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ABSTRACT. In this paper, we study the problem of testing the hypothesis on whether the density
f of a random variable on a sphere belongs to a given parametric class of densities. We propose
two test statistics based on the L2 and L1 distances between a non-parametric density estimator
adapted to circular data and a smoothed version of the specified density. The asymptotic distribution
of the L2 test statistic is provided under the null hypothesis and contiguous alternatives. We also
consider a bootstrap method to approximate the distribution of both test statistics. Through a
simulation study, we explore the moderate sample performance of the proposed tests under the null
hypothesis and under different alternatives. Finally, the procedure is illustrated by analysing a real
data set based on wind direction measurements.
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1. Introduction

The problem of testing the hypothesis that a random sample x1; : : : ; xn is generated by a spe-
cific distribution or by some set of distributions has been widely studied in the literature. To
our knowledge, the first authors who tackled the problem of goodness of fit when xi 2 R using
non-parametric density estimators were Bickel & Rosenblatt (1973). See also Rosenblatt (1975,
1991), Ahmad & Cerrito (1993) and Fan (1994, 1998) for some results in the multidimensional
case with Euclidean data, that is, when the observations belong to an open subset of Rd . All
these papers used as criterion the L2 distance between parametric and non-parametric (kernel-
based) estimators of the unknown density. On the other hand, the literature with L1 distance
is more scarce, and we refer to Cao & Lugosi (2005) for some development.

In many applications, as is the case when dealing with directional data, the variables under
study have an additional structure, and this structure needs to be taken into account in both
the estimation and inference procedures. Several authors such as Hall et al. (1987), Fisher
et al. (1993) and Mardia & Jupp (2000) discussed estimation methods for spherical and cir-
cular data. Beran (1979) considered the situation of exponential models for directional data
and a goodness-of-fit test for nested models. Related to the problem of predicting the average
wind speed to harvest electricity from wind energy, Hering & Genton (2010) showed the advan-
tage of treating the wind direction as a circular variable (also, Genton & Hering, 2007). In this
setting, modelling the wind direction distribution using parametric density families is an impor-
tant issue, and so the aim of our work is to consider the problem of testing the hypothesis on
whether the density f of a random variable on a sphere belongs to a given class of densities.

For this purpose, the problem of testing whether f belongs to a parametric class of densi-
ties is considered. Our test statistic is based on Lp distances between a non-parametric density
estimator of f .x/ adapted to circular data and a smoothed version of a parametric estima-
tor of the data density. In particular, we study the simple null hypothesis, that is, the situation
in which we want to know if the sample density equals a completely specified density func-
tion fı. In Section 2, we define the test statistics for each of the hypothesis to be considered.
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In Section 3, for the composite hypothesis, that is, for the problem of testing whether f belongs
to a parametric class of densities being considered, the asymptotic distribution of the L2 test,
under the null hypothesis and under a set of contiguous alternatives, is obtained. A discussion
of the particular case of the L1 distance test, including the possible difficulties and some open
problems, is provided in Section 4. Besides, for the simple null hypothesis, we give a heuristic
argument regarding the asymptotic properties for the Lp test statistic under the null hypothe-
sis. The study of the asymptotic properties of the test based on the Lp distances, when p ¤ 2,
for the composite hypothesis is much more delicate and is unknown even in the Euclidean set-
ting. Bootstrap procedures and their validation for the L2 distance are studied in Section 5.
In Section 6, through a simulation study, we explore the performance of the test procedures
introduced in this paper, for moderate sample sizes, under null hypothesis and under a set of
alternatives. Some of the obtained results can be seen in the online Supporting Information
on the journal website. Finally, Section 7 presents a real data example based on wind direc-
tion measurements. Some conclusions are discussed in Section 8. Proofs are relegated to
the Appendix.

2. The test statistics

Let x1; : : : ; xn be independent observations of a random variable x taking values in the
d -dimensional unit sphere Sd in R

dC1 with probability density function f .x/ on Sd such thatR
Sd f .x/ !d .dx/ D 1, where !d is the rotation-invariant measure on the sphere. We begin by

considering the situation in which the null hypothesis is completely specified by a fixed density.
In Section 2.2, we extend the procedure to adapt to the case of the composite null hypothesis.

2.1. Testing a simple null hypothesis

In this section, we study the problem of testing the hypothesis

Hı W f .x/ D fı.x/ against H1 W f .x/ ¤ fı.x/ (1)

at a specified significance level ˛, where fı is a fixed density function. A natural approach is to
consider as a measure of discrepancy to build the test statistic the L2 or, more generally, Lp

distance between the target density fı and a non-parametric estimator fn, for example, a kernel
estimator. Because the kernel estimator is biased, this measure needs to be modified. Instead of
a comparison of the kernel estimators fn and fı, the idea is to compare fn with its expected
value under the null hypothesis. In the context of spherical data, kernel density estimators need
to be adapted to the structure beyond the data. We will consider the kernel density estimator
fn suggested by Bai et al. (1988) and Hall et al. (1987) and defined as

fn.x/ D
c.h/

n

nX
iD1

K

�
1 � xTxi
h2

�
; (2)

where c.h/ is a normalizing constant given by c.h/�1 D
R
Sd K..1 � xTy/=h2/ !d .dx/ and

h D hn stands for the smoothing parameter. Hence, the test statistic T .p/ı;n based on the Lp

distance is defined as

T .p/ı;n D

Z
jfn.x/ �Khfı.x/jp !d .dx/ ; (3)

where Khg.x/ D c.h/
R
K..1 � xTy/=h2/g.y/!d .dy/ and fn is the kernel estimator defined

through ‘(2)’. In particular, we will denote as Tı;n the test statistic T
.2/
ı;n based on the

L2 distance.
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Zhao & Wu (2001) studied the asymptotic behaviour of I .2/n D
R
.fn.x/ � fı.x//2 !d .dx/.

