argumentation system to instantiate the abstract structured argumentation such
as [16,37,13,29] (see [32] for a set of tutorials); (ii) studying how the aggregation (accrual) of the arguments that support the
same conclusion can improve the semantics of argumentation systems, analyzing as well alternative semantics for the
underlying argumentation systems; and (iii) finding new ways of taking in consideration the additional meta-information
carried by the argumental structures formalized using SAF.

8. Conclusions and future work

Dung’s abstract argumentation framework [25] has been shown useful for developing several extensions which were
applied in different contexts (e.g., [18,17,21,4], among many others). As discussed, this paper presents a novel approach
in which we integrate features from two separate directions in argumentation. On the one hand, we consider time as a
distinctive element, and provide the mechanisms to associate time intervals to attacks. On the other hand, we considered
the structure of arguments as a way of abstracting away the structural parts of arguments and their interrelationships (subar-
gument, conflict, etc.). Consequently, we first characterized E-TAF, an extension of TAF considering time intervals associated
with attacks. Then, based on the notions characterizing SAF, we added structure to E-TAF to formalize the notion of valuation
for an argument varying on time. The resulting framework E-TAF� incorporates the ability of representing temporal availabil-
ity and valuation factors associated with the arguments from which the argumental structures are built. This information is
then propagated to the level of argumental structures using it to define temporal availability of attacks.

As future work we will develop an implementation of E-TAF� by using the existing DeLP system [29] as a basis.3 The
resulting implementation will be applied to different domains that require modeling agents associated with a valuation factor
varying over time. We are also interested in analyzing the salient features of our formalization in the context of other
argumentation frameworks, such as the ASPIC+ framework [37], where rationality postulates for argumentation [20] are
explicitly considered. Research in this direction is being pursued.

Appendix A. Proofs

Proposition 4. Let H ¼ hAR;Atts;ArgAv ;AttAvi be an E-TAF, then:

(1) There exist always an at-grounded extension.
(2) An at-preferred extension is also an at-complete extension.
(3) An at-stable extension is also an at-preferred extension.
(4) The at-grounded extension is a t-subset of all at-preferred and at-stable extensions.
Proof.

(1) From the definition of the characteristic function, at least the empty set is an at-grounded extension.
(2) Results from the definition of at-preferred extension and Proposition 3.
(3) An at-stable extension is the collection of t-profiles that defeat all the t-profiles that are outside the extension; for this

reason, this collection of t-profiles must be # t-maximal at-admissible, which is the condition of an at-preferred
extension.
3 See http://lidia.cs.uns.edu.ar/delp.

http://lidia.cs.uns.edu.ar/delp
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(4) The at-grounded extension is the # -minimal complete collection of t-profiles, since an at-preferred extension is
equivalently defined as a # -maximal complete collection of t-profiles, it is clear that the at-grounded extension
should be included in any at-preferred extension. In addition, from (3) any at-stable extension also should be an
at-preferred extension, then the at-grounded extension should be included in all at-stable extensions. h
Lemma 1. Let H ¼ hAR;Atts;ArgAv ;AttAvi be an E-TAF and let a 2 Rþ representing a point in time. Let H0a ¼ hAR0a;Atts0ai be a
Dung abstract framework obtained from H in the following way: AR0a ¼ fA 2 ARja 2 T Ag and Atts0a ¼ fðA;BÞ 2 Attsja 2 T ðA;BÞg.
Let E a collection of t-profiles in H, and E0a ¼ fXjðX;T ðXjEÞÞ 2 E and a 2 T ðXjEÞgðthus; E0a # AR0aÞ. It holds that, if E is an at-preferred
extension (respectively an at-stable extension or an at-grounded extension) w.r.t. H, then E0a is a preferred extension (respectively a
stable extension or a grounded extension) w.r.t. H0a.
Proof. We will separate the proof in the three parts of the lemma corresponding to each of the three semantics. First, we will
prove the general property of conflict-freeness that any extension corresponding to any semantics should satisfy:

If E is an extension w.r.t. H, then E0a is should be conflict-free w.r.t. H0a.
Let us assume that E0a is not a conflict-free set of arguments. In that case, there should exist two arguments X;Y 2 E0a such

that ðX;YÞ 2 Atts0a. From the definition of E0a, we know that there are ðX;T ðXjEÞÞ; ðY ;T ðYjEÞÞ 2 E, such that
a 2 ðX;T ðXjEÞÞ \ ðY ;T ðYjEÞÞ, and ðX;YÞ 2 Atts where a 2 T ðX;YÞ. Consequently, E is not an at-conflict-free set contradicting
our initial assumption that E is extension, and this contradiction comes from assuming that E0a is not a conflict-free set.

