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a b s t r a c t

Outdoor climate jointly with architectonic design, housing materials, and construction system determine
thermal performance of buildings and their ability to deliver comfortable conditions to occupants.
Buildings must provide comfortable indoor environment which should be reasonably assured regardless
of outdoor weather fluctuations. This paper presents a methodology for quantitatively measuring the
hygrothermal discomfort risk of any building design. By combining a numeric model of the building
hygrothermal response with stochastic simulation techniques, occurrence probability, expected fre-
quency and duration of discomfort events in each thermal zone can be estimated. The article presents
fundamental notions on probabilistic hygrothermal risk assessment, describes the developed numerical
simulation models and introduces comfort reliability indexes. In order to illustrate the practicability of
the proposed approach in the context of the design process, the methodology was applied to a prototype
of a residential house conventionally built and acclimatized. The materials and construction system
reflect typical residential housing in the region of study. A bioclimatic variant of the same building
design is also evaluated. Monte Carlo simulations of the building's thermal response under stochastic
weather conditions allow identifying infrequent but critical situations in which the building is unable to
meet comfort requirements. Statistical analysis of simulation results is performed and condensed in
meaningful probabilistic indices for objectively measuring comfort reliability. By means of these metrics,
shortcoming of the architectonic design can be revealed and properly amended. In addition, comfort
reliability and risk indices facilitate the comparison of alternative thermal building designs on a fair
basis. The proposed methodology and the developed models are general and they can be applied
without constraints to any building design under a wide variety of climates.

& 2014 Published by Elsevier Ltd.
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1. Introduction

Buildings are intensive energy consumers in all countries,
mainly due to the operation of HVAC equipment [1]. For instance,
in Argentina buildings represent 40% of the overall energy con-
sumption of the country, 90% of which is supplied from non-
renewable sources [2]. Residential and commercial buildings
account for almost 39 percent of total U.S. energy consumption
and 38 percent of U.S. carbon dioxide (CO2) emissions [3]. Nearly
all of the greenhouse gas (GHG) emissions from the residential and
commercial sectors can be attributed to energy use in buildings for
HVAC purposes [3]. The energy consumption for heating and
cooling can be reduced principally through the correct morpholo-
gic design, favorable orientation and appropriate selection of
building envelopes and their components [4]. The implementation
of bioclimatic strategies in thermal building design aims at
maintaining comfortable indoor conditions as much time as
possible while minimizing conventional energy consumption [5].

Over the course of years, a wide variety of conceptual
approaches to the thermal design of buildings have been devel-
oped. They range from simple design rules to sophisticated
numerical models of the building thermal performance.

In practice, the conventional approach to thermal building
design is to comply with energy efficiency guidelines and rules
contained in applicable construction norms, certification stan-
dards, rating systems and building codes [6–10]. Besides stan-
dards, norms and codes, bioclimatic design guidelines and
recommendations for passive design strategies have been devel-
oped based on extensive experience and empirical data [5,11].
However, strict compliance with building codes or bioclimatic
design guidelines does not ensure that indoor comfort conditions
are consistently achieved with elevated probability in any
specific case.

Simple approximate tools to verify thermal performance in
early stages of building design have been proposed. Usually, these
approaches are mainly based on simplified heat balance calcula-
tions [12]. Approaches such as heat degree-day, sol-temperature
method, admittance modeling and graphical methods based on
psychrometric charts are widely used by practitioners [11–15].
Though useful, these methods are only rough simplifications of
physical reality and approximate results are obtained. Unfortu-
nately, the predictive value and accuracy of such tools exceedingly
depend on the specific setting as often the underlying assumptions
on which they are based do not hold. In addition, these approaches
commonly demand highly skilled and experienced designer to
judge obtained results.

With the advance in computation technology, chronological
simulation models of the thermal building behavior are now
readily available and are of widespread use to verify thermal
performance of buildings. Some models rests on stating the set of
linear differential equations that governs the steady-state thermal
dynamic behavior of buildings. An example of this modeling
approach is the well-known Transfer Function Method (TFM)
[16]. The equation systems are solved by analytical or numerical
techniques, e.g. Laplace Transform in continuous time, or
Z-Transform in discrete time. Because of the linear properties,
very efficient numerical methods can be applied for speeding

solutions. However, steady-state and linear assumptions often
turn these models inadequate to replicate the thermal dynamics
of complex buildings [17]. Furthermore, most modeling
approaches assume important simplifications of coupled heat-
moisture dynamic phenomena, which are particularly relevant to
thermal comfort design.

Presently, models based on computational fluid dynamics
(CFD) are increasingly used to overcome limitations of simpler
steady-state dynamic models [18]. CFD models formulate the non-
linear coupled partial differential equations of mass (Navier–
Stokes) and heat flows, which are solved by discrete numerical
techniques such as the finite difference method (FDM) or the finite
element method (FEM). These models allow for an accurate tri-
dimensional description of the thermal transient dynamics in
complex geometries. The main drawback of this approach is the
vast requirement of computational resources for solving the CFD
problem [19].

Most building modeling approaches are deterministic neglect-
ing important sources of uncertainty and their impact on building
performance. In fact, a reference or average weather dataset is
typically used in simulation models to verify the thermal response
of buildings [20]. The Typical Meteorological Year (TMY) is widely
used in building thermal simulations as single representative
weather time series for long-term energy consumption analysis
[21].

However, buildings are pervasively subject to changing meteor-
ological conditions, which frequently significantly depart from the
reference climate. Weather variability is stochastic in its very
nature and introduces considerable uncertainty in the resulting
hygrothermal indoor conditions as well as in the effectiveness of
many bioclimatic strategies [22]. Buildings have to reliably pre-
serve indoor comfort regardless of adverse outdoor meteorological
events. The problem with many bioclimatic designs is the high
dependence of thermal performance on fluctuating weather con-
ditions with the consequent introduction of uncertainty in build-
ing behavior. For example, in the use of solar heating, availability
of solar radiation and demand for heating are negatively corre-
lated. As consequence, there exists the risk that available solar
energy cannot meet the heating demand when needed the most.