Thus, as mentioned before, one may consider I .2/n instead of Tı;n. However, as pointed out for
Euclidean data by Fan (1994), the bias introduced in kernel density estimation has a significant
influence on I .2/n . In particular, theorem 1 in Zhao & Wu (2001) entails that depending on the
rate of the bandwidth, that is, the relation between bias and variance, three different rates of
convergence are attained for I .2/n . To be more precise, if nhdC4 ! 1, that is, if the data are
oversmoothed, the bias will be large relative to variance, so I .2/n converges at the rate of

p
nh�2,

whereas if the data are undersmoothed (nhdC4 ! 0), the rate of convergence is nhd=2. Finally,
if nhdC4 ! ı, that is, if the bias is balanced with the variance, the rate of convergence is still
n.dC8/=.2dC8/ D nhd=2 D

p
nh�2. As for the Euclidean case, the tests derived from I

.2/
n may

have trivial power against certain Pitman alternatives when oversmoothing. For this reason,
the statistic Tı;n should be preferred because it removes the bias inherent in kernel density
estimation. This idea was used by Härdle & Mammen (1993) to construct tests for a parametric
regression model and also by Fan (1994) for testing the goodness of fit for a parametric density
family. In particular, as shown in theorem 1, the asymptotic distribution of Tı;n is the same
whether the data are oversmoothed, optimally smoothed, or undersmoothed, and it is the same
as that of I .2/n for undersmoothed data. As stated in theorem 2, the test based on Tı;n, similar to

that based on I .2/n , detects Pitman alternatives with order of convergence n1=2hd=4; however,
it should be preferred to the test based on I .2/n because it allows a wider range of smoothing
parameters. It is also worth noticing that when Tı;n is considered, only the continuity of the
density function f is needed.

2.2. Testing a null composite hypothesis

Let F D ¹fˇ.x/ W ˇ 2 Bº be a family of density functions parametrized with a vector of param-
eters ˇ 2 B, where B is a subset of Rp . The parameter ˇ will denote the indexing parameter of
the family F . We are interested in testing the composite hypothesis

Hı W f 2 F against H1 W f … F : (4)

Under Hı, we have f D fˇ for some ˇ D ˇı 2 B. In this case, a parametric estimator fb̌ of

the density f needs to be considered. One way to proceed is to measure the distance between fb̌
and the non-parametric estimator fn and to use this distance for testing the parametric model.
However, as in Section 2.1 and because of the bias of the non-parametric estimator, a better
approach is to consider the L2 distance between fn and a smooth version of fb̌ . Therefore, the

test statistic based on the L2 distance is defined as

Tn D T
.2/
n D

Z �
fn.x/ �Khfb̌.x/�2 !d .dx/ ; (5)

whereas, more generally, that based on Lp distances is defined as

T .p/n D

Z ˇ̌̌
fn.x/ �Khfb̌.x/

ˇ̌̌p
!d .dx/ ;

where fn and fb̌ are the kernel estimator defined through ‘(2)’ and the parametric estimator,

respectively, and Khg.x/ D c.h/
R
K
�
.1 � xTy/=h2

�
g.y/!d .dy/, as before.

Typically, a root-n estimator b̌ of ˇı needs to be considered to ensure the proper
rate of convergence. A good root-n option for b̌ is the maximum likelihood estimator of
ˇı. It is well-known that, under regularity conditions, maximum likelihood estimators are
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asymptotically normally distributed. In particular, when dealing with circular data, Cox (1974)
studied the asymptotic properties of maximum likelihood estimators in the case of the von
Mises distribution.

3. Asymptotic behaviour of the statistic based on the L2 distance

In this section, we derive the asymptotic distribution of the test statistic Tn defined in ‘(5)’,
under the null hypothesis and under a sequence of regular contiguous alternatives. The proofs
of these results are relegated to the Appendix.

It is worth noticing that, as the simple null hypothesis is a particular case of a composite
hypothesis, the asymptotic null distribution of the test statistic Tı;n, defined in ‘(3)’ for p D 2,
may be derived from theorem 1 whereas its behaviour under contiguous alternatives may be
derived from theorem 2. However, it should be pointed out that when considering the simple
null hypothesis defined in ‘(1)’, assumptions A3 and A5 are not needed.

From now on, denote by �d the surface area of Sd , that is, �d D 2�.dC1/=2=�..d C 1/=2/,
for d � 1. Let �d and gd .r/ be defined as, respectively,

�d D

´
2�1=2 when d D 1
�d�1�

2
d�2

23.d=2�1/ for d > 1;

and

gd .r/ D

´R1
0
��1=2K.�/ŒK.r C � � 2.r�/1=2/CK.r C �C 2.r�/1=2/� d� when d D 1R1

0
�d=2�1K.�/

R 1
�1
.1 � �2/.d�3/=2K.r C � � 2�.r�/1=2/ d�d� for d > 1 :

To obtain the asymptotic distribution of the test statistics, we need the following
assumptions:

(A1) The kernel K W R�0 ! R�0 is a bounded and integrable function with a compact
support. Moreover, if d D 1,

R1
0
K.r/rd=2�1dr <1.

(A2) The density function f is continuous on Sd .
(A3) The function fˇ.x/ is twice continuously differentiable with respect to ˇ, and its partial

derivatives are bounded and uniformly continuous with respect to .ˇ; x/.
(A4) The sequence h satisfies nhd !1 and h! 0 as n!1.
(A5) There exists ˇ1 such that

(a) b̌� ˇ1 D OP.n
�1=2/, when xi � f (besides, when xi � fˇı , ˇ1 D ˇı).

