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Antifeedant activity
We establish useful models that relate experimentally measured biological activities of compounds to their
molecular structure. The pED50 feeding inhibition on Spodoptera litura species exhibited by aurones,
chromones, 3-coumarones and flavones is analyzed in this work through the hypothesis encompassed in the
Quantitative Structure–Activity Relationships (QSAR) Theory. This constitutes a first necessary computa-
tionally based step during the design of more bio-friendly repellents that could lead to insights for improving
the insecticidal activities of the investigated compounds.
After optimizing the molecular structure of each furane and pyrane benzoderivative with the semiempirical
molecular orbitals method PM3, more than a thousand of constitutional, topological, geometrical and
electronic descriptors are calculated and multiparametric linear regression models are established on the
antifeedant potencies. The feature selection method employed in this study is the Replacement Method,
which has proven to be successful in previous analyzes. We establish the QSAR both for the complete
molecular set of compounds and also for each chemical class, so that acceptably describing the variation of
the inhibitory activities from the knowledge of their structure and thus achieving useful predictive results.
The main interest of developing trustful QSAR models is that these enable the prediction of compounds
having no experimentally measured activities for any reason. Therefore, the structure–activity relationships
are further employed for investigating the antifeedant activity on previously synthesized 2-,7-substituted
benzopyranes, which do not pose any measured values on the biological expression. One of them, 2-(α-
naphtyl)-4H-1-benzopyran-4-one, results in a promising structure to be experimentally analyzed as it has
predicted pED50=1.162.
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1. Introduction

The background of this study consists on developing useful models
that relate experimental insect antifeedant activities of compounds to
their molecular structure. The environmental contamination caused
by an extensive use of chemical insecticides is a well-known problem,
leading to the need of replacing these agents by insecticides of natural
origin, posing reduced or no-harm effects to the environment (Picman
et al., 1995). It is known that repellents are more bio-friendly than
exterminating agents. Insect antifeedants act as repellents and often
have only weak insecticidal activity (Morimoto et al., 1999). Several
classes of organic compounds have been studied as antifeedants
(Kokubun et al., 2003; Ley, 2005; Morimoto et al., 2007; Stevenson
et al., 2003).

Flavones and chromones are important heterocyclic compounds
belonging to the flavonoid family that occur naturally in plants. There
exist more than 4000 chemically unique flavonoids that have become
very popular during past years due to their health promoting effects, as
they exhibitmanybiological activities such asanti-bacterial, anti-fungal,
anti-oxidant and anti-cancer (Martens and Mithöfer, 2005). Such kind
of compounds are important constituents of the human diet, being
derived largely from fruits, vegetables, nuts, seeds, stems and flowers,
and thus constitute one of the most important classes of metabolites.

Flavones and chromones have a significant impact on various
aspects of plant biology. They are capable of absorbing harmful UV–B
radiation, thus they can act as UV filters (Harborne and Williams,
2000). Moreover, they are involved in various interactions with other
organisms, microbes as well as insects or other plants. They act as co-
pigments in flowers providing colors to attract pollinators and fruit
and seed dispersors (Martens and Mithöfer, 2005).
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Fig. 1. Molecular structures of flavones, chromones, 3-coumarones, and aurones analyzed with linear QSAR models.
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Fig. 1 (continued).
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Fig. 2. Estimation set of flavone and chromone derivatives without pED50 experimental
activities.
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Flavone related compounds are able to affect insects in various
ways, for instance, they inhibit larvae feeding or act as feeding
deterrent. Ohmura et al. (2000) studied antifeedant activity of some
flavones and their related compounds against the subterranean
termite Coptotermes sp. Morimoto et al. (2003) evaluated antifeedant
property of various flavones (among them, flavone, 6-methylflavone,
6-methoxyflavone and 7-methoxyflavone) against the common
cutworm Spodoptera litura. The relationship between compounds
that affect the GABA(A) receptor and insect antifeedants has already
been reported (Eichenseer and Mullin, 1997). The insect taste
sensitivity is dominated by GABA(A) receptors and active compounds
against one of the receptors act as the insect antifeedant.