Therefore, one of the questions that arises within the bioclimatic
design process is how reliable and effective are the bioclimatic
strategies for ensuring required comfort conditions under fluctuating
and random climatic events, both in terms of severity and duration.
Throughout time, there have been many attempts to include uncer-
tainty and stochastic variables, especially meteorological, in hygro-
thermal building simulations [23]. For instance, Bzowska [24]
calculates the mean value and the standard deviation of indoor
temperatures with a simple two-node simulation model. This
methodology proposes the superposition of deterministic and sto-
chastic components of outdoor climate variables for simulating
buildings. In [25], a standard thermal model is combined with Monte
Carlo simulation techniques to find the probability distribution of
indoor temperatures. Statistical independence of outdoor tempera-
ture and solar radiation was assumed to estimate the distribution.
Pietrzyk [26] develops an analytic probabilistic model for modeling
air infiltration and heat loss in houses. The work emphasizes the
importance of considering reliability in the thermal building design.
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However, it analyzes the stochastic building behavior without con-
sidering the chronology of events, which in turn ignores autocorrela-
tion and serial dependency of meteorological changes. In addition,
relevant temporally coupled phenomena, such as the thermal inertia
in the thermodynamics of constructions, are disregarded in this fairly
simple analytical model. Although analytical reliability models are
computationally very efficient, restrictive assumptions and important
simplifications are often required to obtain workable solutions.
In comparison, simulation models based on Monte Carlo techniques
normally allow a very detailed description of reality. However, they
have the disadvantage of being expensive in computational calcula-
tions [27].

The present paper proposes a new methodology to evaluate the
hygrothermal reliability of any building design [28]. By means of a
numeric model of the building hygrothermal response and sto-
chastic simulation techniques, expected frequency and duration of
discomfort events in each building room can be estimated. This
probabilistic analysis allows measuring the ability of the building
design to consistently perform as required. Probabilistic metrics
enable the proper assessment and comparison of the thermal
performance of various design alternatives on the same basis.
Furthermore, risk analysis also allows minimizing the overall
building costs without deteriorating building's comfort reliability.
Proper sizing of HVAC equipment capacity and building insulation
is facilitated if hygrothermal risk can be objectively measured.

The reminder of the paper is organized as follows: First,
fundamental concepts on thermal reliability evaluation and dis-
comfort risk assessment of buildings are introduced in Section 2.
Next, in Section 3, probabilistic reliability indices and discomfort
risk metrics for statistically measuring the building thermal perfor-
mance under critical weather are presented. Necessary numerical
models for stochastic hygrothermal simulation are described in
Section 4. In Section 5, the practicability of the proposed methodol-
ogy is illustrated in an exemplary residential dwelling. Finally,
concluding remarks on implications of the probabilistic approach
to thermal building design as well as avenues for further research
are provided in Section 6.

2. Hygrothermal comfort reliability and discomfort risk

Risk assessment and reliability design is an engineering
approach widely used for solving system design problems in other
fields in which the performed function is important, such as
nuclear facilities [29], aerospace [30] and automobile [31] industry,
building structures [32], powers systems [33], etc. In this paper, an
extension of the reliability-based design approach to the hygro-
themal building design is developed.

In reliability engineering, the term reliability is a probabilistic
notion and is defined as the ability of a component or system to
properly perform its required function [34]. In our setting, the
primary function that buildings must perform is to serve as shelter

from weather to their occupants. Under severe weather, when
shelter is needed the most, the proper accomplishment of this
function is critical. Under these unfavorable circumstances, build-
ings are required to behave reliably.

In the context of this work, the Hygrothermal Comfort Relia-
bility (HCR) of a building is defined as the capability of an
architectonic design, whether conventional, bioclimatic or hybrid,
to maintain prescribed hygrothermal comfort indoor conditions in
the presence of random outdoor climate fluctuations. Comfort
reliability is therefore the probability that the building preserves
hygrothermal indoor conditions within prescribed conditions of
human comfort. Contrary, the discomfort risk is the opposite
concept and can be defined is the probability of a loss of comfort
event. Hygrothermal risk can be stated either in term of an
expected cumulated discomfort time or as an expected frequency
and duration of discomfort events.

The probability that a building satisfies certain hygrothermal
requirements will depend on both, the characteristics (severity) of
the local climate and the building thermal design itself. Of both
factors, only the latter can be controlled by the designer. Reliability
of the building thermal behavior under critical outdoor conditions
can be changed by design parameters, such as building topology
and morphology, orientation, solar captation surface, constructive
materials, fenestration and HVAC installed capacity.

The designer and/or the building user must establish the
minimum acceptable comfort reliability level, i.e. the maximum
probability of loss of thermal comfort her/he is willing to accept.
If the comfort reliability level is set too low, occupants may often
suffer uncomfortable conditions when severe weather events
happen. On the contrary, if users demand high comfort reliability,
i.e. a low discomfort risk, robustness of the thermal design must
be enhanced by increasing overall building costs. Therefore, the
minimum acceptable reliability level must also be carefully
selected in order to avoid adversely affecting the economy of the
building.

The desired interval in which indoor conditions can fluctuate
have also a significant impact on the probability that the building
satisfies the imposed comfort requirement. If indoor conditions
are required to be kept unchanged irrespective of meteorological
conditions, substantial investment in thermal isolation and/or
HVAC equipment will be needed. Hence, the acceptable comfort
region must be established cautiously according to the purpose
and use of the building (for example: house, office, hospital,
museum, library, archive, wine cellar, warehouse, etc.). Depending
on the function of each building area and the amount of physical
activity typically involved, different acceptable comfort region for
each room (e.g. bedroom, reading room, gym, cellar, intensive care
room, etc.) may be necessary.

Hygrothermal comfort is a notion that intrinsically accounts for
human sense of well-being. In fact, thermal comfort is defined as
“the condition of mind that expresses satisfaction with the
thermal environment and is assessed by subjective evaluation”
[35]. Hygrothermal comfort not only depends on environmental
(physical) factors, such as room temperature, relative humidity
and air speed, but also on personal factors, such as metabolic rate,
clothing type, and to a lesser extent, gender and thermal
sensitivity.

For the selection of the hygrothermal comfort region, in this
work we use the ASHRAE Standard 55 for which 75% of the
population feels comfortable [36]. In practical applications, the
ASHRAE Standard 55 is likely the most used comfort criterion.
It has been developed based on extensive experimentation in
controlled chambers on the subjective thermal sensation of
individuals surveyed regarding environmental satisfaction. The
comfort region defined by this Standard is constrained by thresh-
old values on temperature and relative humidity, assuming typical

comfort
zone

UnRH

OvRH

TmaxTmin

OvH

RH[%]

RHmax

RHmin

temperature [°C]

UnH

Fig. 1. Target hygrothermal region of human comfort.
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values for other environmental and personal parameters (air
speed, cloth insulation and metabolic rate). This sets therefore a
simple two-dimensional region for assessing the compliance of a
given thermal design, which is schematically illustrated in Fig. 1.