(b) b̌�ˇı D OP.n
�1=2/, when xi � fˇı.x/C.1=

p
nhd=2/ 	.x/, where

R
	.x/!d .dx/ D

0.

Remark 1. It is worth noting that A4 together with A1 entails that hd c.h/ ! 
�1 as n ! 1
with 
 D 2d=2�1 �d�1

R1
0
K.r/rd=2�1dr , where �d is the surface area of Sd (Bai et al.,

1988). Assumptions A1, A2, and A4 and the fact that hd c.h/ ! 
�1 were used by Zhao
& Wu (2001) to derive the limiting distribution of the integrated squared error of the kernel
density estimator of f .x/. As in Fan (1998), assumption A5 is introduced to examine the effect
of estimating ˇ on the asymptotic distribution of Tn. If the parametric distribution fˇı.x/
is correctly specified, that is, if Hı holds, then ˇ1 D ˇı, the true value of ˇ. If Hı is not
true, then ˇ1 can be regarded as a pseudotrue value of ˇ. As mentioned in Section 2.2, the
validity of the assumption A5 was verified, under Hı, in Cox (1974) under certain regularity
conditions for the maximum likelihood estimator when considering the von Mises distribution.
Beran (1979) extended these results for exponential families, which include the von Mises and
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Bingham distributions and also provide a regression-based estimator, which turned out to be
root-n consistent.

Theorem 1. Assume that A1–A4 and A5(a) hold. Then, under Hı, that is, when

f D fˇı , we have nhd=2
�
Tn � b=.nh

d /
� D
�!N

�
0; 2
�4�2

ˇı

�
, where 
 D

2d=2�1 �d�1
R1
0
K.r/rd=2�1dr , �2

ˇı
D �d

R
Sd f

2
ˇı
.x/ !d .dx/

R1
0
rd=2�1g2

d
.r/ dr and

b D

Z 1
0

K2.r/rd=2�1dr

2d=2�1�d�1

�Z 1
0

K.r/rd=2�1dr
	2 :

Assume that when f … F , A5 holds, that is, b̌ a.s.
�!ˇ1 for some ˇ1 2 B, and furthermore

that �b̌ a.s.
�! �ˇ1 > 0. Hence, the dominated convergence theorem entails that Tn

p
�!T DR

.f .x/ � fˇ1.x//
2 !d .dx/ > 0. For a given significance level ˛, denote by ´˛ the upper ˛-

quantile of the normal distribution, that is, P.Z > ´˛/ D ˛ with Z � N.0; 1/. Then, the test
rejecting Hı when Vn D nh

d=2
n

�
Tn � b=.nh

d /
�
> bv˛ where bv˛ D p2
�2�b̌´˛ provides a

consistent test, as P .Vn >bv˛/ D P.Tn > bv˛= �nhd=2n

�
C b=

�
nhdn /

�
! P.T > 0/ D 1. As is

well-known, consistency is a desirable property for test statistics, as a consistent test will reject a
false null hypothesis with probability 1 asymptotically. An important issue for consistent tests is
to study their local power properties under sequences of local alternatives. To achieve this goal,
theorem 2 studies the behaviour of Tn under the sequence of regular contiguous alternatives
defined by

H1c W f .x/ D fˇı.x/C
1

p
nhd=2

	.x/; (6)

where
R
	.x/!d .dx/ D 0. Local power properties for this family of Pitman alternatives

sequence were studied by Fan (1994) for Euclidean data.

Theorem 2. Assume that A1–A4 and A5(b) hold. Then, under H1c defined in ‘(6)’, we have

nhd=2.Tn � b=.nh
d //

D
�!N

�R
	2.x/!d .dx/; 2
�4�2

ˇı

�
, where 
, b, and �ˇı are defined

in theorem 1.

4. Some remarks on the Lp distance test statistic when p ¤ 2

As mentioned in Section 1, the L1 or, more generally, any Lp distance for p ¤ 2 can also
be considered to measure the discrepancy between the kernel estimator and a smooth version
of fb̌ . To be more precise, if we want to test f D fı, one may consider the statistic Wı;n D

T
.1/
ı;n D

R
jfn.x/�Khfı.x/j !d .dx/, whereas when composite hypothesis ‘(4)’ is tested, the L1

test statistics equal

Wn D T
.1/
n D

Z ˇ̌̌
fn.x/ �Khfb̌.x/

ˇ̌̌
!d .dx/; (7)

where fn and fb̌ are as in Section 2.2.

It is worth noting that the asymptotic distribution of the test based on the Lp distance,
for p ¤ 2, is more delicate. In the case of real variables, that is, when xi 2 R, a central
limit theorem for the Lp distance

R
jfn.x/ � f .x/jpdx when p � 1 is stated by Csörgö &

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Horváth (1987), whereas the proofs of the given results are provided by Csörgö & Horváth
(1988). In particular, they proved that, when hn ! 0,

p
nhn ! 1, and K satisfies stan-

dard conditions, the L1 distance between the kernel density estimator and its expected value
is asymptotically normally distributed. More precisely, they obtained that, when x 2 R,
p
n.Wı;n�E.Wı;n//

D
�!N.0; �2.K//, where �2.K/ is a constant depending on the kernel and

Wı;n is the L1 test statistic adapted to one-dimensional data.
The important property in this result is the rate of convergence. Instead of the rate nh1=2

attained by the L2 distance statistic when d D 1 and xi 2 R (Fan, 1994, 1998), the rate
p
n

is achieved. An extension of the results used by Csörgö & Horváth (1987) to the situation of
bivariate vectors was provided by Horváth (1991).

