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ABSTRACT

The purpose of this work is to propose new indiceghe spatial validation of hazardous
plumes forecast, and apply and test them with déta case study. One, the Plume-
Overlap-Area Hit index, is a modification of a wigleised index that considers the overlap
area between observed and forecast plumes. The atiee the Plume-Mean-Orientation
Hit index, introduces a new concept in plume fostealidation, i.e., the mean direction of
plume propagation. These two indices are combinedriew two-dimensional Combined-
Direction-Area Hit index. The new indices are apglto the spatial validation of smoke
plume forecast for a case study of uncontrolledsgfiiges that took place during April and
May 2008 in the La Plata River region in South Aiceer Operational models at the
Argentine National Meteorological Service (SMN) a@mployed to produce the plume
forecast. The HIRHYLTAD dispersion model is used fewecast the smoke plumes,
employing the Eta/SMN meteorological forecast maunlgthuts. The forecast plumes are
compared to the observed plumes in high resollM@DIS imagery from AQUA and
TERRA satellites, from which a total of 59 smokeaumpks are identified. The study
concludes that the presented methodology that e/mglperational meteorological models
and simplified dispersion models can be used tduwre reasonably accurate forecasts of
the areas affected by the smoke plumes that oteiira forest and grassland fires,
particularly in cases when limited information igadable about the fires. Although the
present study is specifically applied to smoke m@ajthe validation technique with the
proposed indices can be of utility to study poliitplumes of diverse nature.

1. INTRODUCTION

A wide range of natural and anthropogenic phenoncanaderive from hazardous plumes whose
impacts affect humans, wild life, vegetation andsystems in different time and space scales,
and their consequences can become truly severenditieese we can mention volcanic ash
plumes, sand and dust plumes caused by strong veodss deserts and arid regions, and
pollution associated with stack emissions fromdees or similar point sources. Sometimes they
become international in scope for their particulature, origin or magnitude, like the Kuwaiti
oil and gas well fires in 1991 during the Gulf wgpektor, 1998), and the radionuclide
contamination originated by the nuclear disaster€hernobyl in 1986 (Piedelievre et al., 1990)
and Fukushima in 2011 (Lujanieet al., 2012).

In particular, a common example of hazardous natednsists of smoke plumes from biomass
burnings, which cause a major impact on populatod social activities. When forest and
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grassland fires become uncontrolled and extendeddéterioration of ecosystems may require
several decades to recoleEvery year in Africa, South and North Americag tRussian
Federation, Southeast Asia and other regions, #@blar number of wildfires takes place
especially during summer over dry land, and migignéually become uncontrolled and remain
so for several days; on occasions they are dugdscpbed burnings in rural zones (Schultz,
2002; van der Werf et al., 2010). Emissions assediavith these phenomena include different
gases and a large spectrum of aerosols and patgculatter of different size and type (Andrae
and Merlet, 2001).

Real-time emergency response systems have beeropesdeand directed during the past
decades, to prevent, avoid, or mitigate any impéat¢he hazardous materials, and with growing
concern about estimating the long-range dispersiopollutants. More recently, the need to
assess the accuracy of hazardous material trarepoddispersion models has arisen as one of the
most important issues to be addressed (Petty, 208t et al., 1988).

Several quantities have been used to perform enatuanalysis. For example, statistical
measures of bias, scatter and correlation have lgmrerally applied to point-to-point
comparisons (observations and predictions pairegpate and time). More recently, the concept
of spatial forecast validation was introduced, wiktie definition of indices that analyze the
distribution of both plumes on a single image gratticularly, the areas of overlap. Mosca et al.
(1998) and Boybeyi et al. (2001) used differentenstlogical and dispersion models to perform
aerosol and gas hazard prediction, and verifiedt {r@dictions against the European Tracer
Experiment (ETEX) measurements. Warner et al. (R008ed the Project Prairie Grass
experiment results for validating his simulatiorysnbeans of overlap area indices. However, it is
the National Oceanic and Atmospheric Administrafili®AA) that routinely produces forecasts
and validation of plumes originated from biomassnimg. The NOAA’s Smoke Forecasting
System (SFS) comprises three parts: observatiedjgtion and validation of smoke plumes. Full
details about the descriptions of the components lma found in Rolph et al. (2009) and
Ruminski et al. (2006, 2007), while SFS producte aavailable in real time at
http://www.arl.noaa.gov/smoke.phfAlso, a verification of the 2007 fire season irorth
America and a sensitivity study of the plume in@ttheight were performed by Rolph et al.
(2009), and Stein et al. (2009).

