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Abstract. It is widely accepted that a theory of truth for arithmetic should be consistent, but
ω-consistency is less frequently required. This paper argues that ω-consistency is a highly desirable
feature for such theories. The point has already been made for first-order languages, though the
evidence is not entirely conclusive. We show that in the second-order case the consequence of
adopting ω-inconsistent truth theories for arithmetic is unsatisfiability. In order to bring out this point,
well known ω-inconsistent theories of truth are considered: the revision theory of nearly stable truth
T# and the classical theory of symmetric truth FS. Briefly, we present some conceptual problems
with ω-inconsistent theories, and demonstrate some technical results that support our criticisms of
such theories.

In this paper we argue that any consistent but ω-inconsistent theory of truth for arithmetic
will fail to be adequate.1 The point has already been made for first-order systems and
is widely known and generally accepted.2 The consequences of adopting second-order
ω-inconsistent theories of truth have not been explored yet. Naturally, the negative results
obtained for the first-order case continue to hold in the second-order case. However, we
will show that in the second-order case things get considerably worse. We provide some
new results and proofs for the well known ω-inconsistent revision theory of truth T# and
classical theory of symmetric truth FS over second-order arithmetic.3

The article is organized as follows. In section 1 we give some technical preliminaries.
Section 2 is devoted to the introduction of FS and T# over second-order arithmetic. In
Section 3 we provide unsatisfiability results for both systems and consistency and sound-
ness results for the latter. We argue that consistency and soundness are not sufficient for an
adequate theory of truth. In section 4 we draw conclusions.

§1. Technical preliminaries. Let L2 be the usual second-order language of arith-
metic. It contains ¬, ∧ and ∀ as logical symbols (∨, →, ↔ and ∃ are defined), denumerably
many individual variables x1, x2, ..., denumerably many n-ary set variables Xn

1 , Xn
2 , ..., 0

as its only individual constant, the monadic function symbol s and finitely many additional

Received: March 24, 2013.
1 The expressions ‘truth theory’ and ‘truth system’ will not be used in a technical sense, but will be

taken to be interchangeable and to refer to any semantic or axiomatic formal approach to truth.
2 See Leitgeb (2007), Barrio (2010), and Halbach (2011, p. 134).
3 We will focus on theories of truth over arithmetic, but applications to other more comprehensive

base theories are presumably intended for these theories. Arithmetic is a convenient and relatively
simple setting, since by fixing some Gödel coding it can express its own syntax. Limiting
ourselves to arithmetic does not harm the generality of our claims: if a theory fails to provide
a satisfactory account of truth for some (crucial) base system, then it is not an attractive theory of
truth overall, for the general aim is lost.
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symbols for primitive recursive functions that will be needed. L2
T obtains from L2 by

adding a new monadic predicate letter T for truth.
LetN 2 be the intended model ofL2, and let ω be its first-order domain.N 2 interprets the

constant 0 with the number 0, s with the successor function and other primitive recursive
function symbols in the intended way. By ‘standard’ or ‘intended model of L2

T ’ we mean
any second-order interpretation of this language whose restriction to L2 is isomorphic
to N 2.

Shapiro has recently argued that unintended interpretations of first-order arithmetic
demonstrate that first-order languages are inadequate for axiomatizing arithmetic.4 He
maintains that arithmetic should be formulated in a language whose resources transcend
first-order logic. He proposes that second-order languages provide a suitable framework.
Second-order languages contain not just first-order quantifiers that range over elements of
the domain, but also second-order quantifiers that range over subsets of the domain. In full
second-order logic, it is crucial that these second-order quantifiers range over all subsets
of the domain.

Thus, by ‘second-order interpretation’ or ‘second-order model’ we understand any clas-
sical interpretation of a second-order language as L2 where the second-order domain is
the power set of the first-order domain. If we did not limit ourselves to standard semantics
we would not be really working with second-order languages but just with multi-sorted
first-order ones.

