

EIGENVALUES OF RADIALLY SYMMETRIC MODES IN COMPOSITE SPHERICAL DOMAINS WITH A VERY SMALL CONCENTRIC CAVITY

C. A. ROSSIT AND P. A. A. LAURA

Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur, 8000 - Bahia Blanca, Argentina

(Received 20 May 1999)

1. INTRODUCTION

Recently, and in a very ingenious manner, Wang has proved that the fundamental frequency coefficient of a circular annular membrane fixed at the outer radius "b" and at the inner radius "a", is the same eigenvalue as in the case of a solid circular membrane, when the inner radius of the annular membrane approaches zero [1]. Subsequently, it was shown by Laura and coworkers that the same rather unexpected conclusion holds true in the case of higher modes of vibrations [2, 3] and also in the case of composite membranes [4].

It is shown in the present study that, from a mathematical viewpoint, the same property holds when solving a Helmholtz differential — type system in the case of composite spherical domain when $a/c \rightarrow 0$, Figure 1.

2. GOVERNING DIFFERENTIAL SYSTEM

Referring to Figure 1 the following differential system will be considered, for the sake of generality:

Domain I ($a \leq r \leq b$):

$$\frac{d^2\psi_1}{dr^2} + \frac{2}{r}\frac{d\psi_1}{dr} + \frac{\beta^2}{\delta_1}\psi_1 = 0.$$
 (1)

Domain II ($b \leq r \leq c$):

$$\frac{d^2\psi^2}{dr^2} + \frac{2}{r}\frac{d\psi_2}{dr} + \frac{\beta^2}{\delta_2}\psi_2 = 0.$$
 (2)

Boundary conditions:

$$\psi_1(a, t) = 0, \qquad \psi_1(b, t) = \psi_2(b, t),$$

$$k_1 \frac{d\psi_1}{dr}(b, t) = k_2 \frac{d\psi_2}{dr}(b, t), \qquad \psi_2(c, t) = 0,$$
(3)

Figure 1. Composite, hollow, spherical domain.

TABLE 1

Variation of the eigenvalues Ω_n (n = 1, 2, ..., 5) as the inner cavity radius decreases in magnitude

a/c n	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁵	Solid composite sphere
1	6.42121	5.54464	5.46617	5.45842	5.45765	5.45756
2	9.94306	9.11525	9.04594	9.03908	9.03840	9.03832
3	15.38789	13.04455	12.85540	12.83689	12.83504	12.83483
4	20.81861	18.30155	18.04621	18.02084	18·01830	18.01802
5	24.70465	22.10779	21.91482	21.89572	21.89381	21.89360

where δ_i and k_i denote the system properties and β^2 : eigenvalues of the configuration.

The solutions of equations (1) and (2) are

$$\psi_i(r) = \frac{A_i}{r} \sin \frac{\beta}{\sqrt{\delta_i}} r + \frac{B_i}{r} \cos \frac{\beta}{\sqrt{\delta_i}} r, \qquad (i = 1, 2).$$
(4)

It is convenient to define the eigenvalues in terms of a dimensionless parameter

$$\Omega = \frac{\beta b}{\sqrt{\delta_1}}.$$

3. NUMERICAL RESULTS

The numerical determinations have been greatly facilitated by the use of MATHEMATICA [5].

Table 1 depicts the first five eigenvalues for a particular mechanical configuration defined by $k_2/k_1 = 1.4$; $\delta_2/\delta_1 = 5$ and b/c = 0.5, as a function of the

geometric ratio a/c. One observes that as a/c decreases in magnitude one approaches the eigenvalues of a solid composite spherical configuration (last column at the right). For $a/c = 10^{-5}$, at least four significant figures concide and for n = 5 the difference is of the order of 0.001%.

These mathematical conclusions are of interest in the classical diffusion theory* but are potentially applicable in some vibrational models of continuous media.

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program and by Secretaria General de Ciencia y Technología of Universidad Nacional del Sur (Project Director: Professor R.E. Rossi).

REFERENCES

- 1. C. Y. WANG 1998 *Journal of Sound and Vibration* **215**, 195–199. On the polygonal membrane with a circular core.
- 2. P. A. A. LAURA and S. A. VERA 1999 *Journal of Sound and Vibration* 222, 331–332. Comments on "On the polygonal membrane with a circular core".
- 3. P. A. A. LAURA, S. LA MALFA, S. A. VERA, D. A. VEGA and M. D. SÁNCHEZ 1999 *Journal of Sound and Vibration* 221, 917–922. Analytical and experimental investigation on vibrating membranes with a central, point support.
- 4. P. A. A. LAURA, C. A. ROSSIT and S. LA MALFA 1999 Journal of Sound and Vibration 222, 696–698. A note on transverse vibrations of composite, circular membranes with a central, point support.
- 5. S. WOLFRAM 1991 *MATHEMATICA* (Wolfram Research, Inc.) Reading, MA: Addison-Wesley, Second edition.

*Certainly, when dealing with an unsteady thermoelastic situation, the presence of a cavity of small radius will generate severe stress concentration.