Mathematically, the bi-dimensional comfort region is defined
by the following two interval inequalities:

Condition 1 ðC1Þ : TminrTrTmax ð1Þ

Condition 2 ðC2Þ : RHminrRHrRHmax ð2Þ

where the threshold values for temperature are Tmin¼19 1C and
Tmax¼26 1C respectively, and those for relative humidity are
RHmin¼30% and RHmax¼70%. These parameters define a rectan-
gular area, which is regarded to be a sufficiently broad comfort
region. The proposed methodology to assess the building's com-
fort reliability does not restrict or preclude the use of other values
o more sophisticated, multidimensional comfort models.

In addition to the four-sided comfort region depicted in light blue
in Fig. 1, the temperature�humidity plane is divided in eight well-
defined areas. There are four zones where only one environmental
variable is outside the specified limits. These areas (quadrants) are
referred in Fig. 1 as Over Heating (OvH), Under Heating (UnH), Over
Relative Humidity (OvRH), and Under Relative Humidity (UnRH). In
the remaining four areas, simultaneous violations of comfort tem-
perature and relative humidity boundaries take place.

3. Hygrothermal reliability and risk indices

In order to provide a quantitative description of the thermal
reliability and the discomfort risk of a building design, a set of
probabilistic indicators are developed. These metrics are a con-
venient way to summarize the statistical hygothermal behavior
under critical conditions. The reliability index HCR is normally
expressed as a probability in [%], but it can also be given in terms
of the expected annual cumulated time, i.e. average hours per
annum [h/a], the building satisfies prescribed conditions of hygro-
thermal comfort.

Sometimes, it is convenient to use the complementary concept
of Hygrothermal Discomfort Risk (HDR), defined as the probability
that the building is unable to keep indoor conditions within a pre-
established comfort region. The risk index HDR is the loss of
comfort probability, and as such, it can be expressed as a
percentage, or alternatively in terms of a cumulated Expected
Discomfort Duration (EDD) per unit period, e.g. in hours per
annum [h/a].

Since the building's indoor hygrothermal states can only be
assembled in two mutually exclusive states – comfortable or
uncomfortable – the HDR index is determined according to the
complementary identity:

HCRþHDR¼ 1 ð3Þ

The hygrothermal comfort reliability of a building design can be
mathematically expressed as the joint probability that both, the
indoor temperature T and the relative humidity RH, at any time h,
simultaneously reside within a targeted comfort region delimited
by Condition 1 and Condition 2. Mathematically, that is:

HCR¼ PrðTh AC1Þ 4 PrðRHh AC2Þ ð4Þ

This probabilistic index can be computed for either, the build-
ing as a whole or for each thermal zone individually. The prob-
ability HCR can be statistically estimated from stochastic
simulations of the thermal building behavior under a sample of
R independent chronological realizations of weather, spanning H

hours each, as:

HĈR¼ 1
N

∑
R

r ¼ 1
∑
H

h ¼ 1
xðrÞh ð5Þ

where N is the sample size calculated as N¼HR and x is a binary
variable that, for the h-th hour and the r-th realization, take values
according to the following conditions:

xðrÞh ¼ 1 if TminrT ðrÞ
h rTmax 4 RHminrRHðrÞ

h rRHmax

0 otherwise

(
ð6Þ

The sampled chronological hygrothermal room conditions
obtained from the stochastic simulations can be plotted in the
temperature�relative humidity (T�RH) plane along with the
desired comfort region, as is schematically illustrated in Fig. 2.
The HCR index can be interpreted as the ratio of the number of
sampled points laying within the comfort region to the total
sample size. Analogously, the quotient between the number of
points outside this area and the total sampled points is the
estimated discomfort risk (HDR). The statistical accuracy of esti-
mations is higher as the number of points increases. This notion
sets the basis of the Monte Carlo method for numerically evaluat-
ing thermal reliability and discomfort risk.

Although the HDR index objectively measures the occurrence
probability of discomfort events, the index itself does not say
anything about the magnitude of deviations from the boundaries
of the desired comfort region. Therefore, it is appropriate to use
the HDR index in conjunction with complementary reliability
indicators.

The expected value of indoor temperature and relative humid-
ity during discomfort events are suitable probabilistic parameters
to measure the magnitude of such deviations (violations) from the
limits of the set comfort region. These indices are called the
Expected Over- and Under Heating, denoted as E[OvH] and E
[UnH] respectively. The expected value of the overheating and the
under-heating temperature can be estimated as the average
temperature prevailing during the sampled overheating and
under-heating events. Similarly, the expected value of the relative
humidity when over and sub-humidification occurs are denoted as
E[OvRH] and E[UnRH] respectively and are calculated analogously.

Two further meaningful and complementary indices for pro-
viding a whole characterization of the reliability level and the
hygrothermal risk of a certain architectonic design are: (1) the
Expected Loss of Comfort Frequency (ELCF), expressed, for exam-
ple, as per year occurrences [a�1], and (2) the Expected Duration
of Discomfort Events (EDDE), measured in [h].

The ELCF is the mean number of discomfort events per time
period, e.g. one year, calculated over the simulated sample. The
expected duration of discomfort events EDDE can be estimated as
the average duration of discomfort events sampled in the Monte
Carlo simulation. The mean frequency of discomfort events (ELCF),
the expected duration of discomfort events (EDDE) and the

comfort
zone

UnRH

OvRH

OvHUnH

TmaxTmin

RH[%]

RHmax

RHmin

temperature [°C]

Fig. 2. Sampled indoor hygrothermal conditions and targeted comfort zone.
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cumulated expected discomfort duration (EDD) relates as follows:

EDD¼ ELCF� EDDE ð7Þ
From Eq. (7) follows that different combinations of occurrence

frequency and duration of discomfort events yield the same
hygrothermal risk. Therefore, for the same expected total discom-
fort duration EDD (or, equivalently for the same discomfort risk
HDR) the designer might decide if on average it is preferable
accepting a greater number of discomfort events but of shorter
expected duration, or accepting fewer but longer discomfort
periods (such as 2 or 3 continuous days). The decision criteria will
highly depend on subjective considerations as well as the purpose
and function of the building under study. Expected frequency and
duration of discomfort events relates to the building's comfort
reliability level HCR by multiplying Eq. (3) by the period basis H, e.
g. one year, expressed in [h] and replacing Eq. (7) in Eq. (3), as
follows:

HCR � HþHDR � H¼H ð8Þ

HCR � HþEDD¼H ð9Þ

HCR � HþELCF � EDDE¼H ð10Þ

HCR¼ 1� 1
H
ðELCF � EDDEÞ ð11Þ

The indices of expected frequency and duration of loss of
comfort events can be further disaggregated in eight specific
indices to indicate the cause of occurrence and the deviating
direction regarding each limit of the defined comfort zone. There-
fore, there will be in total a set of four individual indices of the
mean frequency for the violation of upper and lower limits of
temperature and relative humidity. Similarly, the expected dura-
tions of discomfort events occurring in the OvH, UnH, OvRH, and
UnRH quadrants also define a set of four separate indices.