The spatial validation of plume forecasts usuatipsiders observed and predicted plume layout
to qualify the forecast. For example, NOAA’'s SF@sadlifferent indices based on combinations
of overlap and non-overlap areas covered by baimes (Mosca et al., 1998; Boybeyi et al.,
2001; Warner et al., 2004), which are discussedetail in the following section. The objective
of this paper is to propose new indices for thetigpaalidation of plume forecasts, i.e., a
modification of a widely used index for the overlapa, and a new plume-mean-orientation
index. Furthermore, they are combined in a new dwaeensional index that takes into
consideration both the overlap area and the doeaif propagation of the observed and forecast
plumes. Section 2 discusses different spatial &tibd techniques and presents the new indices.
A case study of smoke plumes originating from dieess that took place in the La Plata River
region of South America during April and May 2008,described in Section 3, in which the
spatial validation methodology is applied, and thdices are evaluated. Finally, Section 4
presents a summary of results and the conclusiottgsovork.

% Fire is an essential ecological process and meogystems (particularly prairie, savanna, chapamelconifer
forests) require it as a contributor to habitaahtiy and renewal.



2. SPATIAL VALIDATION OF PLUMES

2.1. Overlap area index

Before introducing the overlap area indices, itagsivenient to briefly review the different types
of areas covered by observed and forecast plumies. afeas covered by the observed (or
measured) and forecast plumedolfs and Afor, respectively), determine three other areas,
namely: intersection or overlap areairt), false detection areaf@l), and no detection area
(Anod), which can be seen in Fig. 1 and Table 1. The sluthese three areas corresponds to the
union areaAuni). In fact, a fourth category could be considetadt, of less relative importance
since it corresponds to the empty or blank area, i) all the space in the domain with neither
forecast nor observed plumes.
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Figure 1. Examples of area types, a) case 1, by 2ad eft: observed plume. Center: simulated pluRight:
Overlap area in red, no detection area in blusgefdetection area in green.

Relationships among these areas can be establishedler to define validation indices. For
example, the verification analysis at the NOAA’'sSSkises two overlapping area indices, namely
the Figure of Merit in SpaceFMS- (Mosca et al., 1998 and Boybeyi et al., 2001), toedtwo-
dimensional Measure of EffectiveneddOE- (Warner et al., 2004).

The FMS index is defined as the ratio between the int¢éiaecarea of observed and forecast
plumes and their union area, ileMS = Aint/Auni, which can be rewritten as

EMS = Aint - Aint . (1)
Aobs+ Afor — Aint  Anod + Afal + Aint




Observation
Yes No
Yes Aint: “hit” Afal: “false alarm”
Forecast
No Anod: “miss” Ablk: “correct rejection”

total number of pixeldl = Aint+ Afal+ Anod+ Ablk

Table 1: Area types in the typical arrangement @xa contingency table for forecasting a categbmseent, in
which each box indicates the number of pixels Heaify the respective conditioAint is the intersection or overlap
area,Afal is the false detection are@nod is the no detection areéblk is the empty or blank area, ard is the
total number of pixels in the domain.

(Adapted fromhttp://www.swpc.noaa.gov/forecast verification/Garsy.htm)

FMS is also called the threat score or critical susceslex CS), for categorical forecast
validation. The index is calculated at a fixed tiared for a fixed concentration level. Scores
range between 0 (no match at all) and 1 (ideal,a@bgpixels match). However, a limitation of
this index is that it cannot distinguish whethez tibserved plume footprint is smaller or larger
than the predicted plume footprint (i.e.: over- wmder-prediction of area are “weighted”
identically). Therefore, an event with an obserpdgime fully circumscribed to the simulated
plume, can score exactly the same as an eventhdthatter contained into the former. For some
applications, the distinction between these twerad#tives can provide insight to a model user
for subsequent calibration.

The two-dimensionaMOE index used by NOAA’s SFS to measure the overlap afghe two
plumes is given bMOE(x,y) = (Aint/Aobs, Aint/Afor), which can be rewritten as:

(2)

MOE(x,y):( Aint Aint j:(l_Anod _Afalj

Aint + Anod ' Aint + Afal Aobs = Afor

In terms of categorical forecasts, the first ragi@lso called the Probability of DetectiddQD),

and the second one, the Success R&R). (Scores for all analyzed events can be plotted in
single x-y diagram, and Fig. 2 shows an example with two &vefhe point (100%:100%)
represents the perfect match between the obsencetbeecast plumes; that is, both shapes have
the same size and location. Points along the felripresent the cases in which the two shapes
are identical in area (same number of pixels) lvatshifted in space, so that a point at (0:0)
means no overlap at all. Points in the upper-leftipn of the plot represent cases in which the
forecast plume is nearly covered by the observede] however, the latter is larger than the
former (i.e.: under-prediction). Conversely, theeeprediction cases are located in the lower-
right portion of the plot.

