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Abstract

The postbuckling of extensible elastic rods is studied using non-linear geometric models. Accordingly the kinematics
and equilibrium are stated. Nine di!erent strain}stress relationships are analyzed. The classical Strength of Materials
approach is compared and discussed with other eight constitutive laws stated with Lagrangian and Eulerian descriptions.
The well-known Cauchy and Green methods in Continuum Mechanics are alternatively employed. Four of the
approaches are worked out until an explicit solution of the secondary equilibrium path is obtained. The analysis is
applicable to small strain problems. The linearized problem is presented for all the laws together with numerical results
for rods with various values of the extensibility parameter. The secondary equilibrium paths are numerically evaluated to
illustrate the degree of discrepancy. A speci"c example that displays unexpected unstable behavior is shown. Both critical
loads and postbuckling curves are coincident when the theoretical problem of an inextensible rod is solved. It is shown
that even when small strains are addressed, the extensibility in#uence gives rise to disagreement of the postbuckling
response when using the di!erent alternatives. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper deals with the in#uence of the consti-
tutive relation on the postbuckling of an extensible
rod under axial load. This is a classical problem in
the theory of stability; however it will be shown
that di!erent constitutive models lead to signi"cant
changes in the postbuckling behavior. The classical
problem of the elastica (i.e. the equilibrium con"g-
urations of inextensible bars under axial compres-
sion) was studied by the pioneers James and Daniel

Bernoulli, Euler and Lagrange [1,2]. A geomet-
rically exact analysis was already found to exist in
the governing equations reported by Love [3] for
a speci"c constitutive law. Although Euler's solu-
tion includes a complete analysis in the postbuck-
ling region, its focus was on the stability limit. The
postcritical behavior was of secondary interest and
the analytical complexity of the governing non-
linear equations was not easy to overcome at that
time. After the foundations of the general of elastic
stability by PoincareH published on 1885, many re-
searchers have contributed to the development of
this branch of Applied Mechanics. The asymptotic
approach of Koiter [4] has been a key development
in the analysis of the initial postbuckling of struc-
tures. In the early 1960s two groups continued the
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study of the buckling theories, at Harvard Univer-
sity in the United States and University College
London in England, including accurate experi-
mental tests on small-scale models by Roorda [5],
and theoretical developments by Thompson and
Hunt [6], Huseyin [7], Croll and Walker [8] and
El Naschie [9].

An important discussion on constitutive models
for rods may be found in a paper by Koenig and
Bolle [10] which employs a 3D modeling of a beam
assuming large displacements and rotations yet re-
maining in the elastic regime. Though the kin-
ematics and equilibrium are valid for general rods
(i.e. large strains and/or plastic behavior) the con-
stitutive law that they propose is limited to small
strains. Pai et al. [11] investigate the appropriate
formulation for the geometrically non-linear analy-
sis. Gummadi and Palazotto [12] deal with large
strain problems in beams and arches which give rise
to some comments in the present work. Regarding
the extensibility of the rod, Sampaio and Almeida
[13,14] extend the classic static bifurcation prob-
lem of the theoretical case of inextensibility to in-
clude the in#uence of axial deformation, accepting
the same constitutive equations used earlier by
Euler.

In this work the problem of the elastic bar with
an axial compressive load is addressed by assuming
simultaneous axial and #exional deformations.
Large displacements and rotations are admitted
though the strains are assumed to remain small.
The Navier}Bernoulli (or Kirchho!) hypothesis
(i.e. the cross-sections remain plane after deforma-
tion) is undertaken. Such an assumption is com-
monly adopted, see for instance [11]. The other
restriction is the constant thickness.

The paper includes two introductory sections
(Sections 2 and 3) to review the kinematics and
equilibrium conditions of the problem. The aim is
to arrive at the necessary equations so as to achieve
a self-contained paper.