As mentioned earlier, under the simple null hypothesis,Hı W f .x/ D fı.x/, theorem 1 entails
that nhd=2

�
Tı;n � b=.nh

d /
�

is asymptotically normally distributed. A systematic study of the

asymptotic distribution of the Lp test statistic T .p/ı;n D
R
jfn.x/ �Khfı.x/j

p !d .dx/, under
Hı, requires Poissonization techniques similar to those considered by Horváth (1991). This
interesting topic may be the subject of future research. However, some standard computations
allow us to heuristically derive that

V .p/ı;n D
.nhd /p=2

hd=2

�
T .p/ı;n �

bp

.nhd /p=2

�
D

1

hd=2

�
.nhd /p=2T .p/ı;n � bp

�
is asymptotically normally distributed, where bp D bp=2

R
Sd f

p=2

ˇı
.x/ !d .dx/E.jN jp/ with

N � N.0; 1/.
In particular, for directional data, the test statistic Wı;n based on the L1 distance will also

have a root-n rate of convergence when testing the simple null hypothesis. We expect that the
same rate is preserved when considering a composite parametric hypothesis if the estimator b̌
has a root-n rate of convergence.

In the L1 situation, the asymptotic behaviour of the test statistic for the composite null
hypothesis is in fact much more important and challenging, as usually the parametric estima-
tor is also root-n consistent. Hence, the asymptotic behaviour of both density estimators, the
parametric and non-parametric ones, will be relevant for the asymptotic distribution of the
test statistics Wn. As in the case of statistics based on the empirical process for real variables,
such as the Kolmogorov–Smirnov or Anderson–Darling statistics, the asymptotic distribu-
tion will be much more complicated, and we argue that it will depend on the covariance
between the expansion of the parametric component and the asymptotic component of the
non-parametric one.

5. The bootstrap test

The discussion given in the previous sections motivates the use of bootstrap methods. In
particular, for the L2 test statistic, the rate of convergence is nhd=2, and so, as in other non-
parametric situations, we may expect that the normal approximation will not work well for
moderate sample sizes. We briefly discuss this fact in Section 6. To provide an alternative to the
asymptotic distribution of test statistics defined in Section 2, we study a bootstrap procedure
for each of the hypotheses considered. For this purpose, we will use a parametric bootstrap
by generating independent bootstrap samples according to the density fı or fb̌ depending
on the hypothesis. The use of the parametric bootstrap in goodness of fit dates back to Stute
et al. (1993), who applied it to a test statistic based on the cumulative distribution. Recently,
Genest & Rémillard (2008) extended the result to goodness-of-fit statistics derived from pro-
cesses having a

p
n rate of convergence. Besides, for data belonging to an open subset of Rd ,

Fan (1998) considered a parametric bootstrap goodness-of-fit test. His approach approximates

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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the critical values of a weighted L2 distance between the empirical characteristic function and
its parametric estimate under the null model. Later on, Neumann & Paparoditis (2000) con-
sidered the independent and identically distributed parametric bootstrap to check parametric
hypotheses about the stationary density of weakly dependent observations, based also on the
L2 distance between non-parametric and smoothed versions of the parametric density estima-
tor. Several authors, such as Berg (2009), Genest et al. (2009), and Bücher & Dette (2010), have
investigated the performance of the parametric bootstrap, when considering goodness-of-fit
tests for the parametric form of the copula, also based on L2 distances, showing that it yields
reliable approximations to the nominal level.

5.1. Description of the bootstrap tests

Consider first the case of testing a simple null hypothesis. In this case, the distribution of the
variables x1; : : : ; xn is completely known under the null hypothesis. Then, we may consider the
bootstrap statistic constructed by generating independent bootstrap samples according to the
density fı. The bootstrap procedure in this case is in fact a Monte Carlo approximation and
can be described as follows:

Step 1. Generate a random sample of size n, x�
1
; : : : ; x�n, from the distribution fı.

Step 2. Compute theL1 orL2 statistics with the bootstrap sample and denote them asW �ı;n D

T
.1/;�
ı;n and T �ı;n D T

.2/;�
ı;n , respectively, with T .p/;�ı;n D

R
jf �n .x/�Khfı.x/j

p !d .dx/, where
f �n is the kernel estimator based on ¹x�

i
º1�i�n.

Step 3. Repeat steps 1 and 2,B times. Let bFT �ı;n and bFW �ı;n stand for the empirical distributions

of
®
T �
ı;n;1

; : : : ; T �
ı;n;B

¯
and

®
W �
ı;n;1

; : : : ; W �
ı;n;B

¯
, respectively. Compute tı;n;˛ (or wı;n;˛),

the upper ˛-percentile of bFT �ı;n �or bFW �ı;n�.

Then, the bootstrap procedure based on either the L1 or L2 distance rejects Hı if Wı;n >

wı;n;˛ or Tı;n > tı;n;˛ , respectively.
When the composite null hypothesis ‘(4)’ is considered, the bootstrap procedure is defined

by generating samples according to a parametric density estimator obtained using the origi-
nal observations. Let b̌ D b̌.x1; : : : ; xn/ be a root-n estimator of the indexing parameter ˇı
and denote by fb̌ the parametric estimator of f , under Hı, obtained from it. The bootstrap
procedure can be described as follows:

Step 1. Generate a random sample of size n, x�
1
; : : : ; x�n, from the distribution fb̌ .

