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Abstract

The purpose of this work is to evaluate the potential of modeling the self-diffusion coefficient (SDC) of real fluids in all fluid states based on
Lennard–Jones analytical relationships involving the SDC, the temperature, the density and the pressure. For that, we generated an equation of state
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EOS) that interrelates the self-diffusion coefficient, the temperature and the density of the Lennard–Jones (LJ) fluid. We fit the parameters of such
J–SDC–EOS using recent wide ranging molecular simulation data for the LJ fluid. We also used in this work a LJ pressure–density–temperature
OS that we combined with the LJ–SDC–EOS to make possible the calculation of LJ–SDC values from given temperature and pressure. Both EOSs
re written in terms of LJ dimensionless variables, which are defined in terms of the LJ parameters ε and σ. These parameters are meaningful at
olecular level. By combining both EOSs, we generated LJ corresponding states charts which make possible to conclude that the LJ fluid captures

he observed behavioral patterns of the self-diffusion coefficient of real fluids over a wide range of conditions. In this work, we also performed
redictions of the SDC of real fluids in all fluid states. For that, we assumed that a given real fluid behaves as a Lennard–Jones fluid which exactly
atches the experimental critical temperature Tc and the experimental critical pressure Pc of the real fluid. Such an assumption implies average

rue prediction errors of the order of 10% for vapors, light supercritical fluids, some dense supercritical fluids and some liquids. These results
ake possible to conclude that it is worthwhile to use the LJ fluid reference as a basis to model the self-diffusion coefficient of real fluids, over
wide range of conditions, without resorting to non-LJ correlations for the density–temperature–pressure relationship. The database considered
ere contains more than 1000 experimental data points. The database practical reduced temperature range is from 0.53 to 2.4, and the practical
educed pressure range is from 0 to 68.4.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Self-diffusion is the diffusion of tagged particles of com-
ound A in a fluid where all particles are chemically identical,
.e., where only compound A particles are present. Self-diffusion
s characterized by the self-diffusion coefficient (SDC) DAA,
hich relates the tagged A particle flux vector to the gradient of

he partial mass density of tagged A particles [1]. On the other
and, the tracer (infinitely dilute) diffusion coefficient of com-
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ponent A (D∗
A) relates to the diffusion of labeled component

A molecules within an homogeneous mixture [2] which may
or may not contain untagged A molecules. In a binary homoge-
neous mixture of components A and B, where a small fraction of
the A molecules are tagged, the tracer diffusion coefficient D∗

A
tends to the self-diffusion coefficient DAA [2] as the mole frac-
tion of component A tends to unity. Coefficients DAA and D∗

A
correspond both to situations where the tagged particles are at
infinite dilution, i.e., the system has no [tagged solute]–[tagged
solute] interactions.

The more familiar mutual diffusion coefficient DAB is impor-
tant in process design calculations. For instance, it is required
as input information for calculating mass transfer coefficients.
The DAB coefficient tends to the tracer diffusion coefficient D∗

A
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at the limit of infinite dilution of component A in component B.
On the other hand, a model for the tracer diffusion coefficient
D∗

A should match the condition D∗
A = DAA at the limit where

the characteristic parameters of both components in the homo-
geneous mixture are forced to be identical [3]. At such limit,
also the condition DAB = DAA must be met.

This work is related to the need of modeling the self-diffusion
coefficient of real fluids in wide ranges of temperature and pres-
sure. The design of supercritical fluid extraction processes is a
typical problem which implies a wide range of conditions.

Models based on molecular theory are those that make refer-
ence to parameters meaningful at molecular level. This is their
distinguishing feature with respect to the so-called fully empir-
ical models. Molecular theory ultimately provides analytical
expressions for the dependency of thermodynamic and trans-
port properties of model fluids on characteristic molecular level
parameters and on variables such as temperature and density. By
definition, model fluids are those for which the intermolecular
potential function is known. Zabaloy et al. [4] provided more
details.

The Lennard–Jones (LJ) fluid is suitable to be used as a ref-
erence for modeling properties of real fluids [4]. One of the
LJ fluid important features is its realism. Ruckenstein and Liu
(RL) [5] proposed a model for the self-diffusion coefficient of
real fluids which is based on an expression for the self-diffusion
coefficient of the LJ fluid as a function of temperature, density
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able. Process modeling typically requires calculating properties
at given pressure and temperature, rather than at given density
and temperature. The purpose of this work is to establish whether
the approach of combining PVT EOSs and SDC EOSs, of real-
istic model fluids, can be used as a basis for the development of
real fluid SDC models, applicable over a wide range of condi-
tions, thus removing the need for real fluid (compound-specific
or not) PVT empirical correlations. Rather than proposing a pol-
ished model for the self-diffusion coefficient, we explore here
the potential of an alternative modeling approach.

2. Model fluids

Well-known model fluids are for instance the hard spheres
fluid, the square well fluid and the Lennard–Jones [LJ] fluid.
Only repulsive interactions are present in the hard spheres fluid.
Therefore, it does not exhibit a vapor–liquid phase transition [1].
On the other hand the Lennard–Jones fluid shows vapor–liquid,
solid–liquid and solid–vapor transitions, a critical point and a
triple point. A phase diagram of the LJ fluid is available in, e.g.,
reference [4]. The expression for the Lennard–Jones intermolec-
ular potential is the following.

u(r) = 4ε

[(σ

r

)12 −
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nd LJ intermolecular potential parameters. In the RL model the
ensity enters as input information into the expression for the
elf-diffusion coefficient. In cases where the experimental den-
ity was not available, Ruckenstein and Liu [5] used an empirical
orrelation for estimating it. Other LJ-based models for self-
iffusion coefficient, such as that of Silva et al. [43] or the more
ecent model by Zhu et al. [6], are built in the same way, i.e.,
hey require the density as input information. For pure com-
ounds, the density is a function of temperature and pressure.
he correlations for estimating the density from pressure and

emperature can be of varying accuracy. On one hand, the sim-
lest PVT equations of state (EOSs) can be used, e.g., the van
er Waals EOS, which is known to have a poor performance for
on-gas-like densities. At the other end of the spectrum, we find
ulti-parametric compound-specific EOSs which are very accu-

ate, but require much experimental information on different
roperties, for every pure compound, to proceed to the (tedious)
arameter fitting step. Even in the case of having available the
oefficients of a multi-parametric PVT EOS for a large number
f pure compounds of interest, the development of a LJ-based
DC model, such as the RL model, requires fitting parameters
rom experimental SDC information, due to the non-spherical
ature of real fluid molecules. In spite of their accuracy, multi-
arametric PVT EOSs are still empirical correlations, since their
arameters are not meaningful at molecular level. The approach
n this work is to combine a Lennard–Jones PVT EOS with a
J SDC EOS. In this way, the calculation of the self-diffusion
oefficient at given temperature and pressure is carried out by
rst calculating the LJ density, and then by calculating the self-
iffusion coefficient from the previously computed LJ density.
ence, in this work, the density is used as an intermediate vari-
here r is the intermolecular distance, u the potential energy, ε

he depth of the LJ potential well and σ is the LJ separation dis-
ance at zero energy. Because the parameters ε and σ are clearly
efined features of the LJ intermolecular potential function, we
an assert that, within the universe of the LJ fluid, the parameters
and σ are meaningful on the molecular level.
The LJ reduced temperature T+, reduced pressure P+, reduced

ensity ρ+, and reduced self-diffusion coefficient D+ are conven-
ionally defined as follows:

+ = kT

ε
(2)

+ = Pσ3

ε
(3)

+ = N

V
σ3 = NAρσ3 (4)

+ = D

√
m/ε

σ
(5)

here k is the Boltzmann constant, T the absolute temperature, P
he absolute pressure, N the number of molecules, V the system
olume, NA the Avogadro’s number, ρ the amount-of-substance
ensity in units such as mole per liter, D the self-diffusion coef-
cient and m is the mass of one molecule. The variable ρ+ for

he LJ substance in fluid state is not necessarily limited to values
ess than unity.