Among the different modern methods available in the literature
for predicting properties of substances based on their molecular
structure is the Quantitative Structure–Activity Relationships (QSAR)
Theory, whose pioneer works were developed by Hansch in 1964
(Hansch, 1990; Hansch and Leo, 1995). The main hypothesis involved
in any QSAR is the assumption that the variation of the behaviour of
chemical compounds, as expressed by any experimentally measured
biological or physicochemical property on such compounds, can be
correlated with numerical entities related to some aspect of the
chemical structure termed molecular descriptors (Katritzky et al.,
1995; Todeschini and Consonni, 2000; Trinajstic, 1992). Descriptors
are generally used to describe different characteristics/attributes of
certain structure in order to yield information about the activity/
property being studied. QSAR techniques are usually based on
statistically determined linear or non-linear models that relate the
chemical behaviour of compounds with their descriptors. The main
interest of developing predictive QSARmodels is that these enable the
prediction of compounds having no experimentally measured activity
for many different reasons, either because they are unstable, toxic, or
simply because their measurement requires too much time or is
expensive.

This work collects the available experimental information from the
literature and establishes useful QSARs on the S. litura antifeedant
activities of aurones, chromones, 3-coumarones and flavones through
linear regression models. Even though some linear regressions were
established in previous analyzes of the inhibitory activity (Morimoto
et al., 2007; Morimoto et al., 2003), a present existing gap is that these
studies were rather qualitative and that none of them considered a
greater number of compounds and more sophisticated modeling
techniques as employed here. Furthermore, these studies considered
single regressions of the antifeedant activity of active compounds and
their melting points, hydrogen bonding parameters (Rf), and
lipophilic parameters (log10k), without considering and a great
number of molecular descriptors involving more elaborated defini-
tions of the structure.

We consider that the linear methodology is the best statistical
technique for analyzing present data set, as few experimental data are
available and thus it is necessary to employ the lowest number of
optimized parameters during the model development. Among the
most recent advances in this field is the Spectral-Structure Activity
Relationship (S-SAR)method (Lacrama et al., 2007; Putz and Lacrama,
2007; Putz et al., 2009), which enables to replace the Multivariable
Linear Regression analysis by purely algebraic models with some
conceptual and computational advantages, having both environmen-
tal and biological applications. In this work, we resort to the
Replacement Method (RM) as variable subset selection approach, as
this technique has been successful for selecting relevant structural
descriptors (Duchowicz et al., 2006; Duchowicz et al., 2005;
Duchowicz et al., 2008a, b; Goodarzi et al., 2009). Finally, another
main interest of present research is to apply the so derived QSAR
models for estimating the antifeedant activity of some new 2-,7-
substituted benzopyranes (Bennardi et al., 2008), for which there still
are no experimental activities. Few attempts were carried out in past
years to synthesize flavonoids with substitutions of such types.
2. Methods

2.1. Experimental data

The experimental ED50 antifeedant activities of aurones, chro-
mones, and flavones expand the range 0.035–5.6[μmolcm−2] and are
collected from recent publications (Morimoto et al., 2003, 2007). The
observations are converted into minus logarithm scale (pED50=
− log10ED50) for modeling purposes. Fig. 1 displays the molecular
structures of the compounds which are employed for establishing the
various QSARs. The estimation set composed of substituted flavones
and chromones with unknown experimental activities were prepared
following a procedure described elsewhere (Bennardi et al., 2008),
and are included in Fig. 2.
2.2. Calculation of molecular descriptors

The initial conformations of the compounds are drawn bymeans of
the “model build”modulus available in HyperChem 6.03 (Hyperchem,
2009). Each molecular structure is firstly preoptimized with the
Molecular Mechanics Force Field (MM+) procedure and the resulting
geometry is further refined by means of the semiempirical method
PM3 (Parametric Method-3). We choose a gradient norm limit of
0.01 kcalÅ−1.

The numerical descriptors for each compound are calculated with
Dragon (2009) and include several variable types characterizing the
1D, 2D, and 3D aspects of structure: constitutional, topological,
geometrical, charge, GETAWAY (GEometry, Topology and Atoms-
Weighted AssemblY), WHIM (Weighted Holistic Invariant Molecular
descriptors), 3D-MoRSE (3D-Molecular Representation of Structure
based on Electron diffraction), molecular walk counts, BCUT



Table 1
Notation for molecular descriptors involved in QSAR models of insect antifeedant
activity.