Each of these reliability and risk indices can be estimated for
the whole year or for a specific time period of interest, e.g. a
season, individual months or certain hours of the day. The
disaggregation by time and/or quadrant of the proposed probabil-
istic indices provides relevant information about the type and
cause of comfort reliability problems in the building design.
Thereby, this disaggregation facilitates the identification of solu-
tions in the design optimization process.

The rationale behind these probabilistic indices and the way
they are calculated in the context of stochastic simulations of
building thermal performance is illustrated in Fig. 3. For a few
days, this figure schematically depicts the indoor time-varying
temperature in a thermal zone. Though the prevailing air tem-
perature mostly resides within the allowable comfort interval,
there are short periods in which indoor conditions violates the
established temperature limits, causing uncomfortable situations
to occupants. The diagram shows the existence of intervals in
which either, the upper temperature limit is exceeded due to
overheating, or the room temperature is colder than the minimum
acceptable limit. At those times, a thermal discomfort event takes
place whose duration is d and its deviation magnitude from the
comfort temperature limits are denoted by OvH and UnH, for the
cases of overheating or under-heating respectively.

3.1. Definition of comfort reliability requirements

Depending on purpose and function of the building under
design, the reliability requirement to maintain indoor environ-
ment within specified hygrothermal conditions may be highly
different. As risk and building economics are inversely related and
must be traded off, the maximum discomfort risk the designer
and/or the user is willing to accept will also depend on subjective
preferences and risk aversion. In fact, the number y duration of
expected discomfort events may be reduced at the expense of
increasing initial investments (more thermal isolation, larger
HVAC equipment, etc.) and/or incurring in higher energy costs
for acclimatization during the building's service lifetime.

After extensive experimentation with a variety of house designs
and a survey of user preferences we suggest in Table 1 threshold
values for most reliability and risk indices developed in the
previous section. This reliability and risk values were considered
as design criteria in the exemplary building assessed in Section 5.
In those cases in which there is a continued use of the building, the
guiding criteria would impose a high reliability requirement, do
not deviate much from the comfort limits and reasonably avoid
the likely occurrence of discomfort events of long duration.

For instance, the minimum comfort reliability level is suggested
to be HCR¼0.95. This requirement means that the building must
provide hygrothermal conditions to its occupants within the
targeted comfort region with a probability of 95%. On average,
the building will therefore perform its function according to the
comfort constraints 95% of the time, or 8322 h per annum.
Equivalently, the user can express the requirement in terms of
the maximum acceptable loss of comfort probability by imposing a
maximum discomfort risk of HDR¼0.05. This risk level implies
accepting an annual expected discomfort duration of EDD¼438 h.

Due to the continued use of the house, it might be possible to
admit several discomfort events but of short duration. If a 5%
probability is set as the maximum acceptable hygrothermal risk
and we admit a mean frequency of discomfort events (ELCF) of 75
events per year, by applying Eq. (7) the expected duration of each
discomfort occurrence is 5.84 h. If expected discomfort frequency
and/or duration are regarded too high for the function of the
building under study, a higher comfort reliability level must be
established, for instance a HCR index equal to 99%.

Fig. 3. Graphical representation of temperature violations of the comfort interval.
Discomfort events are numbered according to the chronological occurrence. The
signs (þ) and (�) indicate overheating and low-temperature events.

Table 1
Suggested threshold values of comfort reliability and risk indices for a residential house.

Interval HCR (%) HDR (%) EDD (h/a) EDDE (h) ELCF (1/a) EUnH (ºC) EOvH (ºC) EUnRH (%) EOvRH (%)

Min 95 0 0 0 0 18.9 26.1 29 71
Max 100 5 438 5.84 75 15.9 29.1 20 80
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4. Stochastic hygrothermal simulation model

In order to identify and sample possible occurrences of dis-
comfort events in a building design that will be exposed to
uncertain weather conditions, a chronological numerical model
of the indoor hygrothermal dynamics under stochastic meteor-
ological fluctuations is needed.

The thermal building model must properly reproduce thermo-
dynamics phenomena such as heat transfer (conduction, convec-
tion, and radiation) and mass transport (ventilation and people
traffic). Moreover, the simulation model must account for heat
accumulation in the building mass (thermal inertia), which dam-
pens the influence of outdoor weather fluctuations on room
conditions and originates temporal coupling between adjacent
time intervals. Ideally, the model should also consider both, the
dependence of relative humidity on room temperature, and the
cyclical phenomenon of accumulation and release of moisture
stored in hygroscopic materials such as furniture, curtains, wood,
papers, etc.

Due to its open source design, the HAMBASE building simula-
tion model has been selected for this study. HAMBASE [37] is a
multi-zone coupled heat and moisture chronological numerical
model of the hygrothermal building behavior, which has been
developed and coded in Matlab.1 Besides hourly weather data,
building features such as: number of rooms, morphology, volume,
orientation, materials, fenestration, and glazing can be entered as
input data. Capacity and control settings of heating and cooling
equipment are also data considered in simulations. Thermal loads
due to occupants, ventilation and use patterns can also be
accounted for. Time series of hourly room temperature and
relative humidity in each thermal zone, as well as energy con-
sumption for heating and cooling can be obtained as a result of
chronological hygrothermal simulations.

For a given thermal design, occurrence number, duration, and
magnitude of discomfort events will depend on the particular
meteorological year used as input data in the simulation. If the
weather time series used as input corresponds to a mild year, few,
in any, discomfort events will be sampled in the simulation. On the
contrary, an uneconomical thermal design will likely arise if
building is designed to withstand the most severe meteorological
year in records. Instead of using a single weather realization, an
ensemble with a large number of sample meteorological years
must be considered order to obtain statistically meaningful results.
This allows exploring the building's thermal behavior under
infrequent but severe climatic conditions, acknowledging the
low occurrence probability of extreme weather. If length of
available climate date on the location of interest is not enough, a
synthetic climate database must be generated based on the
existent observational records. Statistical evaluation of hourly
hygrothermal indoor conditions simulated under a massive set of
annual meteorological scenarios enable the accurate estimation of
reliability and discomfort risk of the thermal building design.

