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Abstract. In [X.-W. Hou, Z.-P. Huang, S. Chen, Eur. Phys. J. D 68, 1 (2014)], Hou et al. present, using
Tsallis’ entropy, possible generalizations of the quantum discord measure, finding original results. As for the
mutual informations and discord, we show here that these two types of quantifiers can take negative values.
In the two qubits instance we further determine in which regions they are non-negative. Additionally, we
study alternative generalizations on the basis of Rényi entropies.

On an interesting recent paper, Hou et al. [1] introduce
generalizations for two quantifiers: mutual information
and quantum discord, which they use for the study of
quantum correlations in two qubits systems. It is conven-
tionally agreed that the mutual information (MI) quanti-
fies total correlations in bipartite systems. Given a system
described by the state ρab, with subsystems a and b, the
MI reads

I(a : b) := S(ρa) + S(ρb) − S(ρab), (1)

where ρa := Trbρ
ab y ρb := Traρab are reduced states asso-

ciated to our subsystems. S(·) is von Neumann’s entropy
for a state σ:

S(σ) := −Tr(σ log σ). (2)

If one wishes to quantify non-classical correlations, these
should be appropriately discriminated from the total ones.
A possibility is to compute classical correlations via a clas-
sical information measure (CI)

Cb(a : b) := S(ρa) − min
{Πi}

∑

k

pkS(ρa
k), (3)

where {Πi} is a complete projective measure, local in b,
and

ρa
k :=

1
pk

Trb

[
(Ia ⊗ Πk) ρab (Ia ⊗ Πk)

]
(4)

is the a’s conditional state associated to the outcome k
of b. Further,

pk := Tr
[
(Ia ⊗ Πk) ρab (Ia ⊗ Πk)

]
(5)
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is the corresponding probability. Ia is the identity opera-
tor for a. Equation (3) quantifies the classical correlations
from a b-perspective and, analogously, one defines Ca.
Given that equations (1) and (3) compute quantum and
classical correlations, respectively, the discord measure is
given by [2]:

Db(a : b) := I(a : b) − Cb(a : b). (6)

Hou et al. [1] generalized these measures replacing von
Neumann’s entropy by Tsallis’ and Rényi’s ones ([3–6],
and references therein). The α-Rényi quantifier is [3]

Sα(σ) :=
log Trσα

1 − α
, (7)

while Tsallis’ counterpart reads [6]

Sq(σ) :=
1 − Trσq

(q − 1) ln 2
. (8)

Both quantifiers converge to von Neumann’s in the limit
α → 1 (q → 1). Note that we use always basis-2 loga-
rithms, which slightly modifies the usual definition of Sq.
Hou et al. [1] replace then S by Sα or Sq in equa-
tions (1) and (3), obtaining generalized mutual informa-
tion measure Iα (RMI) and Iq (TMI). We consequently
have generalized classical correlations (Cb

α, Cb
q) and dis-

cords (Db
α, Db

q).
We show below that these last correlation-quantifiers

can take negative values, refuting what is conjectured by
Hou et al. [1]. Even more, the discord can be different from
zero, and even negative, for classical states.
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Fig. 1. Maximum values of the generalized MI (left) and discord (right), for different αs and qs.

Fig. 2. Generalized discords for classical states ρab
uv, with α = q = 2. Rényi’s discord (left) and Tsallis’ one (right). Note the

presence of negative values.

Rank-three classical states of two qubits.
Von Neumann’s entropy properties guarantee the
positivity of I, Cb, and Db. We will see that generalized
quantifiers do not, in general, share such positivity
property.

As an example consider the family of states given be-
low. We focus attention on classical states of range 3 (stan-
dard basis).

ρab
uv =

⎛

⎜⎜⎜⎝

u 0 0 0
0 v 0 0
0 0 1 − u − v 0
0 0 0 0

⎞

⎟⎟⎟⎠ , (9)

with u, v ≥ 0 and u + v ≤ 1. There exists a non-
perturbative, complete and local projective measurement
given by the projectors basis {|0〉〈0|, |1〉〈1|} for the two
subsystems. Thus, for the family ρab

uv one has Db(a : b) = 0
(and Da(a : b) = 0). In Figures 1 and 2, we note that
generalized measures can be negative even for classical
states.Consequently, the ensuing generalized discords can-
not discriminate classical in the sense discussed above.

CI turns out to be positive [all (α, q)] for the family
ρab

uv. It would seem that, for q > 1, Tsallis’ discord works

better, since it is always positive. In the case (q < 1, α <
1), neither Rényi’s nor Tsallis’ measures behaves as one
would expect for classical states.

Random states of two qubits. In this case we compute
generalized MI, CI, and discord for different pairs (α, q) so
as to estimate the range, in such a plane, for positivity. We
considered 105 random states for each of these parameters.
Figure 3 plots minima of MI and discord for a given α or q.

For 2-qubits states, generalized CI’s turned out to be
positive for all our states-sample, with α and q ranging
in (0, 1000). This makes it credible that the quantifier is
positive for all (α, q). Instead, minima for generalized MI
and discord reach negative values for all α �= 1 in the
Rényi instance, while they are positive in the Tsallis case
for q ≥ 1. This would indicate that Tsallis’ entropy is
strongly sub-additive (see below). Regretfully enough, the
negativity of these discords does not signal classicality. As
an example, states that are known to be of a non-classical
nature display negative Rényi discord for α = 2 (Fig. 4).