Type Dim Molecular
descriptor

Description

3D-MoRSE 3D Mor24u 3D-MoRSE-signal 24/unweighted
Mor28u 3D-MoRSE-signal 28/unweighted
Mor10u 3D-MoRSE-signal 10/unweighted

GETAWAY 3D R4u+ R maximal autocorrelation of lag
4/unweighted

R5e+ R maximal autocorrelation of lag
5/weighted by atomic
Sanderson electronegativities

Topological 2D IC1 Information content index
(neighborhood symmetry of 1-order)

Atom-centred fragments 1D H-046 H attached to C0(sp3) no X attached
to next C

Galvez topological charge
indices

2D GGI7 Topological charge index of order 7

Radial distribution
function

3D RDF040u Radial distribution function
4.0/unweighted

Table 2
Experimental and QSAR predicted pED50 inhibitory activities for active aurone and
flavone analogues.

Number Chemical name Exp. Eq. (1)

1 Chrysin −0.398 0.041
4 Wogonin −0.301 0.217
6 Norwogonin −0.182 −0.068
7 Moslosooflavone −0.114 −0.147
8 Baicalein 0.018 −0.125
11 Nobiletin −0.748 −0.300
12 Flavone 0.959 0.581
13 6-Methylflavone 1.456 1.622
15 6-Methoxyflavone 0.824 1.029
17 7-Methoxyflavone 1.229 0.984
18 Chromone 0.775 0.801
19 2,7-Dimethylchromone 0.991 0.699
21 2-Methyl-5,6,7-trimethoxychromone 0.387 0.186
23 7-Methoxychromone 1.018 0.929
25 4,6-Dimethoxycoumaranone −0.588 −0.271
26 4,6-Dimethylcoumaranone 0.168 0.261
27 4,5,6-Trimethoxycoumaranone 0.387 −0.493
30 3′-Methoxyaurone −0.004 0.122
32 3′-Bromoaurone −0.624 −0.545
33 4′-Methoxyaurone −0.308 −0.134
34 3′,4′-Dimethoxyaurone 0.066 0.115
35 3′,4′-Methylendioxyaurone −0.207 −0.144
38 3′-Ethoxy-4′-hydroxyaurone −0.292 −0.353
39 3′,5′-Dimethoxyaurone −0.538 −0.682
41 4,6-Dimethoxyaurone 0.071 0.003
42 3′,4,4′,6-Tetramethoxyaurone 0.921 0.671
46 3′,4′-Dimethoxy-4,6-dimethylaurone −0.009 −0.043
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descriptors, 2D-Autocorrelations, aromaticity indices, Randic molec-
ular profiles, radial distribution functions, functional groups and
atom-centred fragments. We also add quantum-chemical descriptors
to the pool such as HOMO and LUMO energies, and HOMO–LUMO gap
(ΔHOMO–LUMO). The total number of calculated descriptors resulted in
1500 variables.

2.3. Modeling strategy

2.3.1. Variable subset selection method
In recent years researchers have focused an increasing attention on

finding the most efficient tool for variable selection in QSAR/QSPR
studies. There are a lot of feature selection methods to find the best
structural descriptors from a pool of variables and the Replacement
Method (RM) (Duchowicz et al., 2005, 2006), employed here, was
successfully used elsewhere (Duchowicz et al., 2008a, b; Goodarzi
et al., 2009). In brief, the RM is an efficient optimization tool which
generates multi-parametric linear regression QSPR models by
searching the set D of D descriptors for an optimal subset d of d≪D
ones with minimum model's standard deviation S. The quality of the
results achieved with this technique is quite close to that obtained by
performing an exact (combinatorial) full search (FS) of molecular
descriptors, although, of course, requires much less computational
work.We used the computerMatlab 5.0 system for all our calculations
(Matlab, 2004).

2.3.2. Internal and external validation of QSAR models
In this sort of theoretical studies it results of crucial importance to

check the predictive capability of themodel through validation. In this
way, one verifies that the linear relationships established behave not
only correlative but would also function similarly well for the
prediction of new data not contemplated during the training stage
of the model. The consistency and reliability of a method can be
explored using the Leave-One-Out Cross Validation procedure (loo)
(Hawkins et al., 2003), which we employ here. Another sort of
internal validation we use is the Y-randomization technique (Wold
and Eriksson, 1995) consisting of scrambling the observed pED50 in
such a way that they do not correspond to the respective molecules.
After analyzing 500,000 cases of Y-randomization for each developed
QSAR, the smallest Srand achieved is compared to the one found when
considering the true calibration (S). Therefore, in case Srand>S, it is
expected that the QSAR is not fortuitous and does not result from
happenstance, and results in real structure–activity relationship.