A limitation of the aforementione&MS and MOE indices that consider the shape matching
approach is that their scores are often too love, uthe nature of thEMS and MOE ratios
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themselves. Thus, they could indicate an apparantligh poorer performance than what a
gualitative examination of the spatial distributioh observed and forecast plumes on a same
image would suggest. For this reason, we definarent of FMS, namely the Plume-Overlap-
Area Hit (POAH) index, which is obtained by addidgnt to the numerator and denominator of

Eq. ():

2Aint 3)

POAH = ——
Aobs+ Afor

Measure of Effectiveness (MOE)
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Figure 2: MOE plot associated to the examples gfifé 1. MOE scores are (39.22; 69.41) and (38.584,
respectively, for cases 1 and 2.

Combined Direction-Area Hit index (CDAH)
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Figure 3: CDAH plot associated to the exampleBigéire 1. CDAH scores are (50.12; 95.66) and (43983),
respectively, for cases 1 and 2.



Conceptually identical t&6MS this index not only ranges between 0 and 1, ksat scores better
for the intermediate cases silR@AH > FMS, always, as can be easily demonstrated. If errors
are to be accounted for, then the Plume-OverlagAtgor POAE) index can be defined as
POAE = 1 —POAH.

There is another index used in categorical foregasst similar toFMS, with the fourth and last
area category included, i.e., “correct rejectioffgt our purposes, the blank area), which is
summed both at the numerator and denominator chlied percent correcPC) and is given by:
PC = (Aint + Ablk)/(Aint + Anod + Afal + Ablk). This metric, however, is impractical because it
is dependent on the size of the domain (the samégowation of the pair observed-predicted
plumes in a larger or smaller domain will implyfdient Ablk and hence, differerC scores).
Moreover, given any domairAblk will generally be much bigger than the other thaesa types,
and PC will tend to 1 for most events. AlthoudglOAH was defined in order to obtain better
numerical results than withMS the scores behavior witPC becomes extreme.

Finally, it is important to mention that if we agphe categorical forecast analogy to B@AH
index we havePOAH = 2Aint/(2Aint + Anod + Afal), that is, a simple function dfMS. As a
matter of fact, ank integer number could replace the “2 factor” in thedinition of POAH, to
establish a generalized ratiBOAH = kAint/(kAint + Anod + Afal). As k increases, the ratio

tends to unity, and gradually the same problenedtédr thePC metric arises. For this reason, k
was set to a value of 2, so that it is large endiogbnsure reasonable overlap scores (partially
counteracting theFMS limitation), and at the same time, small enoughkéep thePOAH
expression simple (eq. 3) and avoiding exaggeratelduseless scores.

2.2. Direction of propagation index

In recent years, many authors have addressed pieedbinadequacy of the traditional approach
for the spatial verification of forecast, basedsomple area overlays (i.e.: simple pixel-to-pixel
correspondence), generally while evaluating préaiijoin fields (Zhu et al, 2011). As we
explained above for plume analysis, the resultshefvalidation with such technique (metrics
such aLCdl, POD, SR, FAR, PC, etc.), are often not consistent with what a faster or analyst
might infer by more subjective visual evaluationadforecast. This tangle has led to the idea that
an objective approach that would more closely mithie subjective approach could provide
more useful, diagnostic information about the gwatif spatial forecasts (Davis et al, 2006;
Wernli et al, 2008). For this reason, object-basedfication approach, itself not new, has
become widely used, and simultaneously, updatedesiéinced (Davis et al, 2009). Object-
based assessment identifies “objects” in the fateaad observed fields that are relevant to a
human observer. These objects can then be desgédmadetrically, and the attributes of forecast
and observed objects can be compared. Becauseedifiesers may need or have different kinds
of information, it is important to allow flexibiltin the definition of these attributes. Some objec
features are listed in Table 2.

There is a distinctive difference between objeddolverification for plumes and for other type
of meteorological phenomena such as precipitaticing, turbulence, etc. For the latter, the
evaluation can be performed for unmatched objestwell as those that have overlay areas of
forecast and observation (see schematic exampleghar Fig. 1 of Davis et al, 2006 or Fig 1 of
Wernli et al, 2008), while for the former, the twbjects are typically matched in the source
region. As a matter of fact, the number and pasitibpoint sources are inherent object attributes



of smoke plumes, and were not included in Tablee2ahse forecast will not differ from
observation on this issue for the general ¢ase.

Object property Description

Thresholding is useful to define an object’s bougdBifferent thresholds may lead ta

Intensity or changes in the other object’s properties. In paldic by narrowing the threshold, the
concentration object can be subject to partitioning into two arepieces or elements, which can
eventually be considered as separate objects.