Let P A2 be the usual recursive axiomatization of second-order arithmetic. It contains
the usual axioms of first-order arithmetic plus the second-order formulation of induction
instead of the first-order induction schema. If the principles of arithmetic are formulated in
a second-order language, then Dedekind’s argument goes through and we have a categor-
ical theory. P A2

T is P A2 formulated in L2
T , with full comprehension over L2

T -formulae.
We assume N 2 � P A2.
L2

T contains a term n̄—the numeral of n—for each n ∈ ω given by n occurrences of s
followed by the constant symbol 0. Given any piece of vocabulary A of L2

T , �A� denotes
the numeral of the Gödel number of A, given some fixed coding.

The sets of atomic and true atomic sentences of L2 are recursive, as well as the set
of L2

T -sentences, the set of first-order variables, the set of second-order variables and the
set of predicate letters. They will be represented in P A2—and thus expressed in N 2—by
At (x), V er(x), Sent (x), var(x), V ar(x) and Pred(x), correspondingly.

The function symbols ¬. , ∧. and ∀. represent recursive functions such that for any formulae
A and B, individual variable v and second-order variable V : ¬. �A� = �¬A�, �A�∧. �B� =
�A ∧ B�, ∀. �v��A� = �∀v A� and ∀. �V ��A� = �∀V A�. ẋ represents the function that
maps any number n to the code of its numeral n̄. Finally, x(y/z) represents the substitution
function, which applied to the code x of a formula A and the codes y and z of terms t1
and t2, gives the code of the formula that obtains by replacing t2 in A with t1; while when
applied to the codes y and z of relation symbols or second-order variables of the same arity
R1 and R2 it gives the code of the formula that obtains by substituting R2 in A with R1.
As usual, we write �A(v̇)� as short for �A(v)�(v̇/�v�) to bind the individual variable v
from outside corner quotes.

4 For a detailed account see Shapiro (1991, pp. 70–76).
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§2. Two ω-inconsistent theories of truth.

2.1. The complete and consistent theory of truth FS. FS is an axiomatic theory of
truth introduced by Friedman & Sheard (1987), and studied in depth by Halbach (1994,
2011). Given a base theory formulated in a classical language containing a predicate T
for truth, FS adds axioms and rules governing T to the base theory that are consistent
with it and intended to turn T into a truth predicate for the resulting system. FS provides
compositionality principles and two rules of introduction and elimination for T that turn it
into a symmetric notion: every provable formula of the theory will also be provably true
and vice versa.

Let L2
T be our classical language and P A2

T our base theory. We will also refer to the
latter as ‘F S2

0 ’. F S2
1 is F S2

0 plus the following axioms:

(AT ) ∀x(At (x) → (T x ↔ V er(x)))
(T ¬) ∀x(Sent (x) → (T ¬. x ↔ ¬T x))
(T ∧) ∀x∀y(Sent (x) ∧ Sent (y) → (T (x∧. y) ↔ T x ∧ T y))
(T ∀v) ∀x∀v(Sent (x(0/v)) ∧ var(v) → (T ∀. vx ↔ ∀yT x(ẏ/v)))
(T ∀V ) ∀x∀p∀v(V ar(v) ∧ Pred(p) ∧ Sent (x(p/v)) → (T ∀. vx → T x(p/v)))

(T ¬), (T ∧) and (T ∀v) collaborate to establish the compositional character of truth.
One might expect (T ∀V ) to do its part, that is to state that T commutes with the second-
order universal quantifier too. Such a principle, for instance, would require ∀X A to be true
whenever each formula that results from replacing all free occurrences of X in A with a
monadic predicate symbol is true. But there cannot be enough predicate symbols in L2

T
for each X ⊆ ω, for L2

T is a denumerable language; it may happen that all instances of
A(X) are true, while its universal closure is not.5 (T ∀V ) states only the other direction,
which is sound: if the universal closure of A(X) is true, then the result of replacing X with
a predicate letter of the same arity is true too.