In our study, the models are then further subjected to external
validation by using a test set of fresh structures that are not
contemplated during the model development. These structures are
selected by hand in such a way that they share similar structural
characteristics to the training compounds.

3. Results and discussion

Previous structure–activity studies have suggested that the insect
antifeedant activity exhibited by the flavone and chromone deriva-
tives stronghly depends both on the 2-position substituent and the
substituted pattern on the A-ring of the benzopyranone (Morimoto
et al., 2003). The antifeedant activity decreases due to the 2-position
bulky substituents, while the introduction of a substituent to the 6- or
7-position tend to increase the activity for various compounds. For the
the case of coumaranone and aurone derivatives, the introduction of
alkoxy and alkyl groups to the A and B-rings seems to increase the
antifeedant activity (Morimoto et al., 2007).

We establish a structure–activity relationship on all the active
aurone and flavone compounds. On the other hand and as we already
mention in the Introduction section, it is also our intention to apply
the derived QSAR for estimating the antifeedant activity on new 2-,7-
substituted benzopyranes. For this purpose, we need to have a model
that is successful for describing inactive compounds. Therefore, it
would also be necessary to individually model each class of
compounds for acceptably describing the variation of the inhibitory
activities and thus predicting the structures of the estimation set.
3.1. QSAR for the combined set of active aurone and flavone analogues

This set includes the active compounds of the four classes:
flavones, chromones, 3-coumarones, and aurones. We begin this
analysis with the application of the RM variable subset selection
technique on the complete set of active aurones, chromones and
flavones (27 compounds). In this way, we expect to find the optimal
linear regression model that minimizes its standard deviation (S) and
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includes the best “representative” molecular descriptors, extracted
from the pool containing D=1500 variables. The following three-
descriptors linear QSAR is achieved which follows the semiempirical
“Rule of Thumb” (Hansch, 1990), stating that at least five or six data
points should be present for each fitting parameter:

pED50=−2:416ð�0:3Þ+2:002ð�0:4Þ⋅Mor24u−1:430ð�0:3Þ⋅Mor28u

+ 38:152ð�5Þ⋅R4uþ ð1Þ

N = 27; R = 0:890; S = 0:305; F = 28:993; p < 10−4
; Rmax = 0:563

Rloo = 0:820; Sloo = 0:384; SRand = 0:480

In this equation, N is the number of compounds used, R is the
correlation coefficient, S stands for the model's standard deviation of
calibration, p is the significance of the model, Rmax is the maximum
intercorrelation coefficient between descriptors participating in
Fig. 3. A. Predicted insect antifeedant activity as function of experimental values for all
the active compounds (N=27). B. Residuals versus predicted pED50 activities.
Eq. (1), and subindex loo stands for the Leave-One-Out Cross
Validation technique (Hawkins et al., 2003). Parameters of loo
measure the internal validation of the developed QSAR upon
inclusion/exclusion of compounds. The SRand parameter represents
the standard deviation according to the Y-Randomization technique
(Wold and Eriksson, 1995) (500,000 cases). A brief description for
each molecular descriptor appearing in Eq. (1) and in the next QSAR
equations are supplied by Table 1, which appear defined with degree
of details in the specialized literature (Todeschini and Consonni,
2000).

Table 2 provides the predicted pED50 for all the active compounds
according to Eq. (1). Fig. 3A includes a graphical representation of the
predictions as function of the experimental values and Fig. 3B plots
the residuals as function of the predictions.

3.2. QSAR for flavone derivatives

Present set includes only the benzopyranes of the flavone and
chromone classes, as both of them share the same structural
Table 3
Experimental and QSAR predicted pED50 for flavone and chromone derivatives.