Object boundary | Primary properties of an object: the region enaldsgethe object’s boundary is the area,

and area which is a simple measure of its size.
Centroid or center Measure of mean location of object, for which thiemnsity or concentration of the
of mass property might be used as a weighting factor.

=

A line drawn through the centroid of an object ldsracterizes its overall direction g
orientation. This line represents the major axithefobject; if the object is bounded by a
minimum, enclosing rectangle, the major axis isafpalrto the longer sides.

Overall direction
or axis angle

Given the major and minor axes of an object, thie & the length of the minor axis tg

Aspect ratio the length of the major axis is the aspect ratio.

Fitting a circular arc to an object instead ofreelgives a measure of the object’s overall

Curvature deviation from straightness.

Table 2. Summary of object attributes relevantlifect-based verification (adapted from Davis et2006)

Herein, we apply the object-based approach usingesaf the attributes listed in Table 2 for the
spatial validation of plume forecasts to define Bheme-Mean-Orientation HIPMOH) index as
follows:

mobs _mfor
PMOH =1-—— (4)
18(°

where dir s and dir 1 are the observed and forecast mean directionduofigp propagation,
respectively, ranging from 0° to 360°. The numeretdhe absolute value of the angle between
the two directions, which is always at most 180%e best score for the index is 1, when both
mean directions of propagation are equal, and hvthey are opposed to each other. The error
alternative of this index, namely the Plume-Meaie@ation Error PMOE), is defined as
PMOE =1 -PMOH.

The mean direction of propagatimTrr can be estimated subjectively, as was the caBgrime et
al. (2007) for the qualitative verification anakysaf volcanic ash plumes (direct comparison of

dir os and dir « ). Instead, in the present work we apply the foltayvautomated algorithm in

% We are neglecting here the possibility that a jiseurce position of a plume forecast can resgitiicantly
distant from the actual position of the real plufRer real-time operational plume forecasts sucth@iNOAA SFS,
the sources are identified by the time the firstésting (or afterwards, in the simulations for oase study, i.e.:
diagnostic mode). If this is not the case, huminerlacation of sources can be validated separately.



order to calculatedir . For the case of a single-souro&Tr=tan‘1[(y—ymurce)/(i—xsoume)],
where (x are the coordinates of the fire locatidR, y) is the centroid position of the

source ! yS)UI‘CG)

plume (X =) xi/N Y= > yi/N ), andN is the total number of pixels comprising the plume

(i=1, ...,N). In case of a multiple-source plun(e(mume,ysoume) represents the centroid position
of all fire sources, defined in a similar manne(®sy).

Other criteria for the calculation ofX,y) consider the center of mass, or the maximum

concentration pixel. Any of these two would be mooavenient than the centroid algorithm in
the case of multiple-source plumes, because ofliffierent contributions of various individual
plumes onto a single pixel. In such case, the nag&ction of propagation will point to the place
of highest concentration (where the added effegteatest), which can be distant from (and non-
aligned with) the plume centroid. A clear limitatias that concentrations are required for
performing the calculations with these algorithimsthe case of smoke plumes, a quantitative
analysis of the observed plume in the satellite genas necessary to account for the
concentrations (for instance, automated products/ete from the satellites such as Aerosol
Optical Thickness -AOT- or the Goes Aerosol/SmokedBct -GASP-). Therefore, when
concentrations are unavailable, the centroid ambroa the most appropriate method for
calculatingPMOH (or PMOE). Since the case study of Section 3 uses visiiiellge imagery,
the centroid criteria is used for calculatifglOH andPMOE scores.

The advantage ®MOH over FMS or POAH can be appreciated by comparing the two cases of
Fig. 1. The scores for the overlap area and meaatdin error indices of Fig 1a (single-source
plume) are: IFMS = 66.56%;POAE = 49.88%, andPMOE = 4.34%. Therefore, while the
overlap area errors are near 50% or worsePMOE score is less than 5%, more in agreement
with a straightforward examination of the plumegolat. The scores for Fig 1b (multiple-source
plume) are: IFMS = 71.85 %;POAE = 56.07%, and®PMOE = 96.52%. Hence, in contrast with
the previous case, the almost 50% scorB@AE index is not really representative of the model
performance, since the forecast plume is propagatitthe opposite direction with respect to the
observed plume, so thBMOE is close to 100%.