. Self-diffusion coefficient for the Lennard–Jones fluid

Rowley and Painter (RP) [7] computed LJ self-diffusion coef-
cients at 171 different conditions using the method of molecular



M.S. Zabaloy et al. / Fluid Phase Equilibria 242 (2006) 43–56 45

dynamics. Rowley and Painter [7] covered a wide range of tem-
perature (0.8 ≤ T+ ≤ 4) and density. The range for ρ+ [7] was
from zero to the minimum between 1 (unity) and the density of
the dense LJ fluid at equilibrium with the LJ solid (ρ+

fluid,SFE).
More recently Meier et al. [1,42] computed, among other proper-
ties, the self-diffusion coefficient for the Lennard–Jones model
fluid, at 334 different temperature–density conditions, from
equilibrium molecular dynamics simulations, covering the entire
fluid region from the low density gas to the compressed fluid
close to the freezing line. Meier et al. [1,42] LJ self-diffusion
coefficient data correspond to the reduced temperature range
from T+ = 0.7, which is close to the LJ triple point tempera-
ture, to T+ = 6, which is about 4.5 times the critical temperature.
Meier et al. [1,42] LJ self-diffusion data are distributed among
16 different isotherms. Meier et al. [1,42] used a larger num-
ber of particles, larger cutoff radii and much longer simulation
runs than considered before in conventional simulation work,
and demonstrated that his simulation data for the LJ transport
coefficients are significantly more accurate than in previous
studies. The estimated uncertainty of Meier et al. data is about
0.5–1%.

Rowley and Painter [7] correlated their LJ self-diffusion coef-
ficient data using the following equation:

D+ρ+ = (D+ρ+) +
4∑ 6∑

bji

(ρ+)i
(6)
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Table 1
Values for the parameters of Eq. (6) obtained in this work

j i bji j i bji

1 1 −0.840222 1 3 −1.078374
2 1 3.073654 2 3 1.666815
3 1 −3.991659 3 3 0.698998
4 1 2.018800 4 3 −6.050100
5 1 −0.523600 5 3 3.520100
6 1 0.104100 6 3 −0.247500

1 2 0.958776 1 4 0.346849
2 2 −2.833311 2 4 −0.168102
3 2 0.206392 3 4 −0.059826
4 2 6.207900 4 4 1.089544
5 2 −4.590900 5 4 −0.135200
6 2 0.805200 6 4 −0.303090

propose here to calculate ρ+
fluid,SFE using the following simple

equation:

ρ+
fluid,SFE = 0.92146891(T+)

0.21839684
(7)

which reproduces well the data of Agrawal and Kofke [8] for
the density of the dense LJ fluid at solid–fluid coexistence in
the temperature range from the LJ triple point T+ up to T+ = 10.
Eq. (6) coupled to Table 1 parameters gives, for the Meier et
al. [1,42] set of 334 LJ self-diffusion coefficient data, an aver-
age absolute value relative deviation of 0.68% with a maximum
deviation of 3.24%. The bias is 0.045%. The absolute value of
the coefficients in Table 1 is in all cases less than 7. On the other
hand, some coefficients in reference [7] have absolute values in
the order of 400. We used the following procedure to find initial
estimates of the parameters of Eq. (6). For a given isothermal
LJ self-diffusion data subset, i.e., at a given constant T+, we fit-
ted the residual property

⌊
D+ρ+ − (D+ρ+)0

⌋
as a fourth order

polynomial function of ρ+ with zero intercept, in agreement with
Eq. (6). We repeated this task for the 16 Meier et al. isothermal
data sets. Then, for every power of ρ+, i.e., for powers from 1
to 4, we correlated the 16 coefficients found previously, as a 5th
order polynomial function of the variable 1/T+. In this way we
obtained excellent initial estimates for the 24 bji coefficients of
Eq. (6). Then, we readjusted them all simultaneously but found
almost no difference between the initial set and the optimum set.
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here (D+ρ+)0 is the limit of the product (D+ρ+) as the density
pproaches zero and the coefficients bji are general LJ fitting
arameters. The self-diffusion coefficient D+ tends to infinity at
he zero density limit [1]. On the other hand, at the zero den-
ity limit, the product (D+ρ+) remains finite and takes the values
nown from the Chapman–Enskog solution to the Boltzmann
quation [1]. The product (D+ρ+)0 depends only on the temper-
ture T+.

In this work we did not use the values that Rowley and
ainter [7] reported for the coefficients bji. Rather, we computed
ew values for the coefficients bji by forcing a good repro-
uction of Meier’s [1,42] LJ self-diffusion data, which cover
emperature and density ranges wider than those of Rowley and
ainter [7]. For the term (D+ρ+)0 we used Eq. (B.1) of page
93 of Meier’s [1] Ph.D. thesis, which, rewritten in terms of
imensionless variables, becomes Eq. (A.1) of Appendix A.
q. (A.1) has an extremely wide range of applicability: from
+ = 0.7 to 1000; and is written in terms of a number of colli-
ion integrals for the Lennard–Jones fluid (see Appendix A). We
eport the values obtained in this work for the bji coefficients in
able 1.

The range of applicability of Eq. (6) coupled to Table 1
arameters is the same than that of Meier et al. [1,42]
J self-diffusion coefficient data, i.e., for the density,

rom zero toρ+
fluid,SFE(ρ+

fluid,SFE = density of the dense LJ fluid
n equilibrium with the LJ solid), and, for the temperature, from
+ = 0.7 to 6. The density ρ+

fluid,SFE is a function of only T+.
abaloy et al. [4] presented an iterative procedure to compute
+
fluid,SFE. In view of the T+ range of applicability of Eq. (6) we
Eq. (6) coupled to the parameter values of Table 1 makes pos-
ible the analytical fast computation of self-diffusion coefficients
or the Lennard–Jones fluid over a wide range of conditions from
nown values of T+ and ρ+. Eq. (6) should not be used outside
he established temperature and density ranges.

According to Lee and Thodos [9] and De et al. [10], the prop-
rly interpreted experimental evidence implies that no anomaly
n the vicinity of the critical point exists for the self-diffusion
oefficient of real fluids. For the self-diffusion coefficient of the
J fluid, Meier [1] did not report any critical anomaly either.
onsistently, Eq. (6) does not account for any critical enhance-
ent effect.
Fig. 1 illustrates the representation of part of the Meier et

l. [1,42] LJ SDC data by Eq. (6). The product (D+ρ+) is plot-
ed as a function of ρ+ at different values of T+. The T+ = 0.7
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Fig. 1. Product (D+ρ+) for the Lennard–Jones fluid as a function of the density
ρ+ at varying temperature T+ values. Symbols (�, ×, ©, ♦) denotes molecular
dynamics results [1,42]. Solid lines: Eq. (6)/Table 1.

isotherm is close to the triple point isotherm. At such temper-
ature, the density interval without SDC data is relatively wide
and corresponds to the two-phase region. In spite of this, Eq.
(6) does not show, for such interval, problematic loops, i.e., Eq.
(6) properly interpolates LJ liquid and vapor SDC information.
The three higher temperature isotherms in Fig. 1 correspond to
supercritical isotherms.