Finally, let F S2 be F S2
1 plus the following inference rules:

(NEC)
� A

� T �A� (CONEC)
� T �A�

� A

F S2 is an ω-inconsistent system, that is, for some formula A(x) with only one free
individual variable x , F S2 � A(n̄) for each n ∈ ω and, at the same time, F S2 � ¬∀x A(x).
This is an immediate consequence of a theorem of McGee (1985, p. 399).

2.2. The revision theory of truth T#. The revision theory of truth is an attempt to show
how a classical language may contain its own truth predicate by describing and explaining
the behavior of this predicate in ordinary as well as in problematic cases such as those
posed by semantic paradoxes. It was originally introduced by Gupta (1982) and Herzberger
(1982) and fully developed by Gupta & Belnap (1993), the locus classicus on the topic.
The revision theory is said to be a semantic truth theory. But despite working with a class
of models for the language whose truth predicate is to be explained, it does not provide a
class of models for the language but instead provides a class of sentences intended to be
the ones that are categorically assertible.

5 Adopting a satisfaction predicate instead of a truth predicate could solve the problem, but we
would be forced to move to a third-order language allowing predicates to apply, not only to
objects in the first-order domain of a model, but also to sets in the second-order domain. This
would make things rather more complicated and it does not bear on the aim of our paper.
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Let L2
T be the language under investigation. The revision theory works as follows.

A partial interpretation of L2
T that just leaves T uninterpreted must be fixed to begin with:

the base model. Let N 2 be our base model. Then a hypothetical extension S0 ⊆ ω for T
must be chosen and N 2 expanded to a full second-order model (N 2, S0) of L2

T with the
same first-order domain,6 that interprets T with S and every other nonlogical symbol of
L2

T with the same objects as N 2.
Now a revision process of the chosen hypothesis begins. (N 2, S0) is transformed into

another model (N 2, S1), and this one into another, etc. obtaining a sequence of interpre-
tations indexed by ordinal numbers of length On.7 We use greek letters α, β, λ to denote
ordinals. Let A be any sentence of L2

T . At each successor step α + 1 the extension of the
truth predicate is given by the following rule:

Sα+1 = {A : (N 2, Sα) � A}8 (1)

Only sentences that are true in the previous level fall inside the extension of the truth
predicate. At limit levels things get more complicated. Clearly, results obtained in previous
stages must be collected: those sentences stabilized inside the extension of T must remain
there, and the same for sentences stabilized outside the extension of the truth predicate.
What about unstable sentences? Gupta & Belnap (1993) consider all possible ways of
adding some unstable sentences to the extension of T at each limit stage λ.9 Let A be any
sentence of L2

T and �λ any subset of ω:

Sλ = {A : ∃α∀β(α ≤ β < λ ⇒ A ∈ Sβ)} ∪ �λ − {A : ∃α∀β(α ≤ β < λ ⇒ A /∈ Sβ)}
Different choices of the initial hypothesis S0 and the extension of �λ at each limit stage

λ give rise to different revision sequences. To prevent arbitrary choices from slanting the
process, every possible sequence with N 2 as base model must be considered. Sentences
that stabilize in some way inside the extension of T in every revision sequence will be
categorically true and assertible, while the ones that stabilize outside the extension will be
categorically false and their negations will be assertible.

In T# categorical statements must be nearly stable.10 An L2
T -sentence A is nearly-stably

true in a sequence generated by (N 2, S0) if and only if for every stage β after some stage
α there is a natural number n such that for all natural numbers m ≥ n, A ∈ Sβ+m : and
similarly for nearly-stably false sentences. Nearly stable sentences are allowed to fluctuate
all along sequences, but those fluctuations must be confined to finite regions immediately
after limit ordinals.

An L2
T -sentence A is valid in T# inN 2—T #

N 2 for short—if and only if it is nearly stably

true in every sequence based on N 2.

6 And thus the second-order domain remains intact too.
7 The class of all ordinal numbers.
8 Actually, codes of sentences rather than sentences themselves belong to each Sα . However, for

readability purposes we will frequently identify expressions with their codes.
9 Previously, some alternatives have been explored in the literature by Belnap (1982), Gupta (1982)

and Herzberger (1982), for which Gupta & Belnap (1993) notion seems to be an improvement.
Later, Yaqūb (1993) and Chapuis (1996) worked on several refinements.

