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Abstract Shape variation of individuals from three locations,
two from Argentina and one from Brazil, was analysed by geo-
metric morphometrics techniques. Individuals were weighed,
measured, sexed, assigned to amaturity stage and photographed.
For the analysis, two landmark configurations were used: one of
nine landmarks (9L) and another of 25 landmarks (25L). To
visualise shape variation, a principal component analysis
(PCA) on Procrustes coordinates was conducted. The percent-
age of total shape variation explained by the 9L configuration
was 80.5% (PC1: 61% and PC2: 19.5%), while the percentage
for the 25L configuration was 76.4% (PC1: 54.8% and PC2:
21.6%). Based on this, shape analyses were performed using
only the 9L configuration. The PCA results indicated that

specimens show a large overlap between the categories based
on sex and maturity stage. When location is considered, squid
shape from São Sebastião and Rawson Port were very similar,
while in Nuevo Gulf, the presence of two different morpholog-
ical groups were observed: one similar to São Sebastião and
Rawson Port, and the other with a morphology typical of
Nuevo Gulf. Thus, two different morphotypes were defined:
(i) morphotype of the continental shelf and (ii) morphotype typ-
ical of the gulf. The continental shelf morphotype is
characterised by larger fins and wider mantle than the gulf
morphotype. These results suggest that the morphotypes of
Doryteuthis sanpaulensis are adaptations to oceanographic
regimens.

Keywords Phenotypic variation . Southern Atlantic Ocean .

Ontogenetic shape variation . Interpopulation shape variation

Introduction

Some biological aspects, such as the timing of life cycle,
location of spawning areas, different individual growth rates
and different morphology, lead to the formation of intraspe-
cific groups (Nigmatullin et al. 2001; Laptikhovsky et al.
2001; Boyle and Rodhouse 2005; Rodhouse et al. 2014). In
cephalopods, the study of the intraspecific groups’ character-
istics is important to understand the population structuring of
the species and to implement management strategies of fish-
ing resources (Rabinovich 1978; Boyle 1990; Lipiński et al.
1998). The main techniques used to identify intraspecific
groups are natural markers (e.g. parasites, otoliths isotopic
composition and fatty acid profiles in tissues), genetic analy-
sis (e.g. chromosomal morphology, molecular techniques),
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artificial markers (e.g. internal or external tags) and morpho-
logical analysis (e.g. traditional, geometrical) (Cadrin 2000).

The traditional morphometrics studies are based on the
relation between linear dimensions taken between two ana-
tomical points to describe the morphology of the specimens.
This approach has several disadvantages, including the loss
of information by simplifying the shape of the individuals
and the fact of selecting a dimension which may not capture
the shape variation clearly (Bookstein 1998). To avoid these
constrains, an alternative technique based on the analysis of
landmark coordinates and including the study of the shape in
a two- or three-dimensional space was developed: geometric
morphometrics (GM) (Toro Ibacache et al. 2010; Adams
et al. 2004). This technique allows investigating the morpho-
logical changes of the structure of interest, considering the
global anatomic context and avoiding the loss of information
by the simplification of specimens shape (Richtsmeier et al.
2002). Despite its advantages, the use of GM in cephalopods
has been restricted only to the study of the ontogenetic var-
iation of the body and lower beak of the squid Illex
argentinus in two spawning groups (Crespi-Abril et al.
2010), and to the analysis of intra- and interspecific variation
of the sepion shape in three different cuttlefish species:
Sepia officinalis, S. elegans and S. orbignyana (Neige and
Boletzky 1997).