4. Lennard–Jones pressure–density–temperature
equation

The independent variables in Eq. (6) are the temperature and
the density. However, from the process design point of view the
pressure is an independent variable more convenient than the
density. Hence we need a PVT equation of state for the LJ fluid
to make possible the computation of density from known values
of temperature and pressure. The PVE/hBH LJ-EOS, developed
by Kolafa and Nezbeda [11], is an accurate LJ PVT EOS which
is based on critically assessed computer simulation data from
several sources. According to Ref. [11], the PVE/hBH LJ-EOS
has an accuracy comparable with or better than that of LJ PVT
EOSs previously available, such as those of Johnson et al. [44]
or Nicolas et al. [45], particularly with regard to the critical point
as shown in Fig. 11 of Ref. [11]. The PVE/hBH LJ-EOS [11] is
the LJ PVT EOS we use in this work and it is the following:

z

w
a
[
o
f
w
o
(

Fig. 2. Pressure as a function of reduced molar volume (1/ρ+) for the
Lennard–Jones fluid at subcritical and supercritical temperatures. We generated
the curves using Eq. (8).

region, i.e., it is a classical LJ PVT EOS. The critical coordinates
corresponding to Eq. (8) are the following [11]:

T+
c = 1.3396 (9)

P+
c = 0.1405 (10)

ρ+
c = 0.3108 (11)

zc = 0.3375 (12)

Fig. 2 shows the pressure P+ as a function of the inverse den-
sity ρ+ for several isotherms. All curves correspond to Eq. (8).
The variable 1/ρ+ is a reduced molar volume. The subcritical
isotherms have pressure regions where, at a given set pressure,
there are two meaningful values of density (vapor and liquid).
The critical isotherm shows a characteristic flat region where the
volume is very sensitive to small changes in pressure. At super-
critical temperatures there is only one density value compatible
with a set pressure value.

The user should make sure that Eqs. (6) and (8) are used
within the proper density range by using Eq. (7) to compute the
maximum density of applicability.

In summary, the equations we presented up to this point make
it possible to analytically and quickly calculate the LJ SDC D+

at a given temperature T+ and pressure P+ within proper temper-
ature and density ranges. Such equations interpolate and smooth
L
l

5
s

T
s
i
a

P
c

= P+

ρ+T+ = fKN(ρ+, T+) (8)

here z is the compressibility factor and fKN is a function of ρ+

nd T+. The function fKN is available in the original reference
11] and more concisely in reference [4]. The temperature range
f applicability of Eq. (8) is 0.68 ≤ T+ ≤ 10. The range for ρ+ is
rom 0 (zero) to the density of the dense LJ fluid in equilibrium
ith the LJ solid (ρ+

fluid,SFE) (see Eq. (7)). Notice that the range
f applicability of Eq. (8) completely contains that of Eq. (6). Eq.
8) does not account for any special phenomena in the critical
J thermodynamic and transport data obtained through typically
ong molecular simulation runs.

. Corresponding states LJ charts involving the
elf-diffusion coefficient

Eqs. (6) and (8) interrelate sets of dimensionless variables.
his indicates that the Lennard–Jones fluid is a corresponding
tates model fluid, whose dimensionless variables are defined
n terms of parameters meaningful at molecular level, namely ε

nd σ.
Fig. 3 shows the product (D+ρ+) as a function of pressure

+ at varying values of temperature T+. We generated Fig. 3 by
ombining Eqs. (6) and (8), i.e., at chosen values of T+ and ρ+,
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Fig. 3. Product (D+ρ+) for the Lennard–Jones Fluid as a function of the pressure
P+ at varying temperature T+ values, as represented by Eqs. (6) and (8).

we computed the product (D+ρ+) and the pressure P+, respec-
tively, from Eqs. (6) and (8) and plotted the result. For a given
isotherm the computations are performed from zero density up to
a high enough density (which is at most equal to ρ+

fluid,SFE). The
plot shows three subcritical isotherms, the critical isotherm and
three supercritical isotherms. The zero pressure starting point for
all isotherms corresponds to the Chapman–Enskog zero density
value for the product (D+ρ+). The loops for the three subcritical
isotherms are the result of van der Waals loops associated to Eq.
(8). For the T+ = 0.7 and 0.9 (subcritical) isotherms the loops
include regions of unphysical negative pressure. This does not
constitute a problem since the pressure is always the set degree of
freedom in practical calculations, and it is always set as a positive
variable. The critical isotherm shows a steep region where small
changes in pressure produce important changes in the product
(D+ρ+). At high temperature the product (D+ρ+) is less sensitive
to pressure. For given temperature and phase type (vapor, liquid
or supercritical fluid), the product (D+ρ+) appears to be a mono-
tonically decreasing function of pressure. For any of the three
subcritical isotherms, the pressure P+, seen as a function of the
product (D+ρ+) in Fig. 3, shows a local maximum and a local
minimum. The portion of the curve between the two extrema
corresponds to the density range where the LJ PVT EOS, i.e.,
Eq. (8), violates the mechanical stability criterion. Such portion
of the curve is thus meaningless. The behavior of the LJ product
(D+ρ+) is simpler than that of the LJ viscosity [4].

f
T
v
l
(
i
t
n
o
v
v

Fig. 4. Self-diffusion coefficient D+ for the Lennard–Jones Fluid as a function
of the pressure P+ at varying temperature T+ values, as represented by Eqs. (6)
and (8).

uation of vapor–liquid equilibrium. All other P+ values within
the vapor–liquid P+ range correspond to a metastable condition
either for the vapor phase or for the liquid phase. Fig. 4 depicts
the SDC behavior typically found in real fluids, i.e., (a) at given
temperature and pressure, a vapor has a SDC greater than that
of a liquid, (b) the SDC decreases with pressure and increases
with temperature and (c) the critical isotherm shows a large sen-
sitivity of the SDC with respect to pressure around the critical
pressure. Fig. 4 shows that equations Eqs. (6) and (8) can basi-
cally represent the self-diffusion coefficient of subcritical vapors
and liquids, and of near-critical or (light or dense) supercritical
fluids in wide pressure ranges.

It is useful to have available Lennard–Jones corresponding
states charts in terms of practical reduced properties. These are
more familiar to the engineering community than the LJ reduced
properties of Eqs. (2)–(5). To that end, we introduce the equa-
tions that follow.