2.3. A new two-dimensional index

The two spatial indicesOAH (Eg. 3) andPMOH (Eqg. 4), are combined into a single two-
dimensional index, namely the Combined-Directior#Hit CDAH) index, defined as:

CDAH(x,y) = (POAH, PMOH) (5)

Thex component indicates the overlap area betweenlibereed and forecast plumes, while the
y component accounts for the agreement in direafgoropagation. ACDAH plot associated to
the examples of Fig. 1 is shown in Fig. 3. As ia tase of th&1OE index, the (100%,100%)
point corresponds to a perfect forecast, i.e., Ipttime distributions are equal, while (0,0) is the
worst possible case since the forecast plume petpagn opposite direction to the observed one,
and there is no area of intersection. Points atbedl:1 line represent the cases in wHAH

is equal taPMOH. By comparing bottMOE andCDAH plots (Fig. 2 and Fig. 3, respectively), it
is clear that the scores from the latter represent adequately and insightfully the plume layout
of the cases depicted in Fig. 1, due to the inaatpmn of the new property, i.e., the mean
direction of propagation.



Another interesting feature of t@DAH plot is that it allows for discriminating the casm
which the error in overlap area is smaller than ¢her in direction of propagatiolPQAH >
PMOH, i.e., points in the lower-right portion of theopl As can be seen in Fig. 3, case 2 (Fig.
1b) corresponds to an idealized situation in whigherror in direction of propagation is greater
than the error in overlap area. Moreover, udt@AH instead ofFMS as thex component of
CDAH, favors a less-unbalanced difference betweendta number of events in the two cases
(in other words, the chance of more points underlti line increases), sind@OAH > FMS
always. Finally, an alternative Combined-Directidrea Error CDAE) index can be defined as
CDAE(x,y) = (POAE, PMOE).

3. A CASE STUDY

3.1. Description of the event

The case study focuses on the smoke produced lyr@dsirnings that took place during April
and May 2008 in the Parana River Delta, some 70dkrme northwest of the city of Buenos
Aires (the study region is depicted in Fig. 4). Toeal authorities declared that the fires were
intentionally ignited and did not respond to anyesgaribed plan. The fires soon became
uncontrolled and extended, and the smoke propagated a wide region according to the
prevailing atmospheric conditions of each day. &engpread northeasterly hundreds of
kilometers across the La Plata River into Uruguay southern Brazil, and southerly as far as the
extreme south of Buenos Aires province. The grassiblackened about 70,000 hectares in the
provinces of Buenos Aires and Entre Rios.

Uruguay

Entre Rios
province

3405

Argentina Buenos Aires L??Plata
province R

Atlantic
Ocean

S

Figure 4: MODIS real-color satellite image (CEILA? subset) in the La Plata River region in South ekita,
with the red box showing the region of the caselstoThe blue circle indicates the location of tlity of Buenos
Aires.

The fires that took place between 16 and 20 Afd&had no historical precedent because of the
negative consequences they caused on daily lif€3omillion people in the conglomerate of
Buenos Aires city and its suburbs. Figs. 5a andl&&trate the situation in the afternoon of 16
and 18 April 2008, in which the grassfires in s@uthEntre Rios province created a dense smoke
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plume that propagated to Buenos Aires city andLthélata River. Fig. 5¢ shows the extended
smoke plume over the Buenos Aires province andL&né’lata River, associated with a wind
rotation during the morning of 20 April 2008. Theisode resulted in increasing health problems
among the population, such as respiratory diseakasand eye irritation, etc. CO concentrations
in the city of Buenos Aires were 17 ppm on 17 AROI08 and 15,3 ppm on 19 April 2008 (the
typical value for a common day is less than 2 ppatije total suspended carbonate particulate
matter concentration on 18 April 2008 was 2,024 mig(Clarin newspaper editions, April,
2008). Due to visibility reduction, there were haloais driving conditions and accidents that
forced traffic interruptions of highways, as wedl moperability of airports. The impact of the
smoke event was reflected as the main issue a@drdsslocal and regional media, capturing
international attention as well (Clarin and La MNecinewspapers editions, April, 2008). The
persistence of anomalous northwesterly winds dutiage days contributed to that situation
(Marcuzzi and Hoevel, 2009). Mattio (2009) perfochsnoke plume dispersion simulations and
compared them only qualitatively with visible sttelimages. Berbery et al. (2008) used WRF-
ARW regional model outputs to study the predicigbf the episode, although no smoke plume
simulations were made.

I — o) .

igure 5: MODIS real-color atellite images (CEILBA subset) from: a) AQUA, 16 April 209 at 1800 TiTh)
AQUA, 18 April 2008 at 1750 UTC; ¢) TERRA, 20 Ap008 at 1500 UTC. The red dots correspond to MODIS
automated fire detections, and the blue circlecaidis the location of the city of Buenos Aires.