Number Chemical name Exp.a Eq. (2)

Training set
1 Chrysin −0.398 −0.056
3 Luteolin Inactive

(−log1010)
−1.323

4 Wogonin −0.301 −0.453
5 Isowogonin Inactive

(−log10200)
−0.996

6 Norwogonin −0.182 −0.839
8 Baicalein 0.018 −0.731
10 Mosloflavone Inactive

(−log10200)
−0.982

11 Nobiletin −0.748 −0.634
12 Flavone 0.959 1.087
13 6-Methylflavone 1.456 1.215
14 6-Hydroxyflavone Inactive

(−log1015)
−1.196

16 7-Hydroxyflavone Inactive
(−log1010)

−1.304

17 7-Methoxyflavone 1.229 1.382
18 Chromone 0.775 0.091
19 2,7-Dimethylchromone 0.991 1.232
20 2-Methyl-5,7-dimethoxychromone Inactive

(−log10200)
−1.075

21 2-Methyl-5,6,7-trimethoxychromone 0.387 −0.510
23 7-Methoxychromone 1.018 1.217

Test set
2 Apigenin Inactive −0.840
7 Moslosooflavone −0.114 −0.222
9 Oroxylin A Inactive −0.453
15 6-Methoxyflavone 0.824 2.034

Estimation set
47 7-Methoxyflavone – 0.405
48 7-Chloroflavone – −1.120
49 7-Bromoflavone – −1.120
50 2-(α-Naphtyl)-4H-1-benzopyran-4-one – 1.162
51 2-(β-Naphtyl)-4H-1-benzopyran-4-one – −0.522
52 7-Bromo-2-(α-naphtyl)-4H-1-benzopyran-4-one – −0.705
53 7-Bromo-2-(β-naphtyl)-4H-1-benzopyran-4-one – −2.443
54 7-Chloro-2-(α-naphtyl)-4H-1-benzopyran-4-one – −0.651
55 7-Chloro-2-(β-naphtyl)-4H-1-benzopyran-4-one – −2.388
56 7-Methyl-2-(α-naphtyl)-4H-1-benzopyran-4-one – 0.762
57 7-Methyl-2-(β-naphtyl)-4H-1-benzopyran-4-one – 0.708
58 7-Methoxy-2-(α-naphtyl)-4H-1-benzopyran-4-one – −0.668
59 7-Methoxy-2-(β-naphtyl)-4H-1-benzopyran-4-one – −0.180
60 7-Fluoro-2-(α-naphtyl)-4H-1-benzopyran-4-one – −0.271

a Inactive compounds have pED50<−1. Modeled value is indicated in parentheses.
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backbone. As can be observed from Table 3 many of the molecules are
inactive, being experimentally reported with a censored value
exceeding certain threshold, as pED50<−1. This would make it
impossible to design quantitative models due to the unavailability of
the numerical value. However, it is to be noted that a censored value
represents very important information that a model has to capture
during its calibration, in order to accurately represent the chemical
universe of compounds.

We take into account inactive compounds by assigning to them a
given experience-based number, in accordance with the threshold
pED50<−1, with the aim of guiding the model's performance on
these missing data. The numbers assigned to the 6 inactive
compounds appearing in the training set are indicated in parentheses
in Table 3, and these values are manually selected in such a way that
reasonable predictions are achieved for the activity of the training
Fig. 4. A. Predicted insect antifeedant activity as function of experimental values for
active and inactive flavones and chromones. B. Residuals versus predicted pED50

activities.
compounds. According to this, the best relationship found involves
the next three theoretical descriptors:

pED50 = 11:483ð�2Þ−6:202ð�1Þ⋅IC1 + 54:296ð�12Þ⋅R5eþ
+ 0:357ð�0:2Þ⋅H�046

ð2Þ

N = 18; R = 0:856; S = 0:663; F¼ 12:789; p < 10−4
; Rmax = 0:748

Rloo = 0:801; Sloo = 0:774; SRand = 0:770

The graphical representation of Eq. (2) is given in Fig. 4A and B. The
test set for validating this QSAR involves 2 active and 2 inactive
flavones and from Table 3 it is seen that these compounds are
acceptably predicted. By inspection of the predictions of this table one
may analyze the behaviour of this model, leading to the conclusion
that compounds predicted to have low negative pED50 activities may
or not be inactive, but those posing positive values are active.
Therefore, this QSAR is able to guide the synthesis of relevant
structures with insect antifeedant activity.
Fig. 5. A. Predicted insect antifeedant activity as function of experimental values for active
and inactive aurones and 3-coumarones. B. Residuals versus predicted pED50 activities.