For a Lennard–Jones fluid, it can be shown, from Eq. (2), that

T+ = TrT
+
c (13)

where T+
c is a constant [Eq. (9)] and Tr is the practical reduced

temperature, defined as:

Tr = T

Tc
(14)

w
v

P

w
p

P

w
v

Fig. 4 shows, for the LJ fluid, the diffusion coefficient D+ as a
unction of the pressure P+ at different values of the temperature
+. We generated Fig. 4, again by using Eqs. (6) and (8) at set
alues of T+ and ρ+, but solving in this case Eq. (6) for D+. This
ast step implied set values of ρ+ which had to differ from zero
notice the logarithmic scale in Fig. 4). The maximum P+ value
n Fig. 4 corresponds roughly to twice the critical pressure. For
he subcritical isotherm at T+ = 0.9 we removed all points with
egative pressure P+ and/or all points with negative derivative
f P+ with respect to ρ+. For such isotherm there is a range of P+

alues within which we find both, a vapor-like and a liquid-like
alue of D+. Only one of such P+ values corresponds to a sit-
here Tc is the critical temperature. A chosen value of Tr sets a
alue for T+ through Eq. (13). Also, from Eq. (3), we write

+ = PrP
+
c (15)

here P+
c is a constant [Eq. (10)] and Pr is the practical reduced

ressure, defined as:

r = P

Pc
(16)

here Pc is the critical pressure. A chosen value of Pr sets a
alue for P+ through Eq. (15). On the other hand, for the LJ
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Fig. 5. Ratio PD/(PD)P→0 as a function of the Pr at different values of Tr for
the Lennard–Jones fluid.

fluid, it can be shown that

PD

(PD)P→0
= P+

ρ+T+
D+ρ+

(D+ρ+)0
(17)

where PD is the product of pressure times the self-diffusion
coefficient at a given temperature, while (PD)P→0 is the limit of
PD as pressure tends to zero. To derive Eq. (17) it is necessary to
remember that Eq. (8) matches the ideal gas law, i.e., as ρ+ tends
to zero the pressure P+ tends to the product [ρ+T+]. Fig. 5, shows
the quotient PD/(PD)P→0 as a function of Pr at different values
of Tr for the LJ fluid. A given point is generated as follows: set
a value of Tr. Calculate T+ through Eq. (13). Calculate (D+ρ+)0
from Eq. (A.1). Set a value of ρ+ less than or equal to ρ+

fluid,SFE
[Eq. (7)] and calculate the product (D+ρ+) using Eq. (6), P+ using
Eq. (8) and Pr using Eq. (15). Calculate the ratio PD/(PD)P→0
using Eq. (17). Fig. 5 is quite similar to Fig. 16.3-1 of Bird
et al. [12], which is based on theory and on some (very few)
fragmentary data.

The practical reduced self-diffusion coefficient density prod-
uct (Dρ)r is defined as:

(Dρ)r = (Dρ)

(Dρ)crit
(18)

where (Dρ)crit is the product Dρ at the critical point. On the
other hand, the product (D+ρ+), evaluated using Eq. (6)/Table 1,
a
t

(

(

Fig. 6. Practical reduced self-diffusion coefficient density product as a function
of the practical reduced temperature Tr for different isobars (constant Pr) for the
Lennard–Jones fluid.

The reduced product (Dρ)r can be calculated at given Pr and
Tr, as follows: calculate P+ from Eq. (15). Compute T+ from Eq.
(13), ρ+ from Eq. (8), (D+ρ+) from Eq. (6)/Table 1, and (Dρ)r
from Eqs. (19) and (20). Since Eq. (8) can give one or two mean-
ingful values of ρ+, this calculation procedure can give one or
two values for (Dρ)r. Using this procedure we generated Fig. 6,
which shows the practical reduced SDC density product as a
function of the practical reduced temperature Tr for different
isobars for the Lennard–Jones fluid. The curve labeled “Pr = 0”
is the zero density limit, while the curve identified as “Pr = 0
(liquid)” corresponds to the liquid-like root which Eq. (8) gives
at zero pressure for certain temperature range. Fig. 6 is in good
agreement with Fig. 17.2-1 of page 522 of Ref. [13] which was
generated from a combination of theory and real fluid experi-
mental data. On the other hand, Fig. 6 is based only on molecular
simulation data.

From the information we presented in this section, we con-
clude that the Lennard–Jones fluid, as represented by the com-
bined LJ self-diffusion coefficient (SDC) equation of state [Eq.
(6)] and by the LJ pressure–density–temperature EOS [Eq. (8)],
has a behavior, over a wide range of conditions, consistent with
that observed for real fluids.

6. Prediction of self-diffusion coefficients of real fluids
based on Lennard–Jones molecular simulation data
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t the temperature and density conditions of Eqs. (9) and (11) is
he following:

D+ρ+)crit = 0.179961 (19)

Notice that for the LJ fluid

Dρ)r = (D+ρ+)

(D+ρ+)crit
(20)
In this section we study how the analytical expressions for the
ressure and the self-diffusion coefficient for the Lennard–Jones
uid, i.e., the combined Eqs. (6) and (8), perform when pre-
icting the SDC of real fluids. To that end, we need to assign
umerical values to the LJ parameters ε and σ. Fig. 4 shows the
mportant differences in the patterns which the self-diffusion
oefficient follows, depending on the location of the tempera-
ure and pressure conditions with respect to those of the critical
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Table 2
Sample self-diffusion coefficient prediction for methane at 160 K and 16.49 bar

Input data

Compound Mw (g mol−1) [14] Tc (K) [14] Pc (bar) [14] T (K) P (bar)

Methane 16.0428 190.564 45.99 160 16.49

Calculated variables

ε/κ (K) [Eq. (21)] σ (Å) [Eq. (22)] T+ [Eq. (2)] ρ+
fluid,SFE at T+ [Eq. (7)] (D+ρ+)0 [Eq. (A.1)] P+ [Eq. (3)]

142.3 3.91 1.12474549 0.94543304 0.1650568 0.05037715

Phase A

Type ρ+
A [Eq. (8)] (D+ρ+)A [Eq. (6)] DA (m2/s) [Eq. (5)] Experimental DA (m2/s) [36]

LIQ 0.62251642 0.10742399 1.83 × 10−8, prediction error: +5% 1.75 × 10−8

Phase B

Type ρ+
B [Eq. (8)] (D+ρ+)B [Eq. (6)] DB (m2/s) [Eq. (5)]

VAP 0.05957616 0.15998618 28.54 × 10−8

point. From Fig. 4, it seems reasonable to treat a given real fluid
as a LJ fluid having critical temperature and pressure coordi-
nates identical to the experimental critical temperature and the
experimental critical pressure, respectively. To impose such full
consistency with the experimental critical temperature and pres-
sure we combine Eqs. (2), (3), (9) and (10) to give:

ε = κTc

T+
c

= κTc

1.3396
(21)

σ =
(

κTc

Pc

P+
c

T+
c

)1/3

=
(

κTc

Pc

0.1405

1.3396

)1/3

(22)

If, for a given real fluid, we compute parameter ε from
the experimental critical temperature Tc through Eq. (21), and
parameter σ from Tc and from the experimental critical pressure
Pc through Eq. (22), then, the resulting Lennard–Jones fluid will
have its critical state at the same T, P coordinates than the real
fluid. In view of the non-Lennard–Jones nature of real fluids, the
ε and σ parameters computed as described should be considered
as effective LJ parameters.

The only input experimental information we use in this work,
when calculating the SDC for a real fluid at given temperature
and pressure, is the critical temperature Tc, the critical pressure
Pc and the molecular weight Mw. We used the values of Tc, Pc
and Mw available in Ref. [14], for all real fluids here considered.
T
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formance of the model, we found that some real fluid SDC exper-
imental data, available in the literature, corresponded to condi-
tions falling outside the applicability ranges of Eqs. (6) and (8).
We do not report results here for such situations, which imply the
need for extrapolation schemes applicable to the Lennard–Jones
SDC and PVT equations of state here considered.

The calculation procedure described in Table 2 corresponds
to the relatively crude model which, as a case study, we used
in this work to assess the potential of our alternative modeling
approach. We computed the density values in Table 2 using Eq.
(8). Thus, such values are Lennard–Jones densities which may
differ from the experimental methane densities.