3.2. Meteorological and dispersion models

Two operative models at the National Meteorologisatvice of Argentina are used in this study:
the Eta/SMN meteorological forecast model and tHRHYLTAD dispersion model. The smoke
plume forecasts are performed with the HIRHYLTADfpuodel (for a detailed description see
Blanco and Berri, 2011 and Blanco, 2011), whichsube meteorological forecast of Eta/SMN.
HIRHYLTAD is based on the gaussian dispersion mael also on a lagrangian trajectory
model, since it first determines smoke lines udmgrangian trajectories, and then simulates
dispersion and calculates gaussian concentratidms.model uses the Pasquill stability classes
(Pasquill, 1961), the Pasquill-Gifford dispersiooefficients according to the stability class
(Gifford, 1976), and the Briggs scheme for buoyaome rise (Briggs, 1969). HIRHYLTAD is a
hybrid model because the input for calculating sentdkes is the forecast wind field at discrete
time intervals, while the gaussian model assumesogeneity and continuity in space, as well as
steady-state conditions. Also, it uses a lagran@mabile) coordinate system to calculate the
trajectories of individual smoke plume elements] an eulerian (fixed) framework to calculate
concentrations in a high resolution grid (see Bifpr a schematic example of the model steps).

The Briggs parameterization scheme for the plunse 4#h requires the following emission
parameters: smoke temperatdi® vertical velocityws, and ‘effective’ diameter of the smoke
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columnDs. Since no such measurements were made during/émése we adopted the following
values from the FireFlux experiment (Clements et24107),Ts = 200°C andvs = 1ms” (both at
10m). To be consistent, the adopted smoke initidsgion height is 10m, instead of the surface
level, so that the effective emission heightlis 10m+ Ah . A sensitivity test indicated thBis =
2.5m (slightly larger than a typical stack diamgteras the most appropriate value.

INSTANTANEOUS EFFECT ACCUM.ULATED EFFECT
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Figure 6: Schematic example of HIRHYLTAD calculatsoafter a 2-hour simulation (5-min time step). Tsiep

1): Smoke line set-up at the emission level, usaggangian trajectories. Center (step 2): Smokeé dispersion

at the emission level, using the Pasquill-Giffoofficients and Pasquill stability classes. Bott@tep 3): Smoke
concentrations at the surface on a high resolgiah The instantaneous effect is depicted on dfftecblumn, and
the accumulated effect over the 2-hour period igided on the right column. The physical emissi@nght is

120m.

The forecasts of the operational regional Eta/SMbddeh from the SMN are used as input for
HIRHYLTAD. The Eta/SMN model has a horizontal ggdacing of 0.33° (approx. 30km), and
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runs twice daily with initial and boundary condit®provided by the GFS model (0000 and 1200
UTC). Time and space interpolation of Eta/SMN otgpare required for the high-resolution
HIRHYLTAD simulations. The Cressman scheme (Cresgni®59), is applied to the original
30-km horizontal resolution grid, in order to obta final 5-km grid spacing of HIRHYLTAD.
The variables at pressure levels (1000, 975, 980.a0d 900 hPa) are converted to height levels,
and then a linear vertical interpolation is perfedrto get the following HIRHYLTAD vertical
log-linearly spaced levels: 10, 40, 80, 140, 220,350, 800, 1100 and 1500 m. The Eta/SMN
outputs are at 3-hour intervals, so that a linerpolation in time is applied to match the 5-min
time step of HIRHYLTAD.

3.3. Data and methodology

Observed smoke plumes are identified in high ressiumagery from the AQUA and TERRA
satellites, which are equipped with the ModeratsegRdion Imaging Spectroradiometer
(MODIS) instrument. Visible true-color images (quer day for each satellite) are available from
the MODIS Rapid Response System (MRRS3)tad://lance.nasa.gov/imagery/rapid-response/

The AERONET_CEILAP-BA subset is used, as it bestecs the study region. The coordinates
of the 965km x 720km domain are: 63.7°W - 53.2°W3%S - 37.8°S, which is centered over the
La Plata River region (see Fig. 4). Because ohigh spatial resolution, the MODIS imagery
dataset is the most appropriate one for the stiidgcal scale atmospheric phenomena such as
smoke dispersion in the atmospheric boundary layespite its once daily resolution. The 500-
meter resolution MODIS images were systematicatlypped to a 467km x 500km domain
centered on the La Plata River region (inner regteam Fig. 4).

The length of the period of analysis was determitgd visual inspection of the smoke
distribution in the satellite images, and also abersng the fire locations from automated
detection algorithms of geostationary and polaitonp satellites. For this purpose, two datasets
are used, namely, the Global Fire Maps from the R&so available from the aforementioned
NASA webpage), with all MODIS detections in 10-daterval maps, and the ‘Banco de Dados
Queimadas’ from CPTEC-INPE, Brazil ht{p://www.dpi.inpe.br/proarco/bdqueimadas/
http://sigma.cptec.inpe.br/queimadasivith more than 20 satellites intervening, inchgl
TERRA and AQUA. Based on this information, a 45-geeyiod from 1 April 2008 to 15 May
2008 was finally chosen, totaling 90 MODIS images.