Step 2. Compute the L1 or L2 statistics defined through ‘(5)’ and ‘(7)’ with the bootstrap

samples and denote them by W �n D T
.1/;�
n and T �n D T

.2/;�
n , respectively, where T .p/;�n DR

jf �n .x/�Khfb̌�.x/jp !d .dx/, with f �n and b̌� D b̌ �x�
1
; : : : ; x�n

�
as the kernel density and

the indexing parameter estimator based on
®
x�
i

¯
1�i�n

, respectively.

Step 3. Repeat steps 1 and 2,B times. Let bFT �n and bFW �n stand for the empirical distributions of®
T �
n;1
; : : : ; T �

n;B

¯
and

®
W �
n;1
; : : : ; W �

n;B

¯
, respectively. Compute tn;˛ (or wn;˛), the upper

˛-percentile of bFT �n �
or bFW �n �.

Then, we will reject Hı if Tn > tn;˛ (or Wn > wn;˛).

Note that the same family of estimators of the parameter ˇ needs to be used both when
generating the sample and in step 2. To be more precise, if, for instance, the maximum likelihood

estimator is used to compute b̌, then in step 2, b̌� is the maximum likelihood estimator of the
indexing parameter based on the bootstrap sample

®
x�
i

¯
1�i�n

.
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5.2. Validity of the bootstrap procedure

When the simple null hypothesis ‘(1)’ is considered, it follows immediately that the null dis-
tribution of T .p/;�ı;n is the same as that of T .p/ı;n . This fact entails the validity of the bootstrap
procedure for the Lp distance tests and, in particular, for both the L1 and L2 distance test
statistics, when we consider a simple null hypothesis.

On the other hand, for the composite hypothesis, we mentioned, in Section 4, the difficulties
arising when dealing with the Lp distance. Therefore, we will only study the null asymptotic
properties of the test statistics based on the L2 distance, T �n , when Hı is defined through ‘(4)’.
To derive the validity of the bootstrap method for composite null hypothesis, we will need
the following additional assumption related to the asymptotic behaviour of the parametric
bootstrap estimator.

A6 b̌� � b̌ D OP�
.n�1=2/, where P� refers to the conditional distribution of x�

i
’s on xi ’s.

Moreover, b̌! ˇ1 almost surely.

Theorem 3. Assume that A1–A4, A5(a), and A6 hold. Then, conditional on x1; : : : ; xn, we have

nhd=2
�
T �n � b=.nh

d /
� D
�!N

�
0; 2
�4�2

ˇ1

�
in probability, where 
, b, and �2 are defined

in theorem 1.

Note that theorem 3 holds regardless of whether the null hypothesis is true or not because
the bootstrap samples x�

1
; : : : ; x�n are generated according to fb̌ 2 F . Therefore, the bootstrap

procedure leads to a consistent test. Effectively, the following occur:

(i) Under Hı, the bootstrap distribution of Tn converges to the asymptotic null distribu-
tion of Tn, so the asymptotic significance level of the test Tn based on the bootstrap
critical value tn;˛ is indeed ˛.

(ii) When the null hypothesis is false, that is, when xi � f … F , we have Tn
p
�!T DR �

f .x/ � fˇ1.x/
�2

!d .dx/ > 0, so that the test statistic nhd=2
�
Tn � b=.nh

d /
�

converges to infinity, whereas asymptotically, the bootstrap critical value is still finite.

6. Simulations

This section contains the results of a simulation study in the circle (d D 1), designed to eval-
uate the performance of the test procedures under Hı and under different alternatives, and is
dedicated to exploring numerically different aspects regarding the finite sample performance
of the proposed tests. The results of a Monte Carlo study conducted to study the performance
of the L2 test statistics when using the asymptotic approximation derived in Section 3 can be
seen in the online Supporting Information on the journal website. The results obtained therein
show that approximations of the critical values, as those described in Section 5, are needed.
For this reason, the main goal of this section is to validate numerically the good performance
of the bootstrap procedure for both the L2 and L1 distances for the simple null hypothesis.
A composite hypothesis was also considered, and the obtained results are given in the online
Supporting Information.

The null hypothesis corresponds to a von Mises (circular normal) distribution. The von
Mises distribution has a density function f�;�.x/ D exp¹� xT�º=.2�I0.�//, with � D

.cos; sin/, where 0 �  < 2� is the mean parameter, � > 0 is the concentration param-
eter, and I0.�/ stands for the modified Bessel function of the first kind and order zero, that
is, I0.�/ D .2�/�1

R 2�
0

exp¹� cos.�/º d� . This model has many important applications, as
described by Mardia & Jupp (2000) and Jammalamadaka & Sengupta (2001). In particular,
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when � ! 0, the distribution converges to a uniform distribution on the sphere, whereas the
larger the value of �, the greater is the clustering around the mean parameter, which is also the
mode. It provides an adequate model for phenomena that are rotationally symmetric around
. In particular, Fisher (1953) described this distribution in detail when d D 2, in the context
of statistical mechanics and palaeomagnetism problems. The von Mises distribution has served
as a probability model for directions in the plane and is the natural analogue of the normal
distribution on R (see, for instance, Fisher, 1995, for applications on real circular data sets).

Under the null hypothesis, we generated x1; : : : ; xn random variables from a von Mises den-
sity with mean equal to � and concentration parameter 5, that is, fı D f�;5. More precisely,
the simple null hypothesis corresponds to testingHı W f D fı. We have performed NR D 1000
replications, whereas for the bootstrap procedure, we considered B D 5000 replications.