Loliginid squids play a significant economic and ecolog-
ical role in worldwide coastal marine ecosystems, as many
species are fishery resources and represent a key link in
marine food webs (Pierce and Guerra 1994; dos Santos
and Haimovici 2002; Boyle and Rodhouse 2005; De
Pierrepont et al. 2005; Rodhouse 2005). The loliginid
squid, Doryteuthis sanpaulensis, is present in the
Brazilian, Uruguayan and Argentinian shelf from 23°S to
46°S between coastal and shelf waters (Brunetti et al. 1999;
Vidal et al. 2013). This species is not the target of an
industrial fishery but is captured as bycatch in bottom trawl
fisheries (i.e. Pleoticus muelleri, Artemesia longinaris and
Merluccius hubbsi) and other squid fisheries (I. argentinus
and D. plei), as bycatch of pink-shrimp trawl fishery
(Farfantepenaeus spp.) and in recreational fisheries along
the Argentinian coast (Brunetti et al. 1999; Rodrigues and
Gasalla 2008). Several studies were conducted to describe
the biological characteristics of this species along its distri-
bution range (Vigliano 1985; Costa and Fernandes 1993;
Pineda et al. 1998, 2002; Brunetti et al. 1999; Barón
2001a, b; Barón and Ré 2002a, b; Garri and Ré 2002;
Martins and Perez 2007; Rodrigues and Gasalla 2008;
Crespi-Abril et al. 2014) but studies which aimed to deter-
mine the population structure of the species are scarce and
outdated (i.e. Juanicó 1983). In this paper, we studied the
morphology of D. sanpaulensis using GM and compared
the shape variation between different locations along the
geographical distribution range of the species.

Materials and methods

Study areas and specimen sampling

Individuals were obtained between February 2014 and April
2014 from three different locations along the geographical
distribution range of the species: Nuevo Gulf (Argentina),
Rawson Port (Argentina) and São Sebastião (Brazil) (Fig. 1).

In Nuevo Gulf, 65 specimens were captured at Luis Piedra
Buena dock during the night using jigs (Table 1). This gulf is a
semi-enclosed basin with an average depth of 80 m and a
maximum depth of 180 m (Rivas and Beier 1990), and it is
communicated to the adjacent shelf through an opening 16 km
wide. The opening is relatively narrow and it limits substan-
tially the circulation and exchange of water with the adjacent
platform (Rivas and Beier 1990). Therefore, the currents in-
side the gulf are weak (1– 4.5 cm s−1) and mainly driven by
wind stress (Palma et al. 2008; Tonini et al. 2013). The tem-
perature in the water column varies depending on the time of
the year (Rivas 1990; Rivas and Beier 1990; Dellatorre et al.
2012): there is a strong stratification during summer with tem-
peratures of 18 °C at surface and 11 °C at the bottom, while in
winter, the gulf waters are thermally homogeneous, with an
average temperature of 10.25 °C (Rivas 1990; Rivas and Beier
1990; Dellatorre et al. 2012).

In Rawson Port, 33 specimens were captured as bycatch of
shrimp (Pleoticus muelleri) bottom trawlers. The fishing area
is located in near shore waters between 43°20′ and 43°32′S,
from the coast to 24 km offshore. The water column is homo-
geneous, with an average temperature between 10 and 11 °C
during winter and between 16 and 17 °C during summer (Ruiz
and Mendia 2008).

In São Sebastião, 22 specimens were obtained as bycatch
of pink-shrimp trawl fishing (Farfantepenaeus spp.). This re-
gion is characterised by having a maximum depth of 50 m and
the water temperature ranges from 17 °C in winter to 31 °C in
summer. The area is influenced by three water masses, coast
water, tropical water and South Atlantic Central Water, and
their distribution and seasonal variation are typical of the
southeastern shelf (Matsuura 1986; Castro Filho et al. 1987;
Migotto and Vervoort 1996).

The last two sites (Rawson Port and São Sebastião) have
stronger currents compared to Nuevo Gulf, since they are
directly exposed to shelf-water influence. The current values
estimated in the Argentinian and Brazilian shelf range from 5
to 10 cm s−1 (Lima et al. 1996; Soares andMöller 2001; Palma
et al. 2008; Tonini et al. 2013).

To avoid bias due to manipulation by different researchers,
a standardised protocol for specimen processing and image
acquisition was applied in the three locations. Specimens were
preserved chilled and processed in the laboratory. Each indi-
vidual was photographed with a Sony DSC-W70 7.2-mega-
pixel digital camera and the dorsal mantle length (DML), total

Mar Biodiv

Author's personal copy



weight (TW), sex and maturity condition based on the macro-
scopic characteristics of the reproductive system were record-
ed (Barón and Ré 2002b) (Table 1).