The advantage of stochastic simulation techniques (Monte
Carlo method) with respect to analytical approaches is that the
reliability problem can be solved without major simplifications
and/or restrictive hypotheses. The difficulty is the intensive
requirement of computational resources. However, this disadvan-
tage has been progressively mitigated due to the rapid growth of
computing power. Furthermore, because the Monte Carlo method
is a loosely coupled computation technique amenable to distrib-
uted computing, multi-core architecture of modern processors can

be advantageously exploited for drastically reducing calculation
time.

The proposed methodology required the development of sev-
eral computing routines and synthetic climatic databases for its
implementation. For this purpose, a stochastic simulation model
named sHAMs (stochastic Heat And Moisture simulation) was
conceived. With this model, the comfort reliability of a building
design � irrespective if conventional, bioclimatic or hybrid � can
be determined. In order to facilitate integration with the thermal
simulation engine (HAMBASE), the numerical model sHAMs has
been developed in the same programming platform (MatLab).
MatLab facilitates the numerical and graphical processing of the
masive data volume resulting from stochastic simulations. sHAMs
allows adding modules to perform integrated energetic and
economic analysis of thermal design variants. This enables the
further algorithmic optimization of the building design to find the
least-cost building design subject to reliability requirements.

5. Application: thermal reliability assessment of a residential
house

5.1. Case study description

With the purpose of demonstrating the applicability and
practicability of the proposed approach, hygrothermal reliability
and discomfort risk of a residential dwelling is assessed. The first
design under study is named ConvHouse, in which construction as
well as heating and cooling systems are conventional. The Conv-
House design is in compliance with the currently applicable
building code. In addition, a modified thermal design variant
referred as BioHouse, which incorporates some bioclimatic stra-
tegies, such as enhanced isolation and a controllable humidifier, is
also considered for the sake of comparison. Both building designs
are subject to a dry hot summer and a dry cold winter represent-
ing the continental climate prevailing in the City of San Juan,
Argentina (311320S 681310W).

The basic layout of the ConvHouse design is portrayed in Fig. 4.
It is a paired dwelling and the West wall is modeled as adiabatic.
All rooms (excluding bathroom and kitchen) are well-oriented
toward the north façade, which receives significant solar gain
(12.5% useful surface). East and West orientation are blocked to
solar radiation and North orientation is protected against the high
solar radiation in summer. Also, there is protection from cold
winds from South by means of regular windows with shutters.

A typical family of three members is considered. Occupancy
patterns during daytime and night have been accounted for in
internal thermal load estimations. Heat and moisture released
during cooking are also entered as input at breakfast, lunch and
dinner time. Well-behaved operation of windows for solar gain
and natural ventilation is assumed.

The building model is divided in two hygrothermal zones: the
day room (Z1) and the bedroom (Z2). Total thermal mass is
4.41 kWh/K and 2.19 kWh/K for Zone 1 and Zone 2 respectively.
Table 2 provides basic data on construction features, materials,
thermal transmittance U, and calculated global loss coefficients G.
From Table 2, modifications of the conventional design introduced
to the BioHouse variant become evident.

5.2. Stochastic simulation of hourly weather data

During lifetime, buildings are subjected to highly fluctuating
weather conditions, including sporadic but critical meteorological
circumstances that threaten indoor comfort. To estimate the failure
probability of a thermal building design to keep comfortable condi-
tions under severe weather, meteorological records of substantial

1 Matlab is an efficient programing environment for scientific purposes
speeding the development phase. Matlab platform provides powerful statistic
and graphic processing capabilities. In addition, it allows the easy treatment of
input/output data in other formats commonly used.
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length are necessary. On most sites, extent of available climatic
observations is insufficient for computing accurate and statistically
meaningful estimations of the discomfort risk. For this reason,
synthetic climate datasets based on observational records are often
needed for performing risk assessments. The generated weather time
series must accurately replicate distributional and stochastic dyna-
mical properties of the weather measurements. Next, we outline a
method for constructing such a synthetic weather dataset.

Basically, weather fluctuations can be thought to be the
additive superposition of a deterministic and a stochastic compo-
nent. The deterministic part describes regular and predictable

patterns, mostly due to astronomical cycles, such as seasonal and
daily cycles. The stochastic component explains random weather
changes. Each relevant meteorological variable, e.g. temperature,
humidity, solar radiation, etc., can therefore be decomposed in
these two components.

To identify regular cycles embedded in weather time series, a
non-parametric filter is applied to each meteorological variable.
The approach consists of an array of 24 separate moving-average
filters applied to each day hour. To estimate the deterministic
component, each filter has a sliding window that spans 30 days of
data. In order to avoid introducing a lag when identifying the

Fig. 4. Sectional cut, north façade and, plan of the exemplary residential house.
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cyclical component, the sliding time window is centered at the
relevant hour to be estimated. Hence, the time-varying mean is
computed across a dynamical sample constituted by values of the
variable in the same day hour within an interval comprising 15
days backward and 15 days forward the hour to be estimated and
for all years of recorded data.

In the context of an additive model of weather fluctuations, the
stochastic component of the climatic variability can be obtained by
subtracting to each recorded time series the estimated determi-
nistic component. First-order distributional features of random
weather fluctuations can be entirely captured by estimating the
probability density function (PDF). Second-order statistics, which
describe dynamical properties of observed random fluctuations,
are characterized by either calculating the autocorrelation function
(ACF) or estimating the power spectral density (PSD) of the
stochastic component. By virtue of the Wiener–Kintchine theo-
rem, both descriptions are equivalent and contain the same
information on the stochastic dynamics of time series.

Statistical tests on an exemplary climate datasets reveal that
stochastic fluctuations of meteorological variables are typically
non-Gaussian and non-stationary. Indeed, the probability distribu-
tion of time series notably deviates from normality and the
variance of the process is time-varying (inhomogeneous random
process). The local time-varying variance of the random process
can be estimated by using the same sliding window method used
to estimate the time-varying mean, i.e. the deterministic compo-
nent of the random process.

A non-parametric simulation algorithm based on the spectral
representation method is used to generate a synthetic ensemble of
the stochastic component of weather fluctuations according to
prescribed observational properties [38]. Parameter-free approaches
are general in their very nature, as they do not make any assumption
on the distributional and the dynamical properties of the generating
process. Thus, non-parametric models do require neither the postu-
lation of a model structure nor the calibration of model parameters
to the specific dataset. Therefore, they provide a very flexible
modeling framework that can be applied to simulating weather time
series at any site, irrespective from its specific statistical and
stochastic properties. Besides eliminating the optimization problem
related to the estimation of model parameters, the proposed method
is computationally very efficient because it takes advantage of Fast
Fourier Transform (FFT) techniques. In order to reproduce the non-
Gaussian features of the weather fluctuations, a non-linear memory-
less transformation and an iterative procedure for correction of the
introduced spectral distortion are applied [39]. The non-stationary
behavior of variance can be obtained by modulating the simulated

processes by an appropriate envelope function. The generating
process of meteorological variables is assumed to be uniformly
modulated, i.e. time-varying spectral properties only changes in
amplitude. This preserve computational efficiency as FFT techniques
can still be exploited [40].