If a user wanted to compute the self-diffusion coefficient for
a given pure compound using the procedure of Table 2, at set
values of temperature and density (instead of temperature and
pressure), he/she would first need to find the pressure from the
set density and temperature values, using a reliable PVT model
for the given pure compound (or a table of experimental PVT
values), and then follow the procedure of Table 2. A by product
of the application of such procedure would be a Lennard–Jones
density value that in general will differ from the set density value.

7. Results and discussion

For a few real compounds, we begin this section by
i
L
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d
c
t
t
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t
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able 2 provides a numerical calculation example that illustrates
he use of the above equations. The example consists of predict-
ng, from Tc, Pc and Mw, the self-diffusion coefficient of methane
t 160 K and 16.49 bar. At the set T and P values in the exam-
le, Eq. (8) provides two meaningful density values, and hence
e come out with two SDC values (liquid-like and vapor-like).
otice that, on one hand, none of the two density values exceeds

he LJ fluid density at solid fluid equilibrium (ρ+
fluid,SFE), while;

n the other hand, the T+ value falls within the applicability
anges of Eqs. (6) and (8). When carrying out calculations using
large real fluid SDC database for assessing the prediction per-
llustrating graphically the performance of the predictive
ennard–Jones-based model for the self-diffusion coefficient.

Fig. 7 shows experimental and predicted self-diffusion coef-
cient values, as a function of pressure, for Krypton, at two
ifferent temperature values, both greater than Krypton’s Tc. The
ircles represent the experimental data at 293 K. The experimen-
al data with the label “220.4 K” (triangles) actually correspond
o a few temperature values with a relatively narrow range of
ariation (standard deviation: 0.9 K). The solid lines represent
he model predictions we made from Tc, Pc and Mw. The pres-
ure reaches relatively high values (greater than 50 bar). We see
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Fig. 7. Self-diffusion coefficient (SDC) as a function of pressure for Krypton.
The solid lines correspond to model predictions. Experimental data: � [19],
© [21]. The experimental data presented for the 220.4 K isotherm (�) actually
correspond to a range of temperature values (standard deviation: 0.9 K).

that the model properly follows the experimental data. Eq. (1)
implies that the Lennard–Jones fluid is made of spherical (i.e.,
simple) molecules which can attract or repel each other depend-
ing on the intermolecular distance. At the conditions of Fig. 7, it
is clear that the Lennard–Jones fluid is a good model for Krypton.

Fig. 8 shows the model performance for methane. The 173 K
isotherm is subcritical. It has a vapor branch and a liquid branch.
The vapor SDC values are from roughly 10 to 20 times greater
than those of liquid methane. The model properly predicts such
differences. The model also reproduces the shape of the 222 K
isotherm which has a shape similar to that of a critical isotherm.
At 454 K, the performance is also very good, for a true pre-
diction, both, qualitatively and quantitatively. Notice that the
pressure range in Fig. 8 is roughly from about 10 bar to about
2000 bar. Notice also that the model captures the rich variety
of trends in Fig. 8 from the knowledge of only the real fluid
experimental Tc, Pc and Mw. In spite of the non-spherical nature
of methane molecules, the LJ fluid seems to be at good model

F
t
t

Fig. 9. Self-diffusion coefficient as a function of pressure for carbon dioxide,
at varying temperature values. The solid lines correspond to model predictions.
Experimental data: � [29], ♦ [25] and [29], � [25].

for methane, at least within the range of conditions of Fig. 8.
The values for parameters ε and σ corresponding to Fig. 8 are
those of Table 2, i.e., ε/κ = 142.3 K and σ = 3.91 Å. These are the
values that one would use as input in a series of molecular simu-
lation runs, performed for the range of conditions of Fig. 8. Such
runs would match the solid lines of Fig. 8. When we perform
a molecular simulation run, or use, equivalently, Eqs. (6) and
(8), we acknowledge the existence of discrete molecules mak-
ing up the fluid. In this sense, the parameters ε/κ = 142.3 K and
σ = 3.91 Å are said here to be meaningful at molecular level for
methane, in spite of the fact that the LJ functional form is one
among several other forms that could be used to represent the
effective interaction between methane molecules. Fully empir-
ical correlations, on the other hand, can be obtained without
assuming the fluid as constituted by molecules.

Fig. 9 compares, for vapor, liquid and supercritical-
temperature carbon dioxide, model predictions and experimental
data. The performance is good at the vapor and supercritical-
temperature conditions. At liquid condition, we observe a rela-
tively small systematic over prediction of the CO2 self-diffusion
coefficient. The pressure range in Fig. 9 is from a few bar to about
400 bar for liquid CO2.

Fig. 10 presents the self-diffusion coefficient versus temper-
ature for propane for four different isobars. The pressure, which
is in the range from 250 to 2000 bar, is in all cases greater than
the critical pressure of propane. The vertical dashed line is the
b
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ig. 8. Self-diffusion coefficient as a function of pressure for Methane, at varying
emperature values. The solid lines correspond to model predictions. Experimen-
al data: � [32], ♦ [32], � [32], © [37].
oundary between the liquid state and the supercritical state.
or the 500 and the 1000 bar isobars, the model performance is
ood. There is, however, some systematic model over prediction
t 250 bar and a systematic under prediction at 2000 bar.

Fig. 11 shows the self-diffusion coefficient for perfluorocy-
lobutane as a function of pressure for three different isotherms.
ne of them is subcritical (T = 373 K) while the other two are

upercritical (T = 423 and 473 K). The pressure range is from 50
o 1900 bar. In almost all cases we observe a systematic model
ver prediction of the self-diffusion coefficient. From the error
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Fig. 10. Self-diffusion coefficient for propane as a function of temperature for
varying pressure values. The solid lines correspond to model predictions. Sym-
bols (�, ♦, ©, �) denotes experimental data [37].

levels in Fig. 11, it is clear that forcing consistency between the
LJ and real fluid critical point temperature and pressure values, is
not enough to achieve an acceptable quantitative model perfor-
mance for perfluorocyclobutane. In spite of the lack accuracy for
this case, the model predicts the right trends that the SDC should
follow as a function of temperature and pressure. This sug-
gests that, to reduce the model errors, some additional parameter
should be introduced for perfluorocyclobutane, which the user
could fit against self-diffusion coefficient experimental data.

The previous figures illustrate, for a few real pure compounds,
the performance of the present purely predictive Lennard–Jones-
based model for the SDC. Table 3 provides quantitative model
performance information for several fluids including those of
the previous figures. The labels LIQ and VAP mean “liquid” and
“vapor”, respectively. The label light supercritical fluid (LSCF)

F
p
p

implies that the fluid temperature is supercritical while the pres-
sure is less than or equal to the critical pressure. In contrast, dense
supercritical fluid (DSCF) implies a supercritical temperature
and a pressure greater than the critical pressure. Our distinction
between light and dense supercritical fluids is somewhat arbi-
trary but it helps to draw some general conclusions on the model
behavior. The total number of data points considered in Table 3
is 1043. Silva et al. [43] used a larger database comprising 2471
data points. Our original database was of the same size than that
of Ref. [43]. It shrunk, however, to a size of 1043 data points.
The reasons for such shrinkage are: (a) part of the real fluid SDC
experimental data corresponded to conditions falling outside the
applicability ranges of Eqs. (6) and (8), and (b) another portion
of the experimental data did not have the experimental pres-
sure value reported. For cases where the density, rather than the
pressure, was available, we could have estimated the pressure
value using available methods to do so. Such an approach, how-
ever, would have introduced an additional source of uncertainty,
i.e., the use of non-experimental input pressure information. We
decided then to exclude from our analysis experimental points
lacking pressure information. Our database, which is made of
1043 points, is still large enough to explore the potential of our
modeling approach.