10 Gupta and Belnap present three diverse systems built around different ways a sentence may
stabilize in a sequence, one of which is T#. For a detailed exposition see Gupta & Belnap (1993,
chap. 6).
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Gupta & Belnap (1993, p. 225) prove that T# in N—the standard model of first-order
arithmetic—is ω-inconsistent, for it satisfies the hypothesis of a theorem of McGee (1985).
Since T #

N 2 is an extension of that system, it is ω-inconsistent too. In fact, F S2 is nearly-

stably true and, thus, a subtheory of T #
N 2 .11 So T #

N 2 is a system of both compositional and
symmetric truth too.

§3. Some relevant results. Dedekind’s categoricity result states that any structures
satisfying the axioms of second-order arithmetic are isomorphic. Philosophers of math-
ematics—for example Shapiro, Isaacson—have repeatedly claimed that this result has
significant implications with respect to the determinacy of our understanding of the natural
numbers. In the second-order case ω-inconsistency entails unsatisfiability. Both T #

N 2 and

F S2 lack models.

THEOREM 3.1. F S2 has no (full) models.

Proof. Suppose for reductio thatM � F S2. As F S2 is ω-inconsistent, there is a formula
A(x) with exactly one free individual variable x such that M � A(n̄) for each n ∈ ω
and also M � ¬∀x A(x). Since F S2 extends P A2, M � P A2. Then, by categoricity,12

M must be an ω-model. Thus,M � ∀x A(x) too, which is impossible. �

COROLLARY 3.2. The set of L2
T -sentences that are valid in T #

N 2 has no (full) models.

Proof. By theorem 3.1, since F S2 is a subsystem of T #
N 2 . �

These are definitively negative results. The lack of models for F S2 implies, in the first
place, that the nonlogical vocabulary of F S2 cannot be interpreted in any way. Thus, F S2

‘talks’ about nothing, neither true statements nor natural numbers. In a sense, this turns it
into a useless theory. In the second place, the lack of models shows that this formal system
semantically entails everything, it is semantically trivial. One might feel inclined to believe
that as a result of being unsatisfiable F S2 is also inconsistent. However, as is well known,
Theorem 3.1 does not entail that F S2 is inconsistent, for there is no complete second-
order calculus and what happens at the semantic level may carry no proof-theoretical
consequences. In fact, F S2 is consistent and even arithmetically sound, that is, it proves
only true L2-statements.

Let F S2
n be F S2

1 plus at most n − 1 applications of (NEC) and n − 1 applications of
(CONEC). We will show that, for each n ∈ ω, F S2

n has an ω-model.13 Since every theorem
of F S2 must be provable in some F S2

n , F S2 must be consistent and arithmetically sound.
First we will prove an auxiliary lemma.

LEMMA 3.3. Let n ∈ ω and A be any formula of L2
T . If A is true in the n-th step of

every revision sequence based on N 2 then it is also true at stage n + 1.

11 Gupta & Belnap (1993, p. 222) prove that first-order versions of (T ¬), (T ∧) and (T ∀v) are valid
in T# inN . The proof for (AT ), (T ¬), (T ∧), (T ∀v) and (T ∀V ) in T #

N 2 is analogous. Of course,

since the latter entails every true-in-N 2 L2-sentence, it is not axiomatizable. F S2 can only be
seen as a partial axiomatization.

12 Dedekind (1996) proved a categoricity result for P A2: any model of P A2 is isomorphic to N 2

and, thus, an ω-model.
13 A similar proof for the first-order case can be found in Halbach (2011, chap. 14, sec. 1).
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Proof. Consider a revision sequence generated by S0. Then, (N 2, Sn) � A. Con-
sider now the sequence generated by S1 instead. The n-th step of the latter sequence is
(N 2, Sn+1). Thus, (N 2, Sn+1) � A. �

THEOREM 3.4. If (N 2, S0) is an extension of N 2 to L2
T , (N 2, Sn) � F S2

n .