A detailed description of the stochastic algorithm of weather
data can be found in [41], where performance is tested in the
context of stochastic simulation of spot prices of electricity which
are random processes well-known by their complexity and diffi-
culty to be properly replicated. More recently, the algorithm has
also been used to the stochastic simulation of non-stationary non-
Gaussian wind speeds [42]. It can be demonstrated that the
simulated ensemble of the random component of weather vari-
ables holds simultaneously the target non-Gaussian probability
distribution, the target power spectrum and the non-stationary
variance observed in the meteorological records. This ensures that
occurrence probability, recurrence rate and time persistence of
simulated severe (but rare) weather events are nicely replicated as
they are a key influencing factors in risk assessment. The last step
for generating synthetic weather time series is adding the identi-
fied deterministic component to each synthetic realization of the
stochastic component.

A sample dataset of 1000 annual realizations of synthetic
hourly meteorological conditions has been generated by the
spectral-based simulation algorithm according to the target dis-
tributional and spectral observational weather characteristics.
Weather was characterized by an available 5-year dataset of 30-
min averaged weather measurements in the City of San Juan,
Argentina. Temperature, relative humidity, atmospheric pressure,
wind intensity and direction and solar radiation were continuously
recorded in the period spanning Jan/2003 to Dec/2007. Main
descriptive statistics of the prevailing climate at the site are
provided in Table 3. For the stochastic component of each
meteorological variable, deterministic mean, local variance, prob-
ability distribution, and power spectrum have been estimated.
Cross-correlation between temperature and relative humidity has
also been taken into consideration.

The statistical analysis of the simulated weather dataset indicates
that the mean temperature across a sample of 1000 annual realiza-
tions of hourly temperatures is 18.8 1C, which is in excellent agree-
ment with observations (cf. Table 3). Similarly, the average relative
humidity of the simulated weather ensemble is 45%, fitting well the
observed behavior of climate in the site. Absolute minimum and
maximum temperatures in the synthetic 1000-year dataset are
�10.3 1C and 49.6 1C respectively. At a first look, these extreme values
significantly deviate from the available measurements. However, we

Table 2
Description of constructive characteristics of the ConvHouse and BioHouse design.

ConvHouse description Thickness [m] Surf. [m²] U [W/K/m²]

1 Brick wall 0.17 mþplaster in both faces 0.20 47.4 1.97
2 Inner non supporting partition 0.12 37.5 –

3 Pre-stressed ceramic slabþ0.02 m concrete with polystyrene beads 0.22 47 2.64
4 Ceramic floor, subfloor, natural land (perimeter 29.80 m) 0.20 47 1.38
5 Doors (pine wood) 0.04 1.80 2.30
6 Single glass 6 mm windows 0.05 10.60 5.70
7 Single glass with closed shutter 0.01 12.8 2.80
8 Natural ventilation, heating and AC 2000 W per zone G [W/m³/K] 1.72

BioHouse variant

1 Identical to ConvHouseþ0.05 m polystyrene 15 kg/m²þedge brick 0.07 m 0.32 34/13.4 0.53
3 Identical to ConvHouseþ0.08 m concrete with polystyrene beads 0.30 47 0.83
8 Identical to ConvHouseþhumidification G [W/m³/K] 1.43

x¼9.30 m; y¼4.80 m; z¼2.80 m.
Volume: 94.10 m³ (Zone 1) and 37.6 m³ (Zone 2).
Covered surface: 46.08 m² (internal) and 52.52 m² (external).
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must recall that available records span only five years, which is a too
short time period for characterizing extreme weather. Much longer
temperature records measured by the National Weather Service in the
nearby airport indicates absolute extreme values of �9.2 1C and
44.3 1C within a period spanning 30 years from 1961 to 1991.

Daily time-dependent probability density function of indoor
temperature and relative humidity in both, summer and winter
have been computed from the entire synthetic weather dataset.
These functions are illustrated in Fig. 5. The daily and seasonal
patterns (deterministic cycles) in temperature and relative humid-
ity can be easily recognized in the synthetic ensemble. The typical
negative correlation between air temperature and relative humid-
ity is also captured in the simulated weather dataset.

Fluctuations around the time-varying mean represent the
random component of climate variability. It is easy to observe
that stochastic fluctuations of the generated weather ensemble are
asymmetric with respect to the seasonal mean, deviating from the
Gaussian distribution. Furthermore, the local variance of the
synthetic time series depends on the daytime and the season as
well, which properly reproduces the observed non-stationary

variance in records. For instance, uncertainty on temperatures in
winter is higher than in summer and variability at 9:00 is much
less than at 17:00 in both seasons.

5.3. Simulation result

5.3.1. ConvHouse
In this section, the discomfort risk assessment of the conven-

tionally acclimatized house (ConvHouse) is performed by applying
stochastic hygrothermal simulations. In Fig. 6 the simulated hourly
room temperature (left) and relative humidity (right) of the
ConvHouse along a single sample year is illustred together with
the prevailing weather. Although indoor temperatures are mostly
acceptable, the Zone 1 often undergoes loss comfort during winter
and, to a lesser extent, also in summer. Indoor relative humidity
decreases in winter because of the heating system, whereas it
coincides with outdoor peaks in summer adding considerable
instability.

The main comfort reliability and risk indices of the ConHouse
design are provided in Table 6. The bivariate probability density

Table 3
Five-year weather statistics of the City of San Juan, Argentina.