Three main procedures lead to eight alternative
constitutive formulations. The Cauchy method
(CM) (the statement of a linear isotropic
stress}strain relation) as well as the Green method
(GM) (derivation of the constitutive law from
a suitable potential) are well known within the "eld
of Continuum Mechanics. In the Green method

one may choose to derive the stress tensor from the
in"nite series expression (exact) of the energy, then
to linearize it and "nally to apply it to the particu-
lar problem under study (GM1). An alternative is
to adopt a truncated energy expression and then to
derive the stress tensor (GM2). A third option is to
start from the statement of the energy for the post-
buckling of the rod leading to the constitutive law
(GM3). Thus with the use of the Cauchy method
(CM) and the three versions of the Green method
(GM1, GM2, GM3) the following eight constitutive
laws are considered:

f Relations among tensors with Lagrangian de-
scription (material form) using the second
Piola}Kirchho! stress tensor and the Green}St.
Venant strain tensor. Truesdell [15] and Fung
[16] accept this approach. CM, GM1 and GM2
lead to the same law (it will be named LA). GM3
gives a slightly di!erent one (named LB).

f From the relations among tensors with Eulerian
description (spatial form) six formulations arise.
These will be stated and developed in Section 4.2.
Three of these involve the Cauchy and the Alma-
nsi}Hammel tensors (they will be named EUA,
EUB, EUC). The other three (named EUD, EUE
and EUF) deal with relations between the Cau-
chy and the Hencky tensors [15].

f A linear relationship is accepted between the
Cauchy tensor and a measure of deformation
named e (speci"c axial strain). This is a well-
known Strength of Materials approach and the
results are compared with those of the other
eight models.

As will be shown, such constitutive models lead
to di!erent secondary equilibrium paths in each
formulation. Furthermore when each solution is
linearized, as is done in Section 6, neither one is
coincident for the critical loads.

It should be mentioned that after the Lagrangian
and Eulerian stress}strain relations are introduced
in the equilibrium equations they are worked out
without disregarding any term or introducing addi-
tional simplifying hypotheses. If one would attempt
to equate the Lagrangian, Eulerian and Strength of
Materials' solutions strong restrictions should have
to be accepted.
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Fig. 1. System under study; (I) reference con"guration, (II) equilibrium con"guration (for exploration).

When dealing with the theoretical problem of an
inextensible rod, the results for both the critical
loads and the secondary equilibrium paths are
the same in all models. This is not the case with the
more accurate model of an extensible rod. In the
authors' opinion the extensibility in#uence justi"es
the study of alternative constitutive laws for the
postbuckling of an elastic, highly #exible rod, as
done in this work.

2. Kinematics of deformation

This section and the next one contain the neces-
sary theory to arrive at the equilibrium equations.

In Fig. 1 the system under study is schematized,
i.e. the axis of a compressed strip of length ¸ and
thickness h is referred to a Cartesian, orthogonal
system. An equilibrium state in plane X> is now
imposed which is not the (trivial) straight con"g-
uration. The same Cartesian orthogonal reference
will be used to position the points at the material
and deformed con"guration (X>Z and xyz coordi-
nates, respectively)

In Fig. 2, how a portion of length *X in the
reference con"guration (I) is generically located in
con"guration (II) is shown. In this paper, we use
Navier}Bernoulli (or Kirchho!) hypothesis and as-
sume that the thickness remains constant during
deformation. As observed in Fig. 2 the following

notation is used:

x"X#u,

y">#v,

z"Z. (1)

Also P"P(X,>), P
0
,P(X, 0), d"uιx#v$x#

wkx "d(X,>) is the displacement vector, ιx , $x and
kx are the unit vectors in correspondence with the
reference axes system (X>Z). In particular, in this
problem, w"w( (X,>),0. Furthermore, we de-
note the axis displacements as u

0
"u( (X, 0)"u

0
(X)

and v
0
"v( (X, 0)"v

0
(X). It is easy to "nd, under

the assumed hypotheses, that

u"u
0
!>sh , (2a)

v"v
0
!>(1!ch), (2b)

where h"h(X) is the axis rotation and sh,
sin h, ch,cos h. For simplicity, the following nota-
tion will be used for the derivatives: ( ' )@,L( ' )/LX,

( ' )A,L2( ' )/LX2, etc., ( ' ),L( ' )/L>, ( ' ),L2( ' )/
L>2, etc.