Table 3 shows, for every fluid and phase type (LIQ, VAP,
LSCF or DSCF), the SDC average (AAD%) and maximum (Max
AD%) absolute value percentage relative deviations associated
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ig. 11. Self-diffusion coefficient for perfluorocyclobutane as a function of
ressure at varying temperature values. The solid lines correspond to model
redictions. Symbols (©, �, ♦) denotes experimental data [35].
o the present LJ-based model. Table 3 also reports the ranges of
ariation for temperature, pressure, reduced temperature Tr and
educed pressure Pr; and the number of experimental SDC data
oints together with the corresponding bibliographic sources.

Table 3 shows results for vapor (VAP) phases for carbon diox-
de and methane. We see in both cases that the average prediction
rrors are less than or equal to 9% for both compounds, which
s a good error level for a true prediction. The total number of
AP points is 46.

For light supercritical fluids we see that the average error is
lose to or less than 10% for krypton, methane, carbon tetraflu-
ride, chlorotrifluoromethane, carbon dioxide and ethylene. For
he only LSCF water point the error is larger. Hence we see
hat, for LSCF fluids with relatively small non-polar or slightly
olar molecules, the LJ-based predictions are quite acceptable
n spite of the non-spherical nature of such real fluid molecules.
he total number of LSCF points is 186.

For dense supercritical fluids, we find in Table 3 aver-
ge errors less than or close to 10% for propane, methane,
hloromethane, krypton and ethylene (total of 228 data points).
otice the high values for the maximum reduced pressure for
ost of these fluids. For water, the average error is 27%. Such

arge value might be due to the strong specific interactions exist-
ng among water molecules which Eq. (1) does not account for
xplicitly.

For liquids (310 points), we see average errors of at least
2%. Also notice the high values for the maximum practical
educed pressure for most of the LIQ fluids. For about seven out
f the 18 LIQ fluids the prediction error level is quite acceptable
up to about 14%). For the remaining LIQ fluids, it is evident
hat the simple present LJ approach cannot describe the SDC
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Table 3
Lennard–Jones-based prediction results of the self-diffusion coefficients of real fluidsa

Compound Phase
typeb

AAD%c Max
AD%d

No. of data
points

Min
Tr

Max
Tr

Min
Pr

Max
Pr

Min
T (K)

Max
T (K)

Min P
(bar)

Max P
(bar)

References

Krypton LIQ 21 28 3 0.88 0.95 1.74 1.8 184 200 96 99 [17]
Krypton LSCF 6 17 49 1.05 1.40 0.10 1.0 219 293 6 53 [17,19,21]
Krypton DSCF 10 21 27 1.00 1.31 1.04 2.0 210 274 57 113 [17,19]
Methane VAP 9 14 11 0.81 0.98 0.21 0.8 155 187 10 37 [32]
Methane LIQ 12 26 29 0.58 0.98 0.32 34.1 110 187 15 1568 [32,36]
Methane LSCF 9 15 24 1.00 1.56 0.17 1.0 191 298 8 45 [32,34]
Methane DSCF 8 20 151 1.00 2.38 1.06 45.0 191 454 49 2070 [32,34,37]
Ethane LIQ 12 29 20 0.60 0.96 5.13 41.1 182 294 250 2000 [37]
Ethane DSCF 14 25 20 1.04 1.49 5.13 41.1 319 454 250 2000 [37]
Propane LIQ 13 33 26 0.60 0.97 0.35 47.1 221 359 15 2000 [27,37]
Propane DSCF 8 19 10 1.07 1.22 5.89 47.1 397 453 250 2000 [37]
Cyclohexane LIQ 93 146 17 0.57 0.69 0.02 19.6 313 383 1 800 [16]
Ethylene LIQ 14 34 12 0.97 0.97 0.90 54.0 273 273 46 2722 [41]
Ethylene LSCF 11 13 8 1.06 1.23 0.41 1.0 298 348 21 50 [40]
Ethylene DSCF 12 26 36 1.06 1.23 1.01 36.3 298 348 51 1828 [40,41]
Benzene LIQ 32 71 19 0.54 0.77 0.02 30.7 303 433 1 1505 [18,20]
Carbon dioxide VAP 7 14 35 0.90 0.98 0.04 0.9 273 298 3 64 [25,26,29]
Carbon dioxide LIQ 24 45 21 0.90 0.98 0.75 6.5 273 298 55 482 [27,29]
Carbon dioxide LSCF 10 28 98 1.01 1.23 0.03 1.0 308 373 2 72 [25,26,29]
Carbon dioxide DSCF 13 34 53 1.01 1.23 1.06 6.8 308 373 79 498 [25,26,29]
Chloromethane LIQ 12 38 24 0.56 0.98 1.50 29.9 233 406 100 2000 [22]
Chloromethane DSCF 10 22 4 1.06 1.06 7.49 29.9 440 440 500 2000 [22]
Dichloromethane LIQ 18 33 13 0.53 0.80 1.64 32.9 270 406 100 2000 [22]
Chloroform LIQ 22 42 30 0.55 0.74 0.02 27.4 295 397 1 1500 [22,24]
Trifluoromethane LIQ 16 42 13 0.54 0.85 2.06 41.2 161 255 100 2000 [28]
Carbon tetrafluoride LSCF 5 6 5 1.07 1.31 0.66 0.9 243 298 25 33 [30]
Carbon tetrafluoride DSCF 29 101 49 1.07 1.53 1.04 12.0 243 348 39 450 [30]
Chlorotrifluoromethane LIQ 13 33 22 0.60 0.97 6.46 51.7 180 294 250 2000 [33]
Chlorotrifluoromethane LSCF 5 5 1 1.00 1.00 0.95 1.0 303 303 37 37 [31]
Chlorotrifluoromethane DSCF 16 44 84 1.00 1.43 1.02 51.7 303 433 40 2000 [31,33]
Carbon disulphide LIQ 22 33 5 0.54 0.57 0.01 5.8 298 313 1 457 [23]
Acetonitrile LIQ 21 34 10 0.55 0.63 0.02 12.8 298 343 1 618 [39]
Tetramethylsilane LIQ 51 94 12 0.66 0.83 1.60 35.5 298 373 45 1000 [18]
Perfluorocyclobutane LIQ 55 93 23 0.83 0.96 1.80 51.8 323 373 50 1440 [35]
Perfluorocyclobutane DSCF 14 26 34 1.09 1.22 3.96 68.4 423 473 110 1900 [35]
Pyridine LIQ 13 26 11 0.54 0.68 0.02 17.8 333 423 1 1000 [38]
Water LSCF 19 19 1 1.04 1.04 0.90 0.9 673 673 199 199 [15]
Water DSCF 27 36 33 1.04 1.50 1.00 6.6 673 973 221 1459 [15]

Total 1043

a Calculations performed according to Table 2 procedure.
b LIQ, liquid; VAP, vapor; LSCF, light supercritical fluid; DSCF, dense supercritical fluid.

c Average absolute-value percent relative deviation = AAD% =
(

100
NP

) NP∑
i=1

|Dpred−Dexp|
Dexp

.

d Maximum absolute-value percent relative deviation = Max AD% = maxNP
i=1

{
100|Dpred−Dexp|

Dexp

}
. NP = number of data points. Dpred = predicted self-diffusion coef-

ficient. Dexp = experimental self-diffusion coefficient.

quantitatively. On the other hand, we have verified, for all the
fluids in Table 3, that the model always gives the right trends
for the SDC as a function of both, temperature and pressure.
This fact suggests that the LJ fluid, with critical temperature and
pressure values set equal to the real fluid values, could be used
as a suitable reference for modeling the real fluid SDC, over a
wide range of conditions, if proper corrections to account for
non-sphericity and/or polarity are added, while using a general
LJ PVT equation (Eq. (8)) for estimating the density.