Table 4
Experimental and QSAR predicted pED50 for aurone and 3-coumarone derivatives.

Number Chemical name Exp.a Eq. (3)

Training set
24 Coumaranone Inactive (− log10100) −1.404
25 4,6-Dimethoxycoumaranone −0.588 0.021
26 4,6-Dimethylcoumaranone 0.168 −0.479
27 4,5,6-Trimethoxycoumaranone 0.387 0.171
30 3′-Methoxyaurone −0.004 −0.189
32 3′-Bromoaurone −0.624 −0.893
33 4′-Methoxyaurone −0.308 −0.230
35 3′,4′-Methylendioxyaurone −0.207 −0.158
36 3′,4′-Dihydroxyaurone Inactive (− log1010) −1.758
38 3′-Ethoxy-4′-hydroxyaurone −0.292 −0.127
40 3′,4′,5′-Trimethoxyaurone Inactive (− log10100) −1.265
42 3′,4,4′,6-Tetramethoxyaurone 0.921 0.503
43 3′,4,4′,5,6-Pentamethoxyaurone Inactive (− log1010) −1.396
44 4,6-Dimethoxy-3′,4′-dimethylaurone Inactive (− log10100) −1.068
45 4,6,3′,4′-Tetramethylaurone Inactive (− log1010) −1.400
46 3′,4′-Dimethoxy-4,6-dimethylaurone −0.009 0.115

Test set
28 Aurone Inactive −0.565
29 2′-Methoxyaurone Inactive −0.863
31 3′-Chloroaurone Inactive −0.814
34 3′,4′-Dimethoxyaurone 0.066 0.027
37 4′-Hydroxy-3′-methoxyaurone Inactive −1.075
39 3′,5′-Dimethoxyaurone −0.538 −0.911
41 4,6-Dimethoxyaurone 0.071 −0.211

a Inactive compounds have pED50<−1. Modeled value is indicated in parentheses.
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We apply Eq. (2) for predicting the estimation set of structures
provided by Fig. 2 (see Table 3), and find that one of them, 2-(α-
naphtyl)-4H-1-benzopyran-4-one, results a promising structure to be
experimentally analyzed as it has predicted pED50=1.162. In addition,
it can be appreciated that among these structures the α-naphthyl
derivatives tend to be more actives than the β-naphthyl ones.

3.3. QSAR for aurone derivatives

In this set appear the benzofuranes of the aurone and 3-coumarone
classes. By considering inactive compounds as in the previous section,
the following QSAR is obtained over 16 structures:

pED50 = −2:459ð�0:5Þ−7:111ð�2Þ⋅GGI7 + 0:305ð�0:07Þ⋅RDF040u
+ 1:265ð�0:4Þ⋅Mor10u ð3Þ

N = 16; R = 0:813; S = 0:564; F = 13:200; p < 10−4
; Rmax = 0:840

Rloo = 0:640; Sloo = 0:773; SRand = 0:590

Fig. 5A and B plots the predictions and residuals of Eq. (3). In this
case, the test set for validating the QSAR involves 3 active and 4
inactive aurones whose predicted activities are included in Table 4,
demonstrating that the model has predictive capability.

It is noted that in all the established models, there is no serious
intercorrelation between the participating descriptors. In both
structure–activity relationships expressed by Eqs. (2) and (3), the
inclusion of inactive compounds greatly affect the statistical quality of
the derived models. Therefore, it would also be possible to obtain
improved models that consider only the active compounds on each
chemical class although, however, this would not allow us to apply
them for any kind of investigated structure (active or inactive), as it is
done in present work.

4. Conclusions

One of the major problems commonly found in computational
modeling is due to incomplete experimental information on a
modeled system, which would prevent to reasonably validate the
mathematical models depicting the variation of the observations.
Present work surmounts this problem by including inactive com-
pounds during the model design and allows achieving a better
description of the chemical universe, thus having special value when
the model is to be used for predicting molecules with unknown
experimental activities. The best linear QSAR regression equations
established in this study are able to acceptably predict the insect
antifeedant activities of compounds and provide insights into active
and inactive structures. The application of the designed QSAR on newly
synthesized 2-,7-substituted benzopyranes leads to a favourable pre-
dicted inhibitory activity for 2-(α-naphtyl)-4H-1-benzopyran-4-one,
and now it remains to be experimentally investigated in greater extent.
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