In the smoothing procedure, we have used Epanechnichov’s kernel with bandwidth param-
eter h. When performing the bootstrap approximation, we selected several bandwidths to
investigate the sensitivity of the tests, in both level and power, with respect to bandwidth
choice. In particular, the effects of undersmoothing and oversmoothing on the test power are
investigated.

To analyse the performance of bootstrap tests under the null and alternative hypothe-
ses, the sample size is taken as n D 100, whereas the bandwidths considered are h D
0:05; 0:1; 0:25; 0:5; 0:7; 0:9; 1:1, and 1:2. We select four particular alternatives denoted byHı for
ı D 0:1; 0:2; 0:35, and 0:5. They correspond to generated observations x1; : : : ; xn with density
fı D .1 � ı/fı C ıf1, where fı D f�;5 and f1 D f�=2;5. Figure S1 in the online Supporting
Information on the journal website shows the plot of the densities fı chosen as alternatives.

This set of alternatives can be written as in ‘(6)’, taking 	.x/ D b.ı/ .f1.x/� fı.x//, where
b.ı/ D

p
nh1=2ı depends on the alternative index ı and also on the selected bandwidth. The

values of b.ı/ are given in Table S3 in the online Supporting Information on the journal website
to make fair comparisons of the obtained results. For instance, the results for ı D 0:2 and
h D 0:05 need to be compared with those related to ı D 0:1 if the bandwidth lies between 0:5
and 0:7.

For the simple hypothesis Hı W f D fı D f�;5, the observed frequencies of rejection of the
bootstrap tests based on the L2 and L1 distances, at the 5% level, are reported in Fig. 1 and
Table 1. Table 1 shows the improvement attained in level when the finite sample approximation
provided by the bootstrap test is used. For almost all the range of bandwidths, the observed
level of the bootstrap test is quite close to the nominal one, when the sample size is n D 100.

The results of the power study reported in Table 1 and Fig. 1 indicate that both the L2 and
L1 bootstrap test statistics have a good performance under the null hypothesis. As mentioned
before, both tests attain the significance level for all the bandwidths considered. Besides, the
test based on distance L1 detects more easily the alternatives considered for different values
of bandwidth. Note that when ı D 0:2, the observed frequency of rejection is larger than
0.8 for all the bandwidths. On the other hand, the L2 test shows a loss of power for small
bandwidths. This fact may be related to the rate of convergence of the L2 test, which depends
on the bandwidth parameter.

7. Real data example

In this section, we applied the proposed bootstrap test procedure to a real data set. The original
data are measurements of the wind directions recorded each minute daily in two meteorological
stations at Galicia, in the northwest of Spain. The stations will be referred to as B1 and C9, and
their locations are plotted in Fig. 2. The observations studied here correspond to August 2009
with a sample size of 26,426. In the figures and tables, we denote as zero the north direction,
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Fig. 1. Frequencies of rejections of the bootstrap test at the 5% level for the simple hypothesis Hı W f D
fı D f�;5 corresponding to several bandwidths h. The line in grey corresponds to the null hypothesis
(ı D 0), whereas the solid, dotted, dashed black, and dashed grey lines correspond to the alternativesHı
with ı D 0:5, ı D 0:35, ı D 0:2, and ı D 0:1, respectively.

Table 1. Observed frequencies of rejection of the bootstrap test at the 5% level for the simple hypothesis
Hı W f D f�;5 and different values of the smoothing parameter h. Hı stands for the alternative hypothesis
when we consider f D fı D .1� ı/fı C ıf1 with fı D f�;5 and f1 D f�=2;5, for ı D 0:1; 0:2; 0:35,
and 0:5

h

Distance Hypothesis 0.05 0.1 0.25 0.5 0.7 0.9 1.1 1.2

L2 Hı 0.047 0.048 0.056 0.051 0.053 0.050 0.050 0.050
L1 0.055 0.040 0.051 0.049 0.051 0.050 0.050 0.049

L2 H0:1 0.025 0.055 0.218 0.518 0.654 0.727 0.763 0.780
L1 0.293 0.386 0.51 0.673 0.763 0.802 0.811 0.803

L2 H0:2 0.073 0.430 0.882 0.990 0.996 0.997 0.997 0.997
L1 0.801 0.917 0.979 0.995 0.998 0.998 0.997 0.997

L2 H0:35 0.777 0.994 1 1 1 1 1 1
L1 1 1 1 1 1 1 1 1

L2 H0:5 1 1 1 1 1 1 1 1
L1 1 1 1 1 1 1 1 1

and we measure the data in radians clockwise. The rose diagrams given in Fig. 3 show that the
wind directions in both stations have a unimodal distribution with mean around the north.

Let f be the density function of the wind direction. For both stations, the null hypothesis
considered was Hı W f 2 ¹f�;� I .; �/ 2 Œ0; 2�/ � .0;C1/º, where f�;� is the density
function of a von Mises distribution with mean  and concentration parameter � as described
in Section 6. Table 2 reports the values of the maximum likelihood estimators of the parameters
.; �/. For the null hypothesis of interest, we compute the p-values for the two bootstrap tests
taking B D 5000 bootstrap replications. The p-values were computed for different bandwidths
to analyse the sensitivity of the results. For each station, the set of bandwidths chosen includes
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Fig. 2. Location of the meteorological stations B1 and C9 considered.

Fig. 3. Rose diagram for stations B1 and C9.

the selector obtained via a cross-validation procedure using the Kullback–Leibler distance (for
example, Marron, 1987). To perform the cross-validation, a grid with a length of 46 equally
spaced bandwidths between 0:001 and 2� was taken. For both stations, the data-driven cross-
validation bandwidth was 1:727154. Figure S3 in the online Supporting Information on the
journal website shows the plots of the parametric density estimator and the non-parametric
estimators for different values of bandwidths.