Proof. Since F S2
0 is P A2

T and the latter contains just logical axioms and rules for T ,
any extension of N 2 to L2

T satisfies it. Thus, (N 2, S0) � F S2
0 .

We will prove the remaining cases by induction on n with n = 1 as our base step. By
the last paragraph, (N 2, S1) � F S2

0 . We need to show that (AT ), (T ¬), (T ∧), (T ∀v)

and (T ∀V ) are also true in (N 2, S1). We will explicitly prove that (T ¬) and (T ∀V ) are
satisfied. Other cases are treated in a similar way.

Suppose for reductio that (N 2, S1) � (T ¬). Then (N 2, S1) � Sent (n̄) ∧ T ¬. n̄ ∧ T n̄
or (N 2, S1) � Sent (n̄) ∧ ¬T ¬. n̄ ∧ ¬T n̄ for some n ∈ ω. Thus, there is a sentence A of
L2

T such that ¬A ∈ S1 and A ∈ S1, or ¬A /∈ S1 and A /∈ S1. By (1), we have that either
(N 2, S0) � ¬A ∧ A or (N 2, S0) � ¬A ∨ A, which is absurd.

Similarly, assume that (N 2, S1) � (T ∀V ). Thus, (N 2, S1) � V ar(k̄) ∧ Pred(m̄) ∧
Sent (n̄(m̄/k̄)) ∧ T ∀. k̄n̄ ∧ ¬T n̄(m̄/k̄) for some k, m, n ∈ ω. Then, there is a second-order
variable V , predicate symbol P of the same arity as V and a formula A with possibly
V as its only free variable such that ∀V A ∈ S1 and A(P) /∈ S1. By (1), (N 2, S0) �
∀V A ∧ ¬A(P), which is impossible.

Now suppose that (N 2, Sn) � F S2
n , that is, that F S2

n is true in the n-th step of every
revision sequence based onN 2. By (3.3), (N 2, Sn+1) � F S2

n too. So (N 2, Sn+1) validates
n − 1 applications of (NEC) and (CONEC). Finally we need to prove that (N 2, Sn+1)
validates one more application of each rule. Let A be an L2

T -sentence such that F S2
n � A.

By the inductive hypothesis, (N 2, Sn) � A. By (1), A ∈ Sn+1, that is, (N 2, Sn+1) �
T �A�. Now let F S2

n � T �A�. Then, (N 2, Sn+1) � T �A�, that is, A ∈ Sn+1. By (1),
(N 2, Sn) � A and, by (3.3), (N 2, Sn+1) � A. Therefore, (N 2, Sn) � F S2

n+1. �

So each F S2
n is true at stage n of every revision sequence for L2

T based onN 2, no matter
what initial hypothesis we have chosen.

COROLLARY 3.5. F S2 is consistent.

COROLLARY 3.6. F S2 is arithmetically sound.

While Theorem 3.1 shows that F S2 is trivial from a semantic standpoint, Corollary 3.5
keeps it safe from proof-theoretic trivialization and Corollary 3.6 from arithmetical falsity.
The failure of completeness for second-order systems allows these differences between
the semantics and the calculus. Nonetheless, consistency and soundness are not enough;
ω-consistency is necessary for a theory of truth.

Adding a truth predicate to some base theory should not interfere with the ontology
of that theory. First, it does not make much sense to talk about the truth or falsity of
uninterpreted formulae. We want sentences such as ‘¬∃x(s(x) = 0)’ to come out true in
our truth theories because they say something true about natural numbers, because they
are true of the standard interpretation of the language we are working with. Although
F S2 entails many of these sentences and also their truth predication, it cannot be seen
as expressing the truth of a sentence that concerns natural numbers (or anything at all),
since F S2 can be no longer seen as saying something true about ω.

Second, one might expect a truth theory to provide a better understanding of the standard
interpretation of the base language. But despite being arithmetically sound and proving
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more true-in-N 2 formulae than P A2, including the Gödel sentence and the consistency
statement for P A2, F S2 does not provide a better characterization of N 2 since it is not
true in it.