Temperature [1C] Relative humidity Solar radiation Mean wind speed Mean max. wind speed

Month Mean min. Abs. min. Mean Mean max. Abs. max. [%] [W/m²] [km/h] [km/h]

Jan 21.5 9.7 26.8 32.0 40.9 41 330.2 10.4 20.1
Feb 20.2 10.8 25.1 30.3 37.4 36 301.4 9.2 18.0
Mar 17.9 9.2 22.6 27.5 38.2 49 249.1 8.5 16.4
Apr 13.2 4.2 17.7 22.3 33.0 54 181.0 7.1 13.7
May 8.4 0.5 12.6 17.0 28.9 55 132.9 6.2 12.3
Jun 6.7 1.0 11.2 16.1 31.7 56 109.3 5.5 11.2
Jul 5.6 �1.9 10.4 15.6 30.4 48 118.5 6.2 12.6
Ago 6.5 �0.4 11.5 16.7 28.8 42 149.0 6.9 13.9
Sep 10.9 2.4 16.3 21.5 34.2 38 211.4 8.3 16.1
Oct 15.0 7.6 20.6 25.9 36.7 35 272.8 9.2 18.4
Nov 17.2 7.6 22.7 27.9 38.7 34 304.5 9.9 20.0
Dec 20.3 13.1 25.9 31.3 39.0 34 340.3 11.3 22.6
Annual 13.6 5.3 18.6 23.7 34.8 43 225.0 8.2 16.3
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Fig. 5. Time-dependent PDF of temperature and relative humidity for summer and winter computed from 1000 hourly realizations.
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functions of the indoor temperature and relative humidity esti-
mated from the simulated sample is depicted in Fig. 7. The color
3D comfort map is a useful visualization tool to facilitate inter-
preting the masive data generated by stochastic simulations in a
single chart. In the T�RH plane, the acceptable limits of the
targeted comfort region are plotted. The estimated joint prob-
ability density that the building resides in each state of the T�RH
plane can be read in the z-axis. The estimation is carried out by
evenly discretizing the T�RH plane, computing the bivariate
histogram from the simulated dataset of indoor conditions, and
further applying interpolation and smoothing techniques.

It is worth noting the low reliability level achieved through
conventional acclimatization with a HCR¼71.5%. With a risk index
HDR¼28.5%, there is over 2500 h/a during which the house is
unable to maintain indoor comfort conditions in all thermal zones
due to violations of the established temperature and relative
humidity limits, either individually or simultaneously. From sto-
chastic simulations, the mean duration of discomfort events
(EDDE) is estimated in 33 h and the expected annual frequency
of discomfort events (ELCF) is 76.5 a�1. Because the operation of
the heating and cooling systems, indoor environment spreads over
two long and thin areas close to the upper and the lower
temperature limits, but extending across almost the whole admis-
sible relative humidity interval.

In the context of Monte Carlo simulations, the accuracy of
estimations improves as the sampled space increases. Statistical
convergence in the discomfort risk estimation of each thermal
zone for increasing sample size is shown in Fig. 8. It can be
observed that there is a substantial difference in the estimated
discomfort risk of the two modeled thermal zones, which can be
explained because of the disparate exposed wall surface with
respect to the room volume. Therefore, the loss of comfort
probability is substantially higher in Zone 2 than in Zone 1, i.e.

Zone 2 is considerably less reliable with respect to human thermal
comfort than Zone 1.

Although a fast statistical stabilization of the HDR index is
noticed for the ConvHouse in Fig. 8, the simulation of at least 500
sample years is still necessary for accurately estimating the
discomfort risk in more reliable thermal designs. Indeed, in
reliable designs discomfort events seldom occur and more simu-
lated years are thus necessary to obtain a statistical meaningful
sample of uncomfortable situations. In this work, the thermal
building performance has been simulated in hourly resolution for
an ensemble of 1000 sample meteorological years. The calculation
time is 118 min in a desktop PC with an AMD Phenom II X6
3.2 GHz processor and 16 GB RAM. The CPU time can drastically
reduced to 23 min when computations are distributed into the
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six-core processor. This implies a speed up of 5.13 when the
stochastic simulations are deployed in a distributed computing
environment.

In most cases, discomfort risk is not evenly distributed in the
year. Tipically, performance of building designs considerably
differs under cold or hot weather conditions. Therefore, it is often
necessary to compute disagregate reliability and risk indices for
each season. For this reason, the univariate probablity density
function (PDF) of indoor temperature and relative humidity for
winter and summer have been computed and are depicted in
Fig. 9. Density functions are estimated from the simulated hourly
dataset by means of the kernel smoothing method [43]. The mean
value of the density functions, denoted as m, are ploted along with
the admissible comfort intervals. The probability of either not
reaching the minimum or exceeding the maximum threshold
values of the target comfort region is denoted by β (see inset).
Seasonal PDFs enable the discriminated detection and diagnosis of
deficiencies in the building design to realiably sustain indoor
comfort under hot or cold weather.

For instance, the loss of comfort in Zone 1 is mainly due to low
relative humidity in winter with almost 41% probability of not
reaching the targeted lower limit. According to Table 4, the
expected value of relative humidity when it violates the lower
limit is E[UnRH]¼25.3%. For correcting this situation, the addition
of a controllable humidifier is required to meet humidity condi-
tions within the desired comfort region. The probability of
exceeding the maximum admissible relative humidity in winter

is negligible. In summer, the probability of not reaching the
minimum relative humidity is only about 7% and the probability
of exceeding the maximum acceptable value is 4.1%.

With a probability of about 18.5%, low indoor temperature
during winter is the second most likely cause of discomfort. The
PDF is symmetric about the mean and the shape is similar to the
normal distribution. The expected indoor temperature during
winter is 19.4 1C: a value close to the lower allowable temperature
limit. However, the mean temperature when the targeted comfort
conditions are not reached is 17.4 1C (cf. the expected under-
heating index EUnH in Table 4), i.e. only 1.6 1C below the set lower
limit of 19 1C. Increased use of warm clothing or minor changes in
the thermal design, e.g. heating capacity, insulation thickness,
solar gains, could readily improve comfort reliability.

In summer, comfort reliability is considerably higher than in
winter although there is a higher dispersion of temperature and
humidity, which might cause discomfort to occupants if these
variations occur within short periods of time. To summarize, even

µ :19.4ºC  
ß : 0.01%
ß : 18.46%

µ :32%         
ß : 0.04%
ß : 40.86%     

µ :24.9ºC         
ß : 2.31%       
ß : 0.01%     

µ :46%
ß : 4.09%
ß : 6.89%

Fig. 9. Seasonal probability density functions of indoor temperature and relative humidity for the ConvHouse design.

Table 4
Expected yearly energy consumption for heating (H) and cooling (C) estimated from 1000 annual meterological realizations.

Design Zone 1 Zone 2 Total annual consumption

H [kWh] AC [kWh] H [kWh] AC [kWh] H [kWh] AC [kWh] Total [kWh] H [kWh/m²] AC [kWh/m²] Total [kWh/m²]

ConvHouse 6150 2201 3697 1421 9847 3622 13,469 214 79 292
BioHouse 2074 1314 941 836 3015 2150 5165 65 47 112

Table 5
Estimated comfort reliability level and discomfort risk in Zone 1 of the ConvHouse
design.