We will now proceed under the assumption that E0a is a conflict-free set for the three semantics mentioned.

(a) If E is an at-preferred extension w.r.t. H, then E0a is a preferred extension w.r.t. H0a.
Let E be an at-preferred extension for H, and let E0a be a set of arguments such that E0a ¼ fXjðX;T ðXjEÞÞ 2 E and
a 2 T ðXjEÞg, and let us assume that E0a is not a preferred extension of H0a. For this to be the case, knowing E0a is con-
flict-free, at least one of the two conditions required for preferred semantics should fail, namely:

(i) E0a should be an admissible set. Let us assume that E0a does not satisfy that condition. In this case, there should exist

two arguments X;Y 2 AR0a, such that Y R E0a;X 2 E0a; ðY;XÞ 2 Atts0a and there should not exist an argument Z 2 AR0a
verifying that Z 2 E0a and ðZ;YÞ 2 Atts0a. From the definition of E0a, we know that there is a t-profile ðX;T ðXjEÞÞ 2 E
where a 2 T ðXjEÞ, a t-profile ðY;T YÞ such that ðY;XÞ 2 Atts and a 2 T ðY;XÞ, and does not exist a t-profile
ðZ;T ðZjEÞÞ 2 E such that ðZ;YÞ 2 Atts, and a 2 T ðZ;YÞ verifies T ðY ;XÞ \ T ðZ;YÞÞ \ T X – ;. But E is an at-preferred exten-
sion, and therefore it should satisfies at-admissibility (contradiction).

(ii) E0a should be a # -maximal set. Let us assume that is not, then there exists a set E00a such that E0a(E00a and it satisfies
conflict-freeness and admissibility. Let Em ¼ E [ fðX; fagÞ j X 2 E00a and X R E0ag. Note that E(tEm (by construction).
Also, Em is at-admissible. Contradiction, since E is an preferred extension and therefore it is the maximal set w.r.t.
t-inclusion which is at-admissible.
(b) If E is an at-stable extension w.r.t. H, then E0a is a stable extension w.r.t. H0a.
Let E be an at-stable extension for H, and let E0a be a set of arguments such that E0a ¼ fXjðX;T XÞ 2 E and a 2 T Xg, and
let us assume that E0a is not a stable extension of H0a. For this to be the case, knowing E0a is conflict-free, the following
condition required for stable semantics should fail: E0a should attack all arguments that do not belong to it.
Let us assume that the condition fails; then, there exist at least an argument X 2 AR0a n E0a that is not attacked by any
argument in E0a. Consequently, there exists a t-profile ðX;T XÞ R E, where E ¼ fðYi;T ðYi jEÞÞj1 6 i 6 ng such that a 2 T X

and therefore T X n
Sn

i¼1T ðYi jEÞ – ; since it contains at least the time point a. But this is not possible since E is an at-
stable extension, thus E attacks all the arguments that do not belong to that at-stable extension, in particular this
is true for ðX;T XÞ. This is a contradiction that arises from our assumption that E0a does not attack all arguments that
are outside of it. Therefore, E0a is a stable extension of H0a.

(c) If E is an at-grounded extension w.r.t. H, then E0a is a grounded extension w.r.t. H0a.
Let E be an at-grounded extension for H, and let E0a be a set of arguments such that E0a ¼ fXjðX;T XÞ 2 E and a 2 T Xg,
and let us assume that E0a is not a grounded extension of H0a. For this to be the case, at least one of the conditions
required for grounded semantics should fail:

(i) E0a should be a complete set. Let us assume that is not, then there exists an argument Z 2 AR0a such that Z R E0a and