Photographs were taken with the ventral part of the mantle
facing the camera and the dorsal part supported on a rigid
platform to prevent fins deformation (Fig. 2). The specimens
were digitalised using the software tpsDig2 (Bookstein 1998).

Two different landmark configurations were used: one of
nine landmarks (9L) and another of 25 landmarks (25L).
According Dryden and Mardia (1998), a homologous land-
mark is a point of correspondence on each object that matches
between and within populations. The 9L configuration was
suggested by Crespi-Abril et al. (2010) and is conformed only

by anatomical landmarks. The 25L configuration was imple-
mented in this study in order to improve accuracy. This con-
figuration is conformed by nine landmarks (the same as in the
9L configuration) and 16 semi-landmarks (Fig. 2). To correct
any bending in the body of the squid, the ‘unbend specimens’
function from tpsUtil software was implemented (Rohlf
2016). This function forces the alignment of the landmarks
on the longitudinal axis and modifies the position of the rest
of the landmarks of the configuration consequently. For the 9L
configuration, the landmarks considered in the longitudinal
axis were 8, 9 and 4, and for the 25L configuration 20, 21
and 10 (Fig. 2). Translation, rotation and scale effects were
removed by means of a generalised Procrustes analysis (GPA)

Fig. 1 Study area indicating the
locations where individuals of
Doryteuthis sanpaulensis were
collected: São Sebastião, São
Paulo, Brazil; Nuevo Gulf,
Argentina; and Rawson Port,
Argentina

Table 1 Number of specimens obtained at each location

Location Males Females Total number
of samples

Immature Maturing Mature Immature Maturing Mature

Nuevo Gulf 20 22 13 8 2 0 65

Rawson Port 1 2 3 18 3 6 33

São Sebastião 3 9 1 1 8 0 22
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(Adams et al. 2004; Zelditch et al. 1998). In this method,
landmark configurations are superimposed by least squares
optimisation and the process is iterated to compute the mean
shape (Adams et al. 2004; Zelditch et al. 2004). After GPA,
shape differences can be analysed by the differences between
Procrustes coordinates. Centroid size (CS), which is calculat-
ed as the square root of the sum of the squared deviations of
landmarks from a centroid (Bookstein 1991; Zelditch et al.
2004) for each specimen, was used as a size proxy. The pres-
ence of allometry (changes in shape related to changes in size)
was examined by a multivariate regression analysis between
shape scores as a dependent variable (Procrustes coordinates)
and size as an independent variable (CS). Themain tendencies
in shape variation between specimens within samples were
summarised through a principal component analysis (PCA)
of the variance–covariance matrix of the Procrustes coordi-
nates. All shape analyses were performed using MorphoJ
v1.05d (Klingenberg 2011). More details of the framework
of GM using landmarks can be found in Zelditch et al. (2004).

Additionally, to analyse ontogenetic shape variation of the
mantle, a dispersion graphic was built between the first prin-
cipal component and the DML, as suggested by Crespi-Abril
et al. (2010).

Results

The multivariate regression of shape on CS was significant
(permutation test with 10,000 random permutations,
p < 0.017). Consequently, subsequent analyses were per-
formed with the residuals of the regression, which are free of
allometric effects.

According to the PCA, the percentage of total variation of
the shape explained by the 9L configuration was 80.5% (PC1:
61% and PC2: 19.5%), while the percentage of total variation
for the 25L configuration was 76.4% (PC1: 54.8% and PC2:
21.6%). Thus, further analysis of shape variation was per-
formed based on the 9L configuration, which explained a
higher percentage of the total variance compared to the 25L
configuration.

The PCA results indicated that specimens show a large
overlap between the categories based on sex (Fig. 3b) and
maturity stage (results not shown). When the location is con-
sidered, the squid shape from São Sebastião and Rawson Port
were very similar, while in Nuevo Gulf the presence of two
different morphological groups were observed (Fig. 3a). The
specimens shape of one of these groups is more similar to the
São Sebastião and Rawson Port shapes than to the second
group of the same location, while the other group shows a
morphology only observed in specimens from Nuevo Gulf.
Based on these results, specimens were regrouped and two
different morphotypes were defined: (i) a morphotype of the
continental shelf conformed by specimens of São Sebastião,
Rawson Port and Nuevo Gulf (represented by PC1 negative
values) and (ii) a morphotype typical of the gulf, conformed
only by specimens of Nuevo Gulf (represented by PC1 posi-
tive values). The shape of the continental shelf morphotype is
characterised by a more robust body (larger fins and wider
mantle) than the gulf morphotype (Fig. 3a).