The values of Tc and Pc, which we took from the DIPPR
database [14], have variable uncertainty depending on the con-

sidered pure compound. Table 4 shows how the average error,
AAD%, changes with ±2% changes in either Tc or Pc. Case A
(C.A.) is the base case; it corresponds to the unperturbed origi-
nal values of Tc and Pc in Ref. [14]. Hence, the AAD% values
we report in column C.A. are the same than those in Table 3.
We report them again in Table 4 to enable a quick comparison
with the results for perturbed values of Tc and Pc. For instance,
Case B (C.B.) corresponds to the unperturbed DIPPR value of
Tc and to a value of Pc 2% lower than the DIPPR value. Notice
that the number of data points under a given label, among the
four possible, i.e., LIQ, VAP, LSCF or DSCF, may change when
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Table 4
Sensitivity of the Lennard–Jones-based predicted self-diffusion coefficient with respect to the input critical pressure and critical temperature

Compound Phase type AAD% Number of data points

C.A. C.B. C.C. C.D. C.E C.A. C.B. C.C. C.D. C.E.

Krypton LIQ 21 22 21 29 9 3 3 3 3 6
Krypton LSCF 6 8 5 5 9 49 49 49 49 49
Krypton DSCF 10 12 8 10 21 27 27 27 27 24
Methane VAP 9 11 7 3 15 11 11 11 7 18
Methane LIQ 12 12 12 10 17 29 29 29 27 32
Methane LSCF 9 12 7 5 12 24 23 24 28 16
Methane DSCF 8 9 7 6 12 151 152 151 153 149
Ethane LIQ 12 12 11 10 15 20 20 20 20 20
Ethane DSCF 14 15 14 11 17 20 20 20 20 20
Propane LIQ 13 13 13 16 11 26 26 26 26 26
Propane DSCF 8 8 8 8 9 10 10 10 10 10
Cyclohexane LIQ 93 93 92 104 82 17 17 17 17 17
Ethylene VAP NA NA NA 220 NA 0 0 0 1 0
Ethylene LIQ 14 14 14 14 16 12 12 12 11 12
Ethylene LSCF 11 12 9 7 15 8 6 9 8 8
Ethylene DSCF 12 14 10 8 20 36 38 35 36 36
Benzene LIQ 32 33 32 39 27 19 19 19 19 19
Carbon dioxide VAP 7 8 7 33 11 35 35 35 8 53
Carbon dioxide LIQ 24 23 24 33 21 21 21 21 13 30
Carbon dioxide LSCF 10 11 9 10 13 98 98 98 127 78
Carbon dioxide DSCF 13 15 11 12 20 53 53 53 59 46
Chloromethane LIQ 12 12 11 13 11 24 24 24 24 24
Chloromethane DSCF 10 9 10 12 9 4 4 4 4 4
Dichloromethane LIQ 18 18 17 20 16 13 13 13 13 13
Chloroform LIQ 22 22 21 28 16 30 30 30 30 30
Trifluoromethane LIQ 16 16 16 19 15 13 13 13 13 13
Carbon tetrafluoride LSCF 5 3 7 10 2 5 5 5 5 5
Carbon tetrafluoride DSCF 29 28 31 36 25 49 49 49 49 49
Chlorotrifluoromethane LIQ 13 13 13 17 17 22 22 22 22 52
Chlorotrifluoromethane LSCF 5 2 11 22 NA 1 1 1 1 0
Chlorotrifluoromethane DSCF 16 15 22 36 10 84 84 84 84 55
Carbon disulphide LIQ 22 21 22 17 26 5 5 5 5 5
Acetonitrile LIQ 21 22 21 28 16 10 10 10 10 10
Tetramethylsilane LIQ 51 51 51 57 44 12 12 12 12 12
Perfluorocyclobutane LIQ 55 55 56 62 50 23 23 23 23 23
Perfluorocyclobutane DSCF 14 13 15 18 11 34 34 34 34 34
Pyridine LIQ 13 13 13 14 15 11 11 11 11 11
Water LSCF 19 22 19 13 26 1 1 2 1 1
Water DSCF 27 29 26 21 33 33 33 32 33 33

Total 1043 1043 1043 1043 1043

C.A.: Tc = Tc,DIPPR, Pc = Pc,DIPPR; C.B.: Tc = Tc,DIPPR, Pc = 0.98Pc,DIPPR; C.C.: Tc = Tc,DIPPR, Pc = 1.02Pc,DIPPR; C.D.: Tc = 0.98Tc,DIPPR, Pc = Pc,DIPPR; C.E.:
Tc = 1.02Tc,DIPPR, Pc = Pc,DIPPR.

changing the values of Tc and/or Pc. From Table 4, we conclude
that the calculated self-diffusion coefficient can be sensitive to
the uncertainty in the input Tc and Pc values.

The results we showed for real fluids in Figs. 7–11, together
with those of Table 3, make it possible to conclude that the
modeling of SDC for real fluids based on SDC values for the LJ
fluid, in wide ranges of conditions, for vapors, liquids and light
and dense supercritical fluids, is in principle possible, without
having to resort to (compound-specific or not) fully empirical
pressure–density–temperature correlations. In other words, this
work provides enough evidence of the suitability of using a PVT
EOS of a model fluid (in this case the LJ fluid [Eq. (8)]) for
estimating the volumetric properties of real fluids in the context
of modeling self-diffusion coefficients.

We should stress that the data we used in this work are raw
experimental data, i.e., we did not smooth them. This normally
implies worse performance indices for analytical models such
as the present one.

Table 3 should be seen as the result of the application of
a corresponding states model where the reference fluid is the
Lennard–Jones fluid. From Table 3, the present LJ-based cor-
responding states model has obvious limitations. Model fluids
more realistic than the Lennard–Jones fluid could be tested as we
did in this work. This requires, however, the availability, for the
chosen model fluid, of values for thermodynamic and transport
properties over a wide range of conditions, computed through
typically long molecular simulation runs. In this work, we did
not intend to model quantitatively the self-diffusion coefficient
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behavior of complex real fluids, but to explore the potential of
using the same reference model fluid for both, the PVT relation-
ship and the SDC–temperature–density relationship.