Then, as a consequence of Theorem 3.1—which is itself a consequence of the
ω-inconsistency of F S2—the truth predicate of F S2 is not a legitimate truth predicate
for arithmetic, not even a partial one.

A good theory of truth over arithmetic should not only be arithmetically sound and entail
as many intuitive truth principles as possible, but it should also not imply counterintuitive
statements involving truth. Consider the following L2

T -sentence:

(RFLF S2) ∀x(BewF S2(x) → T x)

where BewF S2 is the provability predicate for F S2, weakly representable in this system.
RF L F S2 is a global reflection principle for F S2: it states that all F S2-theorems are true
(as long as T is capable of expressing truth, at least partially). This principle seems desir-
able to anyone embracing F S2, for it establishes its soundness. Moreover, it appears to be
true according to F S2 itself since, by (NEC), T applies to every theorem of F S2.

However, F S2 proves the negation and falsity of RF L F S2 .14 ¬RF L F S2 is a highly
counterintuitive principle but—worst of all—it is strictly false. Although F S2 does not
prove any arithmetically false statement, it entails incorrect truth-theoretical principles.
F S2 is arithmetically but not truth-theoretically sound.

As a consequence, supporters of F S2 must regard their own theory as unsound, for they
fall into the following dilemma: they commit themselves either to the falsity or to the truth
of RF L F S2 . The first alternative seems reasonable, for ¬RF L F S is entailed both by F S2

and T #
N 2 . But this formula states the unsoundness of F S2. The second choice also seems

attractive, since RF L F S2 states the soundness of F S2. However, since F S2 implies the
negation of that principle, supporters are forced to admit that their theories entail falsities
and, hence, are unsound.

Naturally, whatever is provable in F S2 must be provable by a finite number of appli-
cations of (NEC) and (CONEC). As a result, every F S2-theorem is a theorem of an ω-
consistent fragment of F S2. ω-inconsistency is not the reason why F S2 proves the negation
of its own reflection principle, but rather why this negation is false according to the theory
itself. For while a finiteness argument goes through and, thus, ¬RF L F S2 is provable
in some ω-consistent fragment of F S2, RF L F S2 only becomes true—and its negation
false—when applications of (NEC) are unrestrained. In fact, F S2 entails T �A�whenever it
entails BewF S2(�A�) for each L2

T -sentence A and, at the same time, ¬∀x(BewF S2(x) →
T x) is a theorem of F S2.

Regarding T #
N 2 , things get murkier. This truth theory provides a class of L2

T -sentences
that are supposed to be correctly assertible. Gupta & Belnap (1993, p. 219) show that this
set is closed under classical logical consequence, for logical truths are true and logical
rules are sound in every model, including all extensions of N 2. Since the set of T #

N 2 -valid

sentences lacks models we have that T #
N 2 entails every L2

T -statement. In Theorem 3.2 we

show that T# is fully incapable of dealing with truth for second-order arithmetic. According
to T# every sentence of L2

T is correctly assertible, and so we get absolute triviality.

14 See Halbach & Horsten (2005) for a proof for the first-order case. The second-order case is
immediate, for F S2 includes its first-order counterpart and the negation of the reflection principle
for the latter system entails ¬RF L F S2 .
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§4. Conclusions. As is widely accepted, ω-inconsistent theories of truth for first-order
arithmetic are undesirable, for they do not succeed in expressing genuine truth. Results
for the second-order case are worse and completely decisive. Higher-order resources with
standard semantics ban the existence of nonstandard models. Thus, ω-inconsistency entails
unsatisfiable theories of truth, that is, semantically trivial systems. While F S2, by an in-
completeness result, avoids trivialization at the proof-theoretical level, T #

N 2 has the further
flaw of entailing every sentence, rendering it completely useless as a semantic theory of
truth.

In sum, ω-consistency is a highly desirable feature for a theory intended to provide a
truth predicate for first-order arithmetic; but it becomes indispensable if the aim is to give
a truth predicate for second-order arithmetic.
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