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Abstract

The unsteady thermoelastic analysis of a cooling circular disk or cylinder which is originally
at uniform temperature is a classical problem of the theory of thermal stresses. More recent
studies consider the case of composite structural configurations. The present paper deals with
a situation which, apparently, has not been previously considered: unsteady thermal stresses
caused by the presence of a hot, central nucleus. The temperature field is obtained in terms
of a Fourier–Bessel expansion and then, radial and tangential stresses are evaluated analyti-
cally. The problem is of basic interest in mechanical and naval engineering systems. 1999
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1. Introduction

Consider first the case of a circular cylinder or disk at a constant initial temperature
T0. If beginning from an instantt 5 0, the lateral surface is kept at zero temperature,
the temperature distribution as a function of the radial and temporal variables is
given by (Timoshenko and Goodier, 1951)
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From well known field and thermoelastic relations one obtains:
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The solutions and numerical examples quoted in the previously mentioned reference
were obtained by Dinnik (1915) and Lees (1922). Stodola (1924) has studied the
problem thoroughly in connection with the heating of shafts and rotors making oper-
ational recommendations in order to reduce maximum stresses.

The present paper deals with the case where the subdomain 0# r # r0 is initially
at temperatureT0 while the remaining is kept at zero temperature. Fort > 0 the
boundary is insulated. It is felt that the problem is of basic academic and also techno-
logical interest since it corresponds, approximately to several practical situations,
e.g. when an additional structural element is welded to the disk at a central position
(Fig. 1). The present analysis constitutes a first order approximation in the determi-
nation of the thermal stress field caused by the cooling of the “hot spot”.

The first part of the paper deals with the determination of the unsteady thermal
field and the second step constitutes the evaluation of the stresses. It may be of
unterest to point out that an approximate solution for the temperature problem in
the case of a non-circular outer shape is available (Laura et al., 1985).

2. The unsteady thermal field

Following previous works (Laura et al., 1985) one expresses the situation of Fouri-
er’s equation

k=2T 5 cpr
∂T
∂t

(4)

in terms of
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Fig. 1. Thermal system under study.
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wherebn is the separation constant and where in order to satisfy the adiabatic con-
dition:

dJ0(bnr)
dr |

r 5 a

5 0. (6)

Accordingly

J1(bna) 5 0 (7)

and then

bna 5 an (8)

where theans are the roots ofJ1(x) 5 0. TheBns are determined using the initial
boundary condition

T(r,0) 5 T0 if 0 # r # r0 (9a)

T(r,0) 5 0 if r0 , r # a. (9b)

Then one obtains
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3. The thermoelastic solution

Since the thermomechanical behavior of the system depends only upon the tem-
poral variablet, and the distance to the geometric center of the configurationr, one
only needs to determine the radial displacementur to describe the state of defor-
mation of the disk and to determine the non-zero components of the stress tensor:
sr andsu. The corresponding expressions are (Timoshenko and Goodier, 1951; Boley
and Weiner, 1960):
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Fig. 2. Initial dimensionless temperature distribution (r/a 5 0.5).
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The boundary conditions being:

ur(0,t): Finite (14)

sr(a,t) 5 0 (15)

4. Numerical results and conclusions

In order to have an idea of the convergence of the Fourier–Bessel expansion att
5 0 the initial temperature distribution was plotted as a function ofr/a andkt/cpra2 5
0 using 24 and 48 terms of the expansion. As it was to be expected the convergence is
rather slow (Fig. 2). However this point does not have practical significance since

Fig. 3. Dimensionless temperature, radial displacement and radial and tangential stresses as a function
of r/a and kt/cpra2·(r0/a 5 0.2).
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as soon askt/cpra2 > 0 the higher eigenvalues carry enough weight in the exponential
function with negative exponent (specially in view of the fact that the squares of
the eigenvalues appear in the exponent) and only a few terms yield the desired
accuracy. This fact can be observed inmediately in Fig. 3, where forkt/cpra2 5
0.001 and using 24 terms one obtains a very smooth plot of the dimensionless tem-
perature distribution.1

One observes that the maximum values ofsr/EaT0 andsu/EaT0 are approximately
equal (2 0.479 and2 0.496) and take place atr/a 5 0.10 approximately. Fig. 4
depicts the same dimensionless variables. As it was to be expected the tangential
stress is not zero atr 5 a.

As t→` one has a uniform temperature in the disk (Tf 5 T0(r/a)2), the radial
displacement function follows a linear variation and the radial and tangential stresses
approach zero. It is important to point out that the analytical determinations have
been greatly facilitated by the use of MATHEMATICA (Wolfram, 1993).

Future works will also take into account the presence of a concentric, circular
inhomogeneity as could be caused by the welding process.

Fig. 4. Dimensionless temperature, radial displacement and radial and tangential stresses as a function
of r/a and kt/cpra2·(r0/a 5 0.5).

1 The remaining curves where obtained using 12 terms.
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