8. Conclusions

In the present work we generated an analytical equation (Eq.
(6)) for the Lennard–Jones self-diffusion coefficient as a func-
tion of temperature, density and LJ parameters ε and σ. We
fitted Eq. (6) by imposing a good reproduction of recent high
quality molecular simulation data [1,42] for the LJ fluid. Eq.
(6) makes possible to avoid time-consuming molecular simu-
lation runs when we need to compute a LJ SDC value. Using
Eq. (6) and a pressure–density–temperature LJ equation of state
[Eq. (8)] we generated a number of corresponding states charts
(Figs. 1–6) for the SDC as function of temperature and pres-
sure (or density). These charts are strictly valid for LJ fluids
(two LJ fluids are different if their ε and σ parameters dif-
fer), but, at least at qualitative level, such charts agree well
with those for pure real fluids. In this work, we treated real
pure fluids as LJ fluids having a molecular weight (Mw), a crit-
ical temperature (Tc) and a critical pressure (Pc) identical to
those of the real fluid. This choice makes it possible for the
model to capture proper qualitative trends for the SDC in wide
ranges of temperature and pressure. Using Tc, Pc and Mw as the
only experimental input information, makes the model become
a
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the properties of the reference fluid would relate macroscopic
variables to molecular level parameters. Available self-diffusion
coefficient data sets are restricted to few real substances and
cover only limited portions of the fluid region of the phase dia-
gram [1], i.e., experimental real fluid self-diffusion coefficient
data are not sufficiently comprehensive and accurate for any one
fluid to serve as a satisfactory ECS reference fluid. This is one
of the reasons for adopting a model fluid (e.g., LJ) rather than a
real fluid as an ECS reference fluid. Additionally, while for real
fluids it is difficult to measure the diffusion of a tagged particle
that is of the same species than other particles in the fluid [1],
self-diffusion coefficient values for model fluids can be deter-
mined with high accuracy in molecular dynamics simulations
[1].

Notice that in this work we made a unified treatment of all
possible fluid phase states: liquid, vapor and light and dense
supercritical fluids.

Lennard–Jones theories have the ultimate goal of providing
analytical expressions consistent with the available molecular
simulation data for the LJ fluid. We should stress that the reader
should see the results of Table 3 as the limit that the best LJ
theories can reach under the restriction of full consistency with
the experimental real fluid critical T, P coordinates. This is true
due to the high accuracy levels that Eqs. (6) and (8) have within
their ranges of applicability.

L
A
D
D
D
D
E
k
L
L
L
m
M
N
N
N
P
P
P
P
r
S
S
T
T
T
u
V
V
z

truly predictive one, i.e., we make no use of experimental real
uid SDCs for fitting the model. This has a cost, and implies

hat the model has a good quantitative performance if the con-
idered real fluid is simple enough. For such simple enough
uids, it is remarkable the good behavior of the truly predic-

ive model up to very high pressure values (see for instance
igs. 7–9).

Our main conclusion in this work is that it is suitable to base
he modeling of the self-diffusion coefficient of real fluids, in
ide ranges of temperature and pressure, on the SDC values
easured for the LJ fluid (or better model fluids) through com-

uter experiments, using a LJ pressure–density–temperature
OS rather than (compound-specific or not) empirical PVT cor-

elations. For achieving a good quantitative performance for
elatively complex fluids, corrections would be required which
e did not intend to explore in this work. Another possibil-

ty would be to use a model fluid not limited to spherical
olecules. The approach of incorporating corrections into the
ennard–Jones-based model could consist of making the inter-
olecular potential parameters ε and σ functions of additional

haracterization parameters and of the thermodynamic state
hrough, e.g., the temperature [46]. This corresponds to the intro-
uction of the so-called shape factors within the context of the
xtended corresponding states theory (ECST), as discussed by
ly and Hanley [47,48] and by Ely and Marrucho [46]. In this
ase, the result would be an ECS model where the reference
uid is a model fluid, i.e., the Lennard–Jones fluid, rather than
real fluid, as in usual ECS models. In real fluid-based ECS
odels, the correlations that describe the properties of the refer-

nce fluid interrelate macroscopic variables. On the other hand,
n a model-fluid-based ECS model the analytical equations for
ist of symbols
AD% average absolute value percent relative deviation

self-diffusion coefficient (SDC)
exp experimental SDC
pred predicted SDC
SCF dense supercritical fluid
OS equation of state

Boltzmann constant
IQ liquid
J Lennard–Jones
SCF light supercritical fluid

mass of one molecule
ax AD% maximum absolute value percent relative deviation

Number of molecules
A Avogadro’s number
P number of data points

absolute pressure
c critical pressure
r practical reduced pressure
VT pressure–volume–temperature

intermolecular distance
DC self-diffusion coefficient
FE solid–fluid equilibrium

absolute temperature
c critical temperature
r practical reduced temperature

potential energy
system volume

AP vapor
compressibility factor
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Greek letters
ε depth of the LJ potential well
ρ+

fluid,SFE dimensionless density of dense LJ fluid in equilibrium
with LJ solid

ρ Amount-of-substance density (in, e.g., mol cm−3 units)
ρc critical amount-of-substance density (in, e.g.,

mol cm−3 units)
σ LJ separation distance at zero energy
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Appendix A. Calculation of the limit of the product
(D+ρ+) at zero density

To calculate (D+ρ+)0, i.e., the limit of the product (D+ρ+) as
the density approaches zero, we used Eq. (B.1) of page 193 of
Meier’s [1] Ph.D. thesis, which rewritten in terms of dimension-
l

(

w
t
(

f

∆

A

B

C

T
C

i

1
2
3
4
5
6

V

The quantities Ω(i,j)* are the reduced collision integrals for
the Lennard–Jones (12-6) intermolecular potential function of
Eq. (1) of the text. The variables Ω(1,1)* and Ω(2,2)* are given,
respectively, by the following equations:

ln Ω(1,1)∗ =
(

−1

6

)
ln(T+) +

6∑
i=1

a
(1,1)∗
i × (T+)

[(1−i)/2]

(A.7)

ln Ω(2,2)∗ =
(

−1

6

)
ln (T+) + ln

(
17

18

)

+
6∑

i=1

a
(2,2)∗
i × (T+)

[(1−i)/2]
(A.8)

with coefficients a
(1,1)∗
i and a

(2,2)∗
i given in Table A.1.

The collision integrals Ω(1,2)* and Ω(1,3)* required in Eqs.
(A.5) and (A.6) correspond to the following recurrence relation:

Ω(i,j+1)∗ = Ω(i,j)∗ + 1

j + 2
T+ ∂Ω(i,j)∗

∂T+ (A.9)

which gives for the particular cases of interest in the present
work the following equations:

Ω(1,2)∗ = Ω(1,1)∗ + 1

3
T+ ∂Ω(1,1)∗

∂T+ (A.10)

Ω

T

R

[

[
[

[

[

[

ess variables becomes the following:

D+ρ+)0 = 3

8

fDρ

Ω(1,1)∗

√
T+

π
(A.1)

here the factor (fDρ/Ω(1,1)*) is defined by the following equa-
ions and by Table A.1. We replicate here, from Ref. [1], Eqs.
A.2)–(A.11) and Table A.1, for the sake of completeness:

Dρ = 1

(1 − ∆)
(A.2)

= (6C∗ − 5)2

55 − 12B∗ + 16A∗ (A.3)

∗ = Ω(2,2)∗

Ω(1,1)∗ (A.4)

∗ = 5Ω(1,2)∗ − 4Ω(1,3)∗

Ω(1,1)∗ (A.5)

∗ = Ω(1,2)∗

Ω(1,1)∗ (A.6)

able A.1
oefficients for Eqs. (A.7) and (A.8)

a
(1,1)∗
i a

(2,2)∗
i

0.125431 0.310810
−0.167256 −0.171211
−0.265865 −0.715805

1.597600 2.486780
−1.190880 −1.783170

0.264833 0.394405

alues taken from Ref. [1], p. 196.
(1,3)∗ = Ω(1,2)∗ + 1

4
T+ ∂Ω(1,2)∗

∂T+ (A.11)

Eq. (A.1) has an extremely wide range of applicability: from
+ = 0.7 to 1000.
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