The process followed for selecting the smoke evemtd digitizing the smoke plumes is
completely subjective. During the selection of @gahe following situations were discarded: no
smoke present, excessive cloudiness, sufficiemsiyelised smoke with no clear source inside the
domain, or well-defined plumes with associated sesiroutside the domain. A smoke event is
defined as one in which a smoke plume is cleargniifiable with at least one associated fire
location within the domain, despite the fact tHag¢ plume could extend beyond the domain
limits. In some cases two smoke events per image saected, provided that the second plume
layout was clearly different from the first onetheir in span, length or mean orientation.

A total of 21 events were selected from TERRA insa@feom 18 days), and 38 events from
AQUA images (from 31 days) within the 45-day perimidanalysis. For each event the plume
boundaries were drawn manually, and digitized usindjgital-image processing program. No
guantitative estimate of the smoke concentratiaoissidered in the process.
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The digitization of smoke sources was performed ualy, and it revealed that multiple-fire-
plumes were common, especially during the uncdettofires of 16-20 April 2008. The
maximum number of fire locations detected in aleirmgnoke event was 18. The analysis resulted
in a total of 165 (103) smoke sources for all tHelhA (TERRA) events. Out of the 59 events,
21 are single-source and 38 are multiple-sourcekerptumes. The subjective methodology for
determining smoke sources replaced the aforemexttiddODIS automated fire detection
product, since several cases of false detectiomsametections were found.

The digitized fire sources are used as input insthheke plume simulations with HIRHYLTAD
coupled to the Eta/SMN forecasts, for all the esehe HIRHYLTAD simulations assume the
dispersion of a passive gaseous substance at sganbesission rate of 1 gi*'sAs mentioned
before, the only information available about thre Sources was the satellite imagery with once
daily frequency. Since we had no basis for spauifyire duration, each fire source was assumed
to remain active during the entire simulation. e tase of multiple-source plumes, simulations
are performed individually for each source, andtal contributions of concentrations are added.

The resulting HIRHYLTAD concentrations are vertlgahtegrated for the subsequent validation
with MODIS images. The threshold for establishihg boundaries of the simulated plumes was
set equal to zero (i.e., any pixel with a non-zeomcentration was considered as part of the
smoke plume).

a) b)

60W 53w 580 57W 56W 80w 53w 53w 57w 56W

Figure 7: Example of the validation steps for therg of 17 April 2008 at 1430 UTC (satellite:
TERRA; number of smoke sources: 18); a) manualfjrdd smoke plume from the cropped
original MODIS image; b) its corresponding digitizenage; c) smoke plume simulations with
the HIRHYLTAD dispersion model coupled to the Etdf$ meteorological model (reddish
color is indicative of higher concentrations); durie area types as follows: overlap area in
red, no detection area in blue, and false deteetiea in green.
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3.4. Results of the case study

A graphical example of the validation steps is shanvFig. 7, for the 17 April 2008 event, 1430
UTC TERRA image. Panel a) shows the smoke plumeadbanies on the MODIS visible image,
while panel b) shows its subsequent digitizatiam,the calculation of the observed aréals)

and the observed mean direction of propagatidin.s) of the plume. The simulation of the
plume with HIRHYLTAD is depicted in panel c), witlheddish color indicating higher
concentrations, from which the forecast area andmairection of propagatioifor and dir o,
respectively) are calculated; and panel d) showsatba diagram that results from the overlap of
the observed and forecast plumes, from which thenBiOverlap-Area Error is calculated. The
associated validation scores for area and direétiothis event ard?OAE = 75.4% andPMOE =
12.2%.

The advantage of defining the modified area eROAE, and the new direction of propagation
error PMOE, can be appreciated in Fig. 8. The frequency ibigion of POAE for the 59
analyzed events is biased towards the lower scgnesimum in the 40-50% category), Iin
contrast with the EMS distribution (maximum in the 60-70% category). &lshe lowPMOE
scores (red bars) are highly remarkable: excepttiioee cases, the error in direction of
propagation is always smaller than 40% (i.e., agiealess or equal than 72°), while in 63% of the
events this error is of less than 10%. Additiortatkistics of the overall result of all analyzed
events are summarized in Table 3, in which we @mtbat the average overlap error is 51%
while in contrast the average error in directionpobpagation is only 11.1%. The difference
between the two types of error reinforces the irtgpare of considering the direction of
propagation for the spatial validation of plumeeicasts.