Both morphotypes’ specimen size was similar and ranged
from 60 to 230 mm of the DML. Figure 4 shows that both
morphotypes presented the same tendency of ontogenetic
shape variation: as individuals grow, fins become larger and
the mantle becomes wider (Fig. 4). Regarding the ontogenetic
variation, it was noted that both morphotypes showed the
same trend.

Discussion

Despite the fact that GM techniques have been widely used to
detect subtle shape variations that can be missed when tradi-
tional morphometry is used (Bookstein 1998; Zelditch et al.
1998; Adams et al. 2004), in cephalopods, the application of
these methods is rare. Probably, the main factor limiting the
use of GM techniques in this class is the difficulty in placing
homologous landmarks on firm anatomical structures. This is
particularly noticeable in the soft body of the order Octopoda.
Conversely, in the orders Sepiida, Teuthida, and Nautilida,
GM techniques have the potential to be implemented, since

Fig. 2 Landmarks placement on
Doryteuthis sanpaulensis mantle
and fins. The grey points are
anatomical landmarks and the
white points are semi-landmarks
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these groups have a more solid body, given by the presence of
rigid structures, such as sepion/gladius or shell. For example,
Neige and Boletzky (1997) determined inter- and intraspecific
shape variations between S. officinalis, S. elegans and
S. orbignyana using a landmarks configuration in the sepion
and Crespi-Abril et al. (2010) analysed the shape variation
between two spawning groups of I. argentinus using a con-
figuration of homologous landmarks in the mantle, fins and
lower beak.

In D. sanpaulensis, two landmark configurations were im-
plemented to compare fins and mantle shape variation. The 9L
configuration explained a higher percentage of the total shape
variation in relation to the 25L configuration, despite being a
configuration with fewer points to describe the mantle and fins
shape. The 25L configuration is conformed by 16 additional
semi-landmarks with respect to the 9L configuration. Semi-
landmarks are not positioned at anatomical points but they are

placed on the contour of the mantle between landmarks
(Fig. 2) and then slid so as to minimise the bending energy
during GPA (Bookstein 1997). These additional points
showed a high dispersion around the mean shape, which leads
to a decrease in the percentage of the total variation explained
by PCA. Therefore, the 9L configuration represents the most
appropriate configuration to characterise D. sanpaulensis
mantle and fins shape.

As a general pattern, since female gonads are bigger than
male gonads, the most notorious sexual dimorphism trait in
squids corresponds to females being larger and heavier than
males when they reach the maximum maturity stage
(Rodhouse and Hatfield 1992; Belcari 1996; Boyle and
Rodhouse 2005). In D. sanpaulensis, this same pattern was
observed between 23°S and 44°S (Vigliano 1985; Costa and
Fernandes 1993; Barón and Ré 2002a, b). In the present study,
no sexual dimorphism was observed: males and females of

Fig. 3 Principal component analysis (PCA; PC1 61% and PC2 19.5%)
showing the total shape variation. Individuals are categorised by location
(a) and sex (b). The ellipses enclose 95% of observations. The wireframes

indicate shape changes along the axes: grey lines represent the mean
shape and black lines correspond to the displacement of the landmarks
at each axis extreme

Fig. 4 Shape variation (PC1) as a
function of the dorsal mantle
length (DML, mm) for both
morphotypes. The black points
represent individuals belonging to
the morphotype of the gulf and
the grey points represent
individuals belonging to the
morphotype of the continental
shelf
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D. sanpaulensis presented a similar mantle and fins shape.
Additionally, shape did not vary between the maturity condi-
tion of individuals. A similar result was reported for
I. argentinus captured on the Argentinian coastal waters
(Crespi-Abril et al. 2010).