Note that, for both B1 and C9, a bandwidth of 0.8 shows a good behaviour that is quite
similar to that provided by the parametric estimation. Besides, the bandwidth obtained using
the cross-validation procedure produces oversmoothed estimations. The obtained p-values for
nine different bandwidths are reported in Table 3 and Fig. 4.

From the obtained results, for both meteorological stations, the wind directions can be
assumed to have a von Mises distribution. In both cases, for all bandwidths considered, the
empirical p-values imply that the null hypothesis cannot be rejected.
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Table 2. Maximum likelihood estimators .b�;b�/ of the parameters .�; �/
under a von Mises parametric model for stations B1 and C9

Stations b� b�
B1 0.6086 0.645
C9 0.181 0.4697

Table 3. Empirical p-values for stations B1 and C9

h

Test 0.5 0.6 0.7 0.8 1.2 1.4 1.6 1.8 2

Station B1
L2 0.6212 0.6138 0.6006 0.5954 0.5808 0.6008 0.6726 0.8674 1.0000
L1 0.8548 0.9004 0.9298 0.9714 0.9994 1.0000 1.0000 1.0000 0.9998

Station C9
L2 0.5182 0.5134 0.5122 0.5340 0.5838 0.5448 0.5890 0.6192 0.8610
L1 0.2856 0.3430 0.4054 0.4500 0.5214 0.8186 0.9314 0.75787 0.6588
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Fig. 4. Empirical p-values for stations B1 and C9.

8. Concluding remarks

Two test statistics were introduced to test if a sample from directional data has a density that
belongs to a given parametric family. The asymptotic distribution of the test based on the L2

distance was given both under the null hypothesis and under a set of contiguous alternatives.
The asymptotic performance of L1 deserves further study, but we conjecture from the results
obtained in the Euclidean case that the order of convergence of the L2 test may be improved
using instead the L1 distance statistic.

Our simulation study illustrates the well-known disadvantage of tests based on non-
parametric estimators because, even if they have a normal distribution, their convergence
towards the normal distribution is very slow. For this reason, approximations of critical values
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are needed. The bootstrap procedure proposed overcomes this problem, as the nominal level is
attained for moderate sample sizes.

Finally, the results in Sections 6 and 7 suggest that a deeper study to select the smoothing
parameter for testing problems is needed. This topic requires further careful investigation and
is still an open problem, even in the setting of Euclidean data.
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Appendix: Proofs

Proof of theorem 1. Denoting Yn;i .x/ D K..1 � xTxi /=h2/�E.K..1�xTxi /=h2//, we have the
expansion

R
.fn.x/�Khfb̌.x//2 !d .dx/ D Tn1CTn2CTn3C 2Tn4 with Tn3 D

R
ŒKh.f .x/�

fb̌.x//�2 !d .dx/, Tn4 D
R
.fn.x/ �Khf .x//Kh.f .x/ � fb̌.x// !d .dx/, and

Tn1 D
c.h/2

n2

nX
iD1

Z
Yn;i .x/2!d .dx/;
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Tn2 D 2
c.h/2

n2

X
1�i<j�n

Z
Yn;i .x/Yn;j .x/!d .dx/:

Note that, under Hı, f D fˇı . Hence, assumptions A1, A2, and A4 together with lemma 4

in Zhao & Wu (2001) entail that nhd=2.Tn1 � E.Tn1//
p
�! 0, whereas lemma 6 in Zhao & Wu

(2001) leads us to nhd=2Tn2
D
�! 21=2
�2�Z with Z � N.0; 1/. As in the proof of lemma 4 in

Zhao & Wu (2001), lemma 1(i) in Zhao & Wu (2001) together with assumptions A1, A2, and
A4 imply that

E.Tn1/ D
c.h/2

n

Z
Sd

var.K..1 � xTx/=h2// !d .dx/

D
1

nhd2d=2�1�d�1

Z 1
0

K2.r/rd=2�1dr�Z 1
0

K.r/rd=2�1dr
	2 � 1n

Z
Sd
f 2.x/ !d .dx/C o

�
¹nhd=2º�1

�

Therefore, it only remains to be shown that

nhd=2Tn3
p
�! 0; (8)

nhd=2Tn4
p
�! 0: (9)

Using a Taylor expansion of order 1 and the fact that, under Hı, f D fˇı , we obtain

Tn3 D
�b̌� ˇı�T

Z
Kh

@fˇ.x/
@ˇ

ˇ̌̌̌
ˇD�n

 
Kh

@fˇ.x/
@ˇ

ˇ̌̌̌
ˇD�n

!T

!d .dx/
�b̌� ˇı� ;

where �n is an intermediate point between b̌ and ˇı. Then, lemma 1 in Zhao & Wu (2001),
the dominated convergence theorem, and the fact that from A5(a) b̌ has a root-n order of
convergence entail that nTn3 D OP.1/, concluding the proof of ‘(8)’.

Likewise, under Hı, a second-order Taylor expansion gives Tn4 D Tn41.b̌ � ˇı/C
.b̌� ˇı/TTn42.b̌� ˇı/, where

Tn41 D
1

n

nX
iD1

c.h/

Z �
K

�
1 � xTxi
h2

�
� EK

�
1 � xTx1
h2

�	
Kh

 
@fˇ .x/
@ˇ

ˇ̌̌̌
ˇDˇı

!
!d .dx/;

Tn42 D
1

2n

nX
iD1

c.h/

Z �
K

�
1 � xTxi
h2

�
� EK

�
1 � xTx1
h2

�	
Kh

 
@2fˇ.x/
@ˇT@ˇ

ˇ̌̌̌
ˇD�n

!
!d .dx/:

Using lemma 1 from Zhao & Wu (2001) and assumptions A1 and A3, we obtain

var
�p
nhd=2Tn41

�
! 0. Therefore, as E.Tn41/ D 0, we have

p
nhd=2Tn41

p
�! 0, which

together with the fact that
p
n
�b̌� ˇı� D OP.1/ implies that the first term of nhd=2Tn4 con-

verges to 0 in probability. Straightforward calculations allow us to show that the second term of
Tn4 is negligible compared with the first one, as from A5(a), b̌� ˇı D OP.n

�1=2/, concluding
the proof of ‘(9)’.