FREQUENCY DISTRIBUTION OF AREA AND DIRECTION ERRORS

40 4

HPOAE

Number of events

010 10-200 20-30 3040 4050 50-60 800 70-80  80-90 90-100

Score Categories (%)

Figure 8: Frequency distribution of overlap argams (POAE and1-FMS), and direction of propagation errors
(PMOE).
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Scores (%)
Error type Median Mean get?/ir;(:%rrc]i
Overlg%zgea error 46.9 51.0 20.8
Direction o;&rggagation error 792 11.1 14.1

Table 3:POAE andPMOE scores of the 59 analyzed events.

Finally, Fig. 9 shows a comparison between bothdwoeensional indices, thdOE (Fig. 9a) and
our proposedCDAH (Fig. 9b). While theMOE plot shows more scattered points, indicating
variable performance according to the under/overasion of overlap area, thEDAH plot
shows most points confined to the upper portionthef graphic, indicating an overall good
agreement between the mean orientation of simubkatddbserved plumes.

a)

100

Measure of Effectiveness (MOE)

b)
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Combined Direction-Area Hit index (CDAH)
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Figure 9: Two-dimension&OE andCDAH indices for the 59 analyzed events, and mean \@ltiee entire episode

(red triangle).

Because of the generally lower errorsPMOE in comparison td?OAE, a natural bias towards
the upper-left portion of the plot is expected e tdistribution of points within th€DAH

graphic. Actually, it is remarkable that for ourseastudy, all points are in the upper-left portion
of the CDAH plot (Fig. 9b), i.e., there was no single eventhwgreater error in direction of
propagation than overlap ard2MOE>POAE).

An advantage oMOE becomes clear when the mean value of the whotdldison is plotted,
because it provides the additional information aflbe possibility of bias towards either under or
over-estimation of the observed plumes (distributod points with respect to the 1:1 line). The
results of the case study show a minor bias towardter-estimating the size of the observed
plumes, as depicted by the red triangle in Fig.véth a score of (44.96%; 57.43%). This could
be due to either to the models employed, the melbggt applied or a combination of both.

15



In contrast, no information about overall underfegstimation is provided bDAH, and this is
because th& component ofCDAH unifies bothx andy components oMOE. Nevertheless, the
inclusion of the direction of propagation adds avnelue to the spatial validation of plume
forecasts, which partially compensates for the kmeres associated with a qualitatively good
performance of the simulation, not clearly evidevith MOE. Moreover, CDAH is more
appropriate for situations such as the exampleasé @ of Section 2 (please compare Figs. 2 and
3), since the opposite direction of propagatiohef forecast plume with respect to the observed
plume (i.e., worst possible prediction), would tentified byCDAH but not byMOE.

4. SUMMARY AND CONCLUSIONS

Two commonly used indices for spatial validation hafzardous plume forecasts are briefly
reviewed, namely the Figure of MeriENIS) and the Measure of Effectivene$4dE); and based
on them, new validation indices are proposed astedewith data of a case study.

First, we propose the Plume-Overlap-Area OAH) index, a modification oFMS, which we
consider appropriate for evaluating plume forecadte advantage ¢fOAH is that it turns out to
be less punitive thaRMS, which sometimes indicates poor model performanben simple
visual inspection indicates an overall good sintyabetween forecast and observed plumes. We
also propose a new index, namely the Plume-Meaentxiion Hit PMOH) that introduces a
new aspect in plume forecast validation by consigethe agreement in the mean direction of
plume propagation. The plume overlap indRAH, and the mean direction of propagation index
PMOH, are combined in a new two-dimensional Combinec®ion-Area Hit CDAH) index.
CDAH has thePOAH index asx-component and th&®MOH index asy-component, with
individual scores ranging from O (worst case) t0%0(best case). The inclusion of the direction
of propagation adds a new value to the spatialdadbn of plume forecasts, sometimes not
clearly evident with other commonly used indices.

We apply the new indices to the spatial validabbrsmoke plume forecasts for a case study of
uncontrolled grassfires that took place during Apnd May 2008 in the La Plata River region in
South America. High resolution MODIS imagery from@BA and TERRA satellites are used for
identifying a total of 59 smoke plumes. Two opera#ili models at the Argentine National
Meteorological Service, namely the HIRHYLTAD dispen model and the Eta/SMN
meteorological forecast model, are used to simuleesmoke plumes, which are then compared
to the observed plumes in the MODIS images.

We conclude that the proposed methodology that @yspperational meteorological models and
simplified dispersion models can be used to prodeesonably accurate forecasts of the areas
affected by the smoke plumes originated in forest grassland fires, particularly in cases when
limited information is available about the firehélproposed indices are not intended to replace
other commonly used indices; instead they add a vedue to the spatial validation of smoke
plume forecasts by considering the direction ofppgation. Finally, we highlight that although
the present study is specifically applied to smpkeanes, the validation technique with these
indices can be of utility to study pollutant plunediverse nature.
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