Cephalopods present a high phenotypic plasticity, mainly
influenced by environmental factors and food availability
(Boyle and Boletzky 1996; Hatfield et al. 2001; Boyle and
Rodhouse 2005; Sinn et al. 2008). This plasticity may be the
cause of phenotypic intrapopulation groups (Boyle and
Rodhouse 2005; Crespi-Abril et al. 2010). Particularly in
loliginid squids, phenotypic intrapopulations groups have been
observed in several studies. For example, the analysis of mor-
phometrics data in the Northeast Atlantic Ocean has shown
differences between Loligo forbesii from the continental shelf
compared to those of overseas (Pierce et al. 1994). In the
Southwest Atlantic Ocean (8°S to 27°S), Zaleski et al. (2012)
distinguished local morphotypes in Lolliguncula brevis and
suggest that exclusive phenotypes can be maintained in rela-
tively small and enclosed areas, such as bays and estuaries. In
the Southeast Atlantic Ocean, for Loligo reynaudii, Van Der
Vyver et al. (2015) suggested environmental heterogeneity as
the primary driver of the observed phenotypic divergence.
Fur the rmore , Juan icó (1983) obse rved tha t , in
D. sanpaulensis, twomorphologically similar groups were sep-
arated by a different one (28°S to 30°S) in the Southwest
Atlantic Ocean (23°S to 38°S). One of the most studied factors
influencing phenotypic plasticity is water temperature
(Forsythe 1993; Pierce et al. 1994; Hatfield 2000; Forsythe
et al. 2001): it is expected that individuals which experience
different thermal history will present differences in some bio-
logical parameters (e.g. individual growth rate, maximum size,
size at maturity). However, our results suggested that tempera-
ture is not the main factor influencing D. sanpaulensis shape
variation, since individuals from Brazilian waters were similar
to individuals from Argentinian waters, despite the differences
in water temperature.

In the present study, two morphotypes were distinguished:
the gulf and shelf morphotypes. The specimens with the gulf
morphotype were characterised by fins and mantle narrower
than the shelf morphotype specimens. In this sense, a more
robust mantle and fins are expected to increase the swimming
capacity and to reduce the locomotion costs of individuals
(O’Dor 1988; Zaleski et al. 2012). Considering that Nuevo
Gulf is a semi-enclosed basin with weaker currents
(<5 cm s−1, mainly driven by wind stress) than the much more
dynamic shelf waters (Palma et al. 2008; Tonini et al. 2013),
the two morphotypes detected may be influenced by differ-
ences in water dynamics at each location. However, in Nuevo
Gulf, both morphotypes coexist. This could be explained by
the fact that some individuals complete their life cycle inside
the gulf (Barón 2001a, b), developing a similar body shape to
the gulf morphotype ones, while other individuals complete

their life cycle in shelf waters, developing the shelf
morphotype and migrate into coastal waters (including
Nuevo Gulf) to spawn (Barón and Ré 2002b).

Squids usually show marked ontogenetic changes in fins
and mantle shape as individuals pass from paralarvae to adults
with higher swimming capacity, linked to intense reproductive
migrations and to active predatory behaviour (Boyle and
Rodhouse 2005). Our analysis of the shape ontogenetic vari-
ation in D. sanpaulensis revealed that both morphotypes
showed the same trend: an increase in the relative size of the
fins and the width of the mantle as specimens grow. Therefore,
these results would show that individuals of D. sanpaulensis
develop greater swimming capacities as they grow, regardless
of the environment in which they inhabit.

Morphological diversity is the product of genetic, develop-
mental and environmental influences. Shape variation may
indicate different functional roles, different responses to selec-
tive pressures, as well as differences in life history traits.
Shape analysis is one approach to understanding these diverse
causes of variation (Zelditch et al. 2004). The results presented
in this study revealed the presence of two morphotypes in
D. sanpaulensis. These differences are not associated with
the latitudinal range, since groups of closest sites are more
dissimilar than groups separated for more than 20° of latitude.
In agreement with Juanicó (1983), this suggests that the pop-
ulation structure of D. sanpaulensis may be complex and dif-
ferent morphotypes are probably adapted to different hydro-
dynamic regimes.
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