Alternative generalizations. It is easy to see that the
von Neumann-sub-additivity (SA) of S(ρab):

S(ρab) ≤ S(ρa) + S(ρb), (10)
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Fig. 3. Minima for generalized MI (left) and discord (right), using different values of α and q, for a large random sample
of states.

Fig. 4. Rényi’s discord with α = 2 for 105 random states of
2 qubits can be negative for states whose orthodox discord is
�0.3.

is tantamount to MI-positivity and that the concavity:

S

(
∑

i

piρi

)
≥
∑

i

piS(ρi), (11)

implies that Cb(a : b) and Ca(a : b) are positive measures.
Discord positivity is deduced from strong sub-additivity
(SSA) [2,7]:

S(ρabc) + S(ρb) ≤ S(ρab) + S(ρbc), (12)

equivalent to the concavity of the conditional entropy
S(a|b) := S(ρab)−S(ρb). In general, generalized entropies
do not share these properties for arbitrary values of α and
q. Rényi’s ones are concave in the interval (0, α∗), with
α∗ = 1+ log 4

log(N−1) , N being the density matrix range [8,9].
For α ≥ α∗, Sα is neither convex nor concave. Given
q > 1, Tsallis’ entropy is sub-additive so that the asso-
ciated mutual information is positive as well, i.e., Iq ≥ 0
for q > 1 [10]. However, for 0 < q < 1, Tsallis’s mea-
sure is super-additive for product states while for general

Table 1. Generalized entropies’ properties: concavity, sub-
additivity (SA), and strong SA (SSA).

Concavity SA SSA

S � � �
Sα (0, 1] {0, 1} ×
Sq (0,∞) [1,∞) ×

states it is neither sub- nor super-additive [11]. Thus, Iq

can adopt negative values for 0 < q < 1. Rényi’s entropies
are sub-additive for α = 0 and α = 1 [12]. For all other
α-values one can find states for which the associated MI
is negative. SSA does not hold in general, save for the von
Neumann’s instance [13]. For classical states, Sq displays
SSA if q ≥ 1 [14] (there exist particular cases in which Sα

also displays SSA, as, for instance, Gaussian states with
α = 2 [15]). Table 1 details properties of the different
entropies.

Concavity and SA are sufficient, but not necessary, to
guarantee positivity. In the case of the range 3-classical
family (ρab

uv), our numerical results show that Rényi’s CI
is positive for all α, being concave only for α < 3. As for
discord’s positivity, it suffices to demand that

I(a : b) ≥ χ(Pa, b), (13)

where χ(Pa, b) := S(ρa) − S(b|Pa) is Holevo’s quantity
associated to the b-state conditioned to a POVM mea-
surement of a of operators Pa. Coles speaks here of firm
sub-additivity (FSA), that is less restrictive than SSA.
Hierarchically: SSA ⇒ FSA ⇒ SA [16]. Results for a
2-qubits random simulation (see Fig. 3) would indicate
that Tsallis’s entropies are FSA for q ≥ 1, while Rényi’s
ones are FSA for α = 1 and, possibly, for α = 0.

In von Neumann’s entropic scheme, it is equivalent
to define the MI as the relative entropy between the
given state and the product of the concomitant reduced
states, i.e.,

I(a : b) := min
{σa,σb}

S
(
ρab||σa ⊗ σb

)
, (14)

http://www.epj.org
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where S(ρ||σ) := −S(ρ) − Tr(ρ log σ) is the relative en-
tropy, and the minimization runs over the set of all com-
pletely uncorrelated states. Here, Klein’s inequality guar-
antees the positivity of I(a : b). Equation (14) offers
an alternative path for generalizing the MI in terms of
other entropic measures, different from the one associ-
ated to equation (1). This alternative was employed by
different authors and is known as the quantum conditional
MI [17,18]. Different definitions of Rényi’s or Tsallis’ rela-
tive entropies determine distinct alternatives for the con-
ditional MI.

A reasonable idea would then entail to define the gen-
eralized mutual information as in equation (14), using
some generalized relative entropy or divergence:

Ĩα(a : b) := min
{σa,σb}

Sα

(
ρab||σa ⊗ σb

)
. (15)

In similar vein, the classical generalized information
will be

C̃a
α(a : b) := max

{Πi}
min

{σa,σb}
Sα

(
ρab′||σa ⊗ σb

)
, (16)

where ρab′ :=
∑

k (Ia ⊗ Πk)ρab(Ia ⊗ Πk) is the posterior
state to the measurement of {Πi} in b. The new gener-
alized discord would be given by the difference between
these two quantities

D̃a
α(a : b) := Ĩα(a : b) − C̃a

α(a : b). (17)

The positivity of Ĩ and C̃a will be guaranteed by the pos-
itivity of the generalized relative entropies. Noting that
our relative entropies fulfill the data processing inequality,
D̃a will be positive as well (see, for instance, [19]). The
scheme being advanced here should be the subject further
exploration.

Recently, the introduction of a new Rényi’s relative
entropy, monotonous against general quantum (trace pre-
serving) operations, in the range 1/2 ≤ q < ∞ seem to
constitute the most convenient way of computing a states’
MI and, a posteriori, to define a new generalized discord
quantifier [19–22].
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