Z is defended by E0a. In that case, two situations are possible:
Z is not attacked by any argument of AR0a. Then, there does not exist an argument Y 2 AR0a such that ðY; ZÞ 2 Atts0a.
From the definition of E0a, we can say that there exists a t-profile ðZ;T ZÞ R E where a 2 T Z , and does not exist a t-
profile ðY ;T YÞ such that ðY ; ZÞ 2 Atts and T ðY;ZÞ – ;where a 2 T ðY;ZÞ. Then, ðZ;T ZÞ is acceptable with respect to E at
least in the time point a, but E is an at-grounded extension and therefore it satisfies at-completeness (contradic-
tion).
Z is attacked by another argument of AR0a. Then, there exists an argument Y 2 AR0a such that ðY; ZÞ 2 Atts0a, and
exists an argument X 2 E0a such that ðX;YÞ 2 Atts0a. From the definition of E0a, we can say that there exists a t-profile
ðZ;T ZÞ R E and a 2 T Z , a t-profile ðY;T YÞ 2 AR such that ðY ; ZÞ 2 Atts where a 2 T ðY;ZÞ, and a t-profile ðX;T ðXjEÞÞ 2 E
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such that ðX;YÞ 2 Atts where a 2 T ðX;YÞ and verifies T ðY;ZÞ \ T ðX;YÞ \ T Z – ; (since ðZ;T ZÞ is defended at least in the
time point a for a t-profile of E). Contradiction, since this situation implies that E is not at-complete, and therefore
not at-grounded extension.

(ii) E0a should be a # -minimal set. Let us assume that is not, then there exists a proper subset E00a(E0a such that satisfies
conflict-freeness, admissibility and completeness. Let Em ¼ fðX;T ðXjEÞ n fagÞjðX;T ðXjEÞÞ 2 E and X R E00ag. Note that
E # tEm (for construction). Also, Em is at-complete and at-admissible. Contradiction, since E is a grounded extension
and for that is a minimal set w.r.t. t-inclusion which is at-complete and at-admissible. h
Proposition 6. Given the E-TAF� W ¼ hStrðArgs;fflÞ;	;AttAv ;Pi and the two s�-structures ðA;T A; tAÞ; ðB;T B; tBÞ 2 StrðArgs;fflÞ. If
the s�-structure ðA;T A; tAÞ defeats ðB0;T B0 ; tB0 Þ over the time interval T A \ T B0 , where ðB0;T B0 ; tB0 Þ is a s�-substructure of
ðB;T B; tBÞ then it holds that:

� T PrW
A \ T PrW

B ¼ ;,
� T StW

A \ T StW
B ¼ ;, and

� T GrW
A \ T GrW

B ¼ ;.
Proof. Let E be the at-grounded extension for W. Let ðA;T A; tAÞ; ðB;T B; tBÞ be two s�-structures in E. Since E is the at-
grounded extension for W, then E is a set that it is minimal w.r.t. t-inclusion, at-admissible, and at-complete. For definition
of at-admissible E is a at-conflict-free set, then there is no s�-structures ðA;T A; tAÞ and ðB;T B; tBÞ 2 E such that
ðA;T A; tAÞ; ðB;T B; tBÞ 2 	 and T A \ T B – ;. Therefore, T GrW

A \ T GrW
B ¼ ;.

The proof of the result is based on the property that states that the set E is conflict free, meaning there cannot be a conflict
between two elements of E. This condition is necessary for the three extensions (at-grounded, at-stable and at-preferred),
and consequently the proof for the other two extensions is analogous. h.
Proposition 7. Let W be an E-TAF� and ðA;T A; tAÞ; ðA0;T A0 ; tA0 Þ 2 StrðArgs;fflÞ, such that ðA0;T A0 ; tA0 Þ is a s�-substructure of
ðA;T A; tAÞ. Then:

– T GrW
A0 � T GrW

A .
– T PrW

A0 � T PrW
A , and

– T StW
A0 � T StW

A ,
Proof. Let ðA0;T A0 ; tA0 Þ be a s�-substructure of ðA;T A; tAÞ. From the definition of s�-substructure it holds that
argsðA0Þ# argsðAÞ where argsðA0Þ and argsðAÞ are sets of s�-arguments. Also, from the definition of s�-structure it holds that
the time interval in which the s�-structure is available is T A ¼

Tn
i¼1T Ai

for each s�-argument hAi;T i; tii 2 argsðAÞ.
The time interval corresponding to a s�-structure in the at-grounded extension is obtained considering the intersection of

all the time intervals of the s�-argument that are in it.
The time interval in which a s�-structure belongs to the at-grounded extension is obtained considering the intersection of

all the time intervals of each s�-argument belong to the at-grounded extension. Formally,
T GrW
A ¼

\n
i¼1

T GrW
Ai
Since argsðA0Þ# argsðAÞ, then
T GrW
A ¼

\
Ai2argsðAÞ

T GrW
Ai

#
\

Ai2argsðA0Þ
T GrW

Ai
¼ T GrW

A0
since argsðA0Þ# argsðAÞ.
The proofs for the other two semantics are analogous. h
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