The Green}St. Venant strain tensors are

E
11

(X,>)"u@#1
2
[u@2#v@2], (3a)

E
22

(X,>)"v6 #1
2
[u6 2#v6 2], (3b)

2E
12

(X,>)"u6 #v@#u@u6 #v@v6 "2E
21

(X,>), (3c)
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Fig. 2. Scheme of the beam deformation.

which when referred to the rod axes are written as

E
11

(X,>)"E
11

(X, 0)!h@>[(1#u@
0
)ch#v@

0
sh]

#

(h@>)2

2
, (4)

E
22

(X,>)"0, (5)

2E
12

(X,>)"!(1#u@
0
)sh#v@

0
ch . (6)

We now introduce an additional notation:
j"j(X,>) as the stretching (a length relationship);
in particular j

0
,j(X, 0) and e"e(X,>) the speci-

"c axial deformation of a "ber parallel to the rod
axis. As is well known

e"e(X,>)"j!1"J1#2E
11

(X,>)!1, (7a)

e
0
"e(X, 0)"j

0
!1"J1#2E

11
(X, 0)!1. (7b)

Furthermore, let us introduce the strain gradient
tensor F"F(X,>) of components F

ij
which, using

index notation and summation convention (in Eq.

(1), x
1
"x; x

2
"y; x

3
"z and X

1
"X; X

2
">;

X
3
"Z), is written as F

ij
"Lx

i
/LX

j
.

In matrix notation one obtains

F(F
ij
)"A

(1#u@) u6 0

v@ (1#v6 ) 0

0 0 1B
"A

(1#u@) !sh 0

v@ ch 0

0 0 1B. (8)

It is known that if Mx (M
i
) and my (m

i
) are the

directions of an arbitrary "lament before and after
the deformation, respectively, and j

M
being the

stretching of such "ber, it is veri"ed that (see for
instance [17])

j
M

m
i
"F

ij
M

j
. (9)

Let us apply Eq. (9) to the axis "ber for which

M
1
"1, M

2
"0, m

1
"ch , m

2
"sh (10)
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since in this case my ,tx is imposed. Then (also
j
M
,j

0
)

j
0
ch"(1#u@

0
),

j
0
sh"v@

0
. (11)

The immediate consequence is that from Eqs. (4)
and (6) together with Eq. (11) the following result
holds:

E
11

(X,>)"E
110

!j
0
h@>#

h@2>2

2
, (12a)

E
12

(X,>)"E
21

(X,>)"0, (12b)

where

E
110

,E
11

(X, 0)"
j2
0
!1

2
. (13)

These expressions (together with Eq. (5)) are
logical consequences of the previously accepted
hypothesis: neither the speci"c strain e

Y
in the

thickness direction nor the angular distortion
c
XY

between orthogonal "bers originally parallel to
X> exist.

So the St. Venant}Green tensor is written in
matrix notation as

E"A
E
11

(X,>) 0 0

0 0 0

0 0 0B. (14)

The main invariants of E are I
E
"E

11
; II

E
"

III
E
"0.

The determinant of the matrix (8) may be found
using Eqs. (11) and (12a),

DFD"j. (15)

Due to the mass conservation principle, if dv and
d< are the volume elements of the deformed and
the reference con"guration, respectively and o and
o
0

are the corresponding densities, the following
expression is veri"ed:

dv"
o
0
o

d<"DFDd<"j d<. (16)

At this stage a veri"cation should be made: the
"bers originally parallel to axis X (for any >) and
once deformed, should remain parallel to the axis
with rotation h. For this purpose we should use Eq.
(9) in which Mx "ιx (∀>). To "nd the direction my of
these "bers the stretching of which is called j (see,
for instance, [17]), one writes jm

i
"F

ij
M

j
"F

i1
.

Using this as well as Eqs. (8) and (11) one can draw
two main conclusions for our purposes: all the
"bers originally parallel to axis X are located, in the
equilibrated con"guration, parallel to the axis on
the same cross section since ∀>: m

1
"ch ; m

2
"sh .