Index HCR HDR EDD EUnH EOvH EUnRH EOvRH EDCE EDDE ELCF

Units % % h/a 1C 1C % % h h 1/a
Value 71.5 28.5 2496 17.4 27.1 25.3 77.2 82 33 76.5
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though the building has been carefully designed in compliance
with the currently applicable building code, the comfort reliability
of this conventionally acclimatized house is not acceptable.

5.3.2. BioHouse
In this section, thermal comfort reliability and discomfort risk

of a bioclimatic design variant (BioHouse) of the house analyzed in
the previous section is evaluated. Energy performance of this
design has improved considerably. The overall expected annual
energy consumption for heating and cooling of the BioHouse is
estimated in 5165 kWh. For the sake of comparison, the expected
consumption of the ConvHouse under the same meteorological
ensemble is 13,469 kWh/a. The introduction of bioclimatic strate-
gies to the thermal design of the building drastically reduces the
energy consumption for climatization by about 61%. Table 5
provide dissagregated figures of the expected annual energy
consumption for heating and cooling in both house designs.

Fig. 10 shows the behavior of the simulated indoor temperature
and relative humidity in Zone 1 of the BioHouse design for the
same sample year used in the thermal simulation depicted in
Fig. 6. On the one hand, there is absence of hours outside the
targeted comfort temperature interval. On the other hand, there is
controlled humidity in the lower limit of the comfort region
established. However, it is necessary to revise the thermal design
to avoid discomfort events caused by an excess in relative
humidity since, for this sample year, it reaches 97% in one day in
March and recurrently exceeds 70%. Table 5 provides the comfort
reliability and risk indices of the bioclimatic design variant. Fig. 11
portrays the comfort map of the BioHouse, in which indoor
temperatures mostly moves along two linear zones inside and
close to the comfort limits. It is noteworthy the fact that due to the

operation of the controlled humidifier, indoor conditions reside
within a very sharp (concentrated) area around 20 1C and 31%
humidity with the highest probability. This architectonic biocli-
matic design has a higher comfort reliability than the conventional
design achieving a HCR¼98.5%. The discomfort risk is only 1.5%,
which means an expected cumulated duration of discomfort
events of EDD¼128 h per year. Loss of comfort is most likely
due to overheating and excess of relative humidity during sum-
mer. Table 6.

Seasonal probability density functions of indoor temperature
and relative humidity for the BioHouse are illustrated in Fig. 12.
In a sample of 1000 synthetic meteorological years, temperature
never falls below the lower comfort in winter and exceeds the
upper temperature limit in summer with a probability of 0.07%.
Accordingly, the bioclimatic design keeps indoor temperatures
within the comfort limits with a reliability of 99.93%. Expected
temperature values are 19.8 1C and 24.9 1C in winter and summer
respectively. In winter, the probability density function is highly
right-skewed with a very sharp concentration just above the lower
limit. The relative humidity is within the comfort interval more
than 99.6% of the time during winter, whereas in summer the
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Fig. 11. Probabilistic comfort map estimated for thermal Zone 1 of the bioclimatic house design.

Table 6
Estimated comfort reliability level and discomfort risk in Zone 1 of the BioHouse
design.

Index HCR HDR EDD EUnH EOvH EUnRH EOvRH EDCE EDDE ELCF

Units % % h/a 1C 1C % % h h 1/a
Value 98.5 1.5 128 18.9 26.9 – 77.5 1176 17 7.3
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upper limit is exceeded with a probability of 4.7%. It can be
presumed that by adding a dehumidifier � usually built in
standard cooling equipment � and provided the equipment and
power supply cannot fail, the hygrothermal comfort reliability of
the bioclimatic house design could reach 100%.

As ilustrated in the preceeding example, the thermal discom-
fort risk of building may be very sensitive to modifications in the
hygrothermal design.

6. Conclusion

A major function of buildings is to provide sheltering to their
occupants. Confortable indoor environment must be reasonably
preserved regardless of prevailing (uncertain) meterological con-
ditions. However, random weather events introduce uncertainty
on the building thermal performance and its ability to perform as
required.

Presently, the conventional approach to thermal design is to
comply with a set of guiding rules established in building codes
and standards. Due to several factors such as local weather,
specific design features, selected materials, etc., compliance with
applicable norms does not guarantee that any specific building at
any given location is capable to provide indoor comfort conditions
with some pre-established (elevated) probability. Likewise, verifi-
cation of building thermal performance by means of numerical
simulation under typical climate (e.g. TMY) provides little infor-
mation on hygrothermal risks associated to weather events that
deviate from average climate. A thermal building design must
satisfy comfort requirements not only under typical weather, but
also when severe meteorological events occurs and shelter is
needed the most. Nevertheless, designing buildings to keep indoor
comfort conditions even under the worst credible or recorded
weather event in the location might be exceedingly uneconomical.
Hence, severity, persistence, and occurrence probability of adverse

weather events are factors that must be properly considered in the
design methodology.

The present paper proposes a methodology to objectively
meassure the reliability of a building thermal design to perform
its main function, i.e. to sustain indoor hygrothermal comfort
conditions under weather uncertainty. The assessment of comfort
reliability is accomplished by stochastic chronologic simulation of
the building hygrothermal behavior. In the stochastic simulation
setting, the building is exposed to a massive number of random
meterological scenarios, which conform with the probabilistic
properties of the local climate. Thereby, a statistically meaningful
sample of indoor uncomfortable conditions can be obtained for
further analysis. The developed approach allows the designer to
quantify the uncertainty in building indoor conditions and to
estimate the discomfort risk of a proposed building configuration
subject to the random nature of the local climate.

A number of probabilistic measures have been conceived to
describe the hygrothermal reliability level and the risk of discom-
fort of any building design. The proposed reliability and risk
indices are convenient metrics to condense and summarize in a
few parameters the statistical behavior of indoor hygrothermal
conditions under uncertain severe weather. Threshold values on
these indices can be used as constraints or performance criteria to
be met when design is optimized.

By quantitatively measuring comfort reliability, designers
can minimize overall building costs without exceeding a max-
imum acceptable value for discomfort risk. Within this probabil-
istic framework, the problem of thermal design of buildings
could be restated as to find the least-cost configuration (in terms
of both, initial investment and future energy costs) without
deteriorating comfort reliability below a minimum threshold
value. Reliability-based thermal design combined with risk-
constrained optimization of building economics is hence an
important avenues of investigation that are currently being
adressed.
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