Proof of theorem 2. We have the expansion
R
.fn.x/�Khfb̌.x//2 !d .dx/ D Tn1CTn2CTn3C

2Tn4, where Tnj are defined as in the proof of theorem 1, with f D fˇıC.1=
p
nhd=2/	. Note

that Tn4 D Tn41 C 2Tn42, where
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Tn41 D

Z
.fn.x/ �Khf .x//Kh

�
fˇı.x/ � fb̌.x/

�
!d .dx/ ;

Tn42 D
1

p
nhd=2

Z
.fn.x/ �Khf .x//Kh	.x/ !d .dx/;

and

Tn3 D

Z h
Kh

�
f .x/ � fb̌.x/�i2 !d .dx/ D

Z h
Kh

�
fˇı.x/ � fb̌.x/

�i2
!d .dx/

C
2

p
nhd=2

Z
Kh

�
fˇı.x/ � fb̌.x/

�
Kh	.x/!d .dx/C

1

nhd=2

Z
ŒKh	.x/�2!d .dx/

D Tn31 C 2Tn32 C Tn33:

As in the proof of theorem 1, we have E.Tn42/ D 0. Besides, var
�
nhd=2Tn42

�
D hd=2E

�
Z2
1n

�
,

where

Z1n D c.h/

Z �
K

�
1 � xTx1
h2

�
� EK

�
1 � xTx1
h2

�	
Kh	.x/ !d .dx/:

Using lemma 1 in Zhao & Wu (2001) and the dominated convergence theorem, we can easily
derive that E.Z2

1n
/ D O.1/, as A1 and A2 hold. Therefore, nhd=2Tn42 D oP.1/. Arguing as in

theorem 1, we obtain nhd=2Tn41 D oP.1/, which entails that nhd=2Tn4 D oP.1/.

On the other hand, A1 and A2 and lemma 1 in Zhao & Wu (2001) imply that nhd=2Tn33 !R
	2.x/!d .dx/. Similarly, using b̌� ˇı D OP.n

�1=2/ from A5(b) and the Cauchy–Schwartz
inequality, it is easy to see that nhd=2Tn32 D oP.1/. Besides, as in theorem 1, nhd=2Tn31 D

oP.1/, and so nhd=2Tn3
p
�!

R
	2.x/!d .dx/.

Then, as in the proof of theorem 1, we obtain

nhd=2
�
Tn �

b

nhd

�
D nhd=2ŒTn1 � E.Tn1/�C nh

d=2Tn2 C nh
d=2

�
E.Tn1/ �

b

nhd

	
C nhd=2Tn3 C 2nh

d=2Tn4

D nhd=2Tn2 C

Z
	2.x/!d .dx/C oP.1/;

which concludes the proof.

Proof of theorem 3. Let T �
n;b̌ D

R �
f �n .x/ �Khfb̌.x/

�2
!d .dx/, and note that

T �n � T
�

n;b̌ D
Z h

Kh

�
fb̌.x/ � fb̌�.x/

�i2
!d .dx/

C 2

Z �
f �n .x/ �Khfb̌.x/

�
Kh

�
fb̌.x/ � fb̌�.x/

�
!d .dx/:

Using arguments analogous to those considered in the proof of theorem 1, when deriving the
asymptotic behaviour of Tn3 and Tn4 and using A6, we obtain nhd=2ŒT �n � T

�

n;b̌ � D oP�.1/.

Then, it is enough to obtain the asymptotic behaviour of T �
n;b̌ . Let

H.x; y/ D c2.h/
Z �

K

�
1 � xTz
h2

�
�m.x; h/

	 �
K

�
1 � yTz
h2

�
�m.y; h/

	
!d .dz/;

where m.y; h/ D E
�K

��
1 � yTx�

1

�
=h2

�
and E

� denotes expectation with respect to the boot-

strap distribution. Then, T �
n;b̌ D .1=n2/

P
1�i¤j�nH

�
x�
i
; x�
j

�
C .1=n2/

Pn
iD1H

�
x�
i
; x�
i

�
.
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The term T �
n;b̌;1 D .1=n2/

P
1�i¤j�nH

�
x�
i
; x�
j

�
is a quadratic form with E

�
�
T �
n;b̌;1

�
D

0. Then, as in lemma 6 in Zhao & Wu (2001), from A1 and A2, the fact that b̌
is a consistent estimator of ˇ1, and the dominated convergence theorem, we obtain

var�
�
nhd=2T �

n;b̌;1
�
p
�! 2�2

ˇ1
. Arguing as in lemma 6 in Zhao & Wu (2001), but conditional

on x1; : : : ; xn, we can see that the conditions of theorem 1 in Hall (1984) are satisfied. Finally,
arguments analogous to those considered in lemma 4 in Zhao & Wu (2001) allow us to show

that A1, A2, and A4 imply that nhd=2

Pn

iD1H
�
x�
i
; x�
i

�
=n2 � .b=.nhd //

� p
�! 0.
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