Such "bers have the following length relationship
and speci"c axial deformation:

j,j(X,>)"j
0
!h@>, (17a)

e"e(X,>)"j!1"e
0
!h@>. (17b)

Eqs. (17a) and (17b) may be also derived from
expressions (7a), (7b) and (12a). Additionally, it is
possible to write F

11
"jch ; F

12
"!sh ;

F
21

"jsh ; F
22

"ch .
Let us now state the Almansi}Hammel (Eulerian)

tensor e. Having taken an orthogonal Cartesian
system as a general reference for both the original
and the deformed con"gurations we obtain e from
a tensor transformation of E, which is written as

e"
E

11
j2 A

c2h shch 0

shch s2h 0

0 0 0B. (18)

Its main invariants are I
e
"E

11
/j2; II

e
"III

e
"0.

In this problem it is convenient to calculate the
tensor eH referred to the deformed local reference
axes* (tx ny kx ) (kx is the unit vector corresponding to
axis z"Z) * for any value of coordinate >. The
tensor eH may be found by means of a tensorial
transformation at a point, i.e. eH

pq
"e

rs
a
rp

a
sq

in
which a

k
denotes the tx and/or ny components with

respect to (x, y, z). Furthermore, one arrives at

eH"
E

11
j2 A

1 0 0

0 0 0

0 0 0B. (19)
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Fig. 3. Reduced internal forces in a generic portion of the deformed beam.

The main invariants are I
e
H"E

11
/j2; II

e
H"

III
e
H"0. On the other hand, eH may be simply

calculated knowing Eq. (7a) and also that j"1#

e"1/J1!2eH
11

since one deals with j (or e) of the
"bers parallel to the axis before and after the defor-
mation; after equating these expressions, eH

11
"E

11
/

j2 is veri"ed. Additionally, one may observe that

E
11

"E
11

(X,>)"
j2!1

2
, (20)

eH
11

"eH
11

(X,>)"
j2!1

2j2
. (21)

It can also be shown that eH
22

"eH
12

"0, thus
verifying tensor (19). Expressions (20) and (21) are
for this study of major importance.

Finally, let us introduce the Hencky tensor [15]
de"ned as

h"!1
2
log(I!2e). (22)

When a reference system xyz(ix jxkx ) is used, an in"nite
series in the e

ij
's is obtained for each component. In

the system (tx ny kx ), hH is

hH"!1
2
log (I!2eH)"eH#eH2#4

3
eH3#2.

(23)

Fortunately when using the reference (tx ny kx ), from
Eq. (19) and according to Eq. (23)

h
11

"

E
11
j2

#

E2
11
j4

#

4

3

E3
11
j6

#2

"!

1

2
logA1!2

E
11
j2 B (24)

others being h
ij
"0. Then from Eqs. (20) and (24),

h
11

"log j. In general, h
ij
"d

1i
d
1j

log j and

hH"log jA
1 0 0

0 0 0

0 0 0B, (25)

whose invariants are I
h
H"log j"logDFD"

log(o
0
/o); II

h
H"III

h
H"0.

3. Equilibrium

In Fig. 3 the internal forces reduced to the axis of
the deformed beam portion are indicated in the
same element depicted in Fig. 2. As stated before,
we are dealing with a static problem in which body
forces are not considered and only an axial load
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Fig. 4. Scheme of normal and tangential stresses.

P is included in the study. The equilibrium equa-
tions may be stated in the following way: two equa-
tions of force equilibrium along directions X and
> and one of moment equilibrium with respect to
any point belonging to the (X>) plane, all of them
among characteristic internal forces.

The element's cross section area being
d)"bd>, the following expressions are obtained:

N"N(X)"P)pH(X,>) d)

"bP
h@2

~h@2

pH(X,>) d>, (26)

M"M(X)"P)pH(X,>)>d)

"bP
h@2

~h@2

pH(X,>)>d> (27)

(see pH in Figs. 3 and 4). Due to Navier}Bernoulli
hypothesis the shear forces should be considered
but they are derived from integration of the tangen-
tial stresses. They should be taken into account
only with a static character and not as coming from
deformation. One is able to calculate (constitutive-
ly) only pH.

After working out the equilibrium expressions
(using Taylor expansions, mean value theorem,
limits for *XPR) and de"ning

H,H(X)"!Nch#Qsh , (28)

<,<(X)"Nsh#Qch (29)

or alternatively

N"!(Hch!<sh ), (30)

Q"Hsh#<ch . (31)

Finally, the moment equilibrium may be written
as

M@![Pv@
0
#<(1#u@

0
)]"0 (32)

which in turn may be expressed after using Eq. (11)
as

M@!j
0
(Psh#<ch )"0, (33)

where, as mentioned before, P and < are constants.
Now observing expression (31), the equilibrium
condition (33) is further reduced to

M@!j
0
Q"0. (34)

Also after observing Eq. (32) and integrating, one
obtains

M![Pv
0
#<(X#u

0
)]"constant. (35)

This condition* given by either Eq. (32), (33) or
(34)* is the only di!erential equation to be solved.
The other two are identically satis"ed with
P"<"constant.

4. Constitutive relationships

As is known, two fundamental methods allow for
a rational statement of constitutive laws within the
scope of the so-called elastic isotropic solids. They
will be used in this work:

1. Cauchy method, and
2. Green method.
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Table 1
Summary of the nine constitutive laws studied in this work

Basic strain tensor Short name Constitutive law Elastic constant Derived from method

E LA pH"CL
A

j(j2!1)

2
CL

A
,2GL

A
; "L

A
"0 CM"GM1"GM2

LB pH"CL
B

j(j2!1)

2
CL

B
,"L

B
#2GL

B
GM3

EUA pH"CE
A

(j2!1)

2j2
CE

A
,2GE

A
; "E

A
"0 CM"GM1

e EUB pH"CE
B

(j2!1)

2j5
CE

B
,2GE

B
; "E

B
"0 GM2

EUC pH"CE
C

(j2!1)

2j5
CE

C
,"E

C
#2GE

C
GM3

EUD pH"CE
D

log j CE
D
,2GE

D
; "E

D
"0 CM"GM1

h EUE pH"CE
E

log j
j

CE
E
,2GE

E
; "E

E
"0 GM2

EUF pH"CE
F

log j
j

CE
F
,"E

F
#2GE

F
GM3

} S pH"CS(j!1) CS,2GS"E; "S"0 CM!

!A Cauchy method but not between tensors; E is the Young's modulus.

The "rst one starts from accepting the most gen-
eral linear law which entails strain and stress ten-
sors. It will be referred to as CM.

Instead the second method, for hyperelastic ma-
terials, accepts a potential for the stresses, say
a strain energy, which is an analytic function of the
strain tensors. In this work the authors study the
following alternatives to the Green method:

GM1: The linearization of the stress tensor from
the general expression of the energy (in"nite
series). When dealing with applications for
systems with one dimension small with re-
spect to the others (as here with the rod) the
strain is in"nitesimal although displacement
gradients or rotations may be large and the
displacements}load relationship no longer
linear. Then, it is acceptable to linearize the
general expression of the Cauchy tensor
though not the strain tensor [15]. After this

particular linearization the stress}strain law
is obtained.

GM2: the use of an energy expression up to the
second order in the strain tensors and the
posterior derivation of the stress tensor.

GM3: the statement of the energy for the particular
problem herein analyzed and the posterior
derivation of the stress tensor.

Furthermore, the Lagrangian and Eulerian descrip-
tions are explored with all the methods. Also the
Hencky tensor is included in the study. One would
obtain 12 constitutive relations from the applica-
tion of the above-mentioned alternatives. Some of
them, as shown below in detail, are coincident. So
we deal with eight distinct constitutive laws and
additionally with the classical Strength of Materials
approach.

In this work the stress to be calculated is
pH"pH(X,>) acting normally on an area element
of the plane cross section of the deformed beam (see
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Table 2
Green method's stresses

Description Strain tensor Green method's stresses

Lagrangian E
S
ij
"

L&(E)

LE
ij

Eulerian e
p
ij
"

o
o
0

(d
kj
!2e

kj
)
L&(e)

Le
ki

h
p
ij
"

o
o
0

L&(h)

Lh
ij

Fig. 4). Now, it is evident that pH is a component of
the Cauchy tensor referred to the axes (tx ,ny ,kx ). Once
pH is known as a function of the strain tensors,
N(X) and M(X) are found by means of Eqs. (26) and
(27).

The resulting equations and notation are sum-
marized in Table 1. The detailed derivation is made
in this section. G and " are the LameH constants.
Recall from the Introduction that the Lagrangian
alternatives are named LA and LB and the Eulerian
ones EUA, EUB, EUC, EUD, EUE and EUF, the
last three being related to the Hencky tensor. Note
that solutions LB, EUC and EUF di!er respective-
ly from LA, EUB and EUE only by a constant
de"nition. This subject will be discussed later on.

Since the energy essentially depends on the
Green}St. Venant tensor (or on the right Cau-
chy}Green one), as may be shown [17], the values
of the same stress tensor calculated with the di!er-
ent approaches will not conduce to the same result.
In e!ect, the energy is in general an in"nite series in
the corresponding strain tensors. Its truncation
leads to a discrepancy in the results. A summary of
the expression for the energy derivation of the
stress tensor is presented in Table 2. A more de-
tailed treatment is given below.

4.1. Lagrangian statements

4.1.1. Lagrangian statement LA
Let S of components S

ij
("S

ji
) be the second

Piola}Kirchho! stress tensor [15] (or only Kir-
chho! [16]) linearly related to the Green}St. Ve-
nant strain tensor E. The general isotropic linear
expression is

SL
Aij

""L
A
d
ij
I
E
#2GL

A
E
ij

(36)

in which d
ij

are the second-order Kronecker delta;
I
E
,Eaa"E

11
#E

22
#E

33
the linear invariant

of E, and "L
A

and GL
A

the elastic LameH constants.
These are not necessarily the same ones of the
in"nitesimal strain problem nor the constants to be
used in the other constitutive propositions. Note
that expression (36) may be obtained indistinctly
from any of the following methods: (a) the Cauchy
method (CM), (b) the linearization of the second
Piola}Kircho! tensor S

ij
obtained by means of the

Green's method (hyperelastic material) (GM1) and,
(c) the acceptance of a strain energy of second order
stated in the Green}St. Venant strain tensor fol-
lowed by an application of Green's method (GM2).
The energy expression for the latter approach is

&L
A
"

"L
A
#2GL

A
2

I2
E
!2GL

A
II

E
(37)

and the stress tensor is obtained from the following
derivation:

SL
Aij
"

L&L
A

LE
ij

. (38)

As is known [15,16] the Cauchy stress tensor of
components p

ij
is applied to Cartesian area ele-

ments in the deformed con"guration, that is, over
surfaces around a generic point, normal to (x, y, z)
(,(X,>,Z)), respectively. To obtain it as a func-
tion of S the following expressions are to be used:

pL
Aij

"

o
o
0

F
ip

F
jq

S
pq
"

1

DFD
F
ip

F
jq

S
pq

. (39)

Making use of the tensor character of the Cauchy
tensor it is possible to "nd any normal stress on an
arbitrary plane at the considered point and even
more in an arbitrary direction on that plane. In
the case under study only the component
E
11

(X,>)O0 because of which only two compo-
nents of S may not be null. In e!ect, from Eq. (36)

S
11

"S
11

(X,>)"("L
A
#2GL

A
)E

11
(X,>), (40)

S
22

"S
22

(X,>)""L
A
E
11

(X,>). (41)

For this plane stress problem the Eulerian Cauchy
tensor has only three non-null components (from
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Eq. (39); recall also Eq. (15)):

p
11

"p
11

(X,>)"
1

j
[F2

11
S
11

#F2
12

S
22

], (42)

p
12

"p
21

"p
12

(X,>)

"

1

j
[F

11
F
21

S
11

#F
12

F
22

S
22

], (43)

p
22

"p
22

(X,>)"
1

j
[F2

21
S
11

#F2
22

S
22

], (44)

where j"j(X,>) is obtained from Eq. (17a). Then
due to Eqs. (40)}(44) and the expressions of F

ij
given in Section 2, after denoting r,"L

A
/

("L
A
#2GL

A
) the components of the Cauchy tensor

result:

p
11

"("L
A
#2GL

A
)E

11Ajc2h#r
s2h
j B, (45)

p
12

"p
21

"("L
A
#2GL

A
)E

11Aj!
r

jBshch , (46)

p
22

"("L
A
#2GL

A
)E

11Ajs2h#r
c2h
j B. (47)

By means of a plane tensorial transformation in
a point of a generic section (Mohr expression for an
arbitrary >),

p
tt
,pH"pH(X,>)"p

ij
(tx )

i
(tx )

j

"p
11

c2h#2p
12

shch#p
22

s2h (48)

holds and then recalling Eq. (20) and taking into
account Eqs. (45)}(47) it may be found that

pH"("L
A
#2GL

A
)(j2!1)

j
2
, (49)

where, as stated by Eq. (17a), j(X,>)"
j
0
(X)!h@(X)>. Analogously, let us now calculate

stresses p
nn

and p
tn
("q

tn
) (see Fig. 4):

p
nn
"p

ij
(ny )

i
(ny )

j
"p

11
s2h!2p

12
shch#p

22
c2h , (50)

p
nt
"p

ij
(ny )

i
(tx )

j
"p

tn

"(p
22

!p
11

)shch#p
12

(c2h!s2h ), (51)

which, after replacement of Eqs. (45)}(47), yield

p
nn
"

"L
A
E
11

j
, (52)

p
nt
"p

tn
,0. (53)

Eq. (52) puts forth the same question arising in
classical Strength of Materials. If a Poisson e!ect is
considered, a normal stress p

nn
in the thickness

direction would arise. However, since by hypothe-
sis the single external load in this study is P, in
>"$h/2,

p
nn

(X,$h/2)"0, (54)

should hold: that is, due to Eq. (52)

E
11

(X,$h/2)"0 (55)

or

"L
A
"0. (56)

After observing Eqs. (12a) and (12b), Eq. (55) im-
plies two simultaneous conditions

E
110

!j
0
h@

h

2
#h@2

h2

8
"0, (57)

E
110

#j
0
h@

h

2
#h@2

h2

8
"0. (58)

Since j
0

is never null the following result should
hold for hO0:

h@(X),E
110

(X),0 (59)

which is absurd since this would conduce to an
undeformed (trivial) solution, obviously not the
aim of our search. In consequence, Eq. (56) must be
satis"ed which implies that the only non-null stress
component in the reference (tx , ny , kx ) is

pH"CL
A

j(j2!1)

2
"CL

A
e
j(j#1)

2

"CL
A
e
(1#e)(2#e)

2
, (60)

where CL
A
,2GL

A
. If the elastic constants are

thought as resulting from a classical linear hookean
behavior, the expression derived above yields a null
Poisson e!ect as well as CL

A
"2GL

A
"E (E: Young's

modulus). In what follows, CL
A

will be tackled as an
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elastic Lagrangian constant about which no suppo-
sition will be made.

Finally, after "nding pH from Eq. (60) the expres-
sion of the internal forces N(X) and M(X) for each
deformed section may be calculated. From this and
after integrating (Eqs. (26) and (27)) we have the
following results:

N"NL
A
,CL

A
)gL

A
, (61)

M"ML
A
,CL

A
Jk@L

A
. (62)

The following notation has been introduced:

gL
A
"gL

A
(X),

j
0
2

[j2
0
#a2!1], (63)

k@L
A
"k@L

A
(X),

h@
2 C1!3j2

0
!

3a2
5 D, (64)

a,
h@h
2

, (65)

where J is the moment of inertia with respect to
Z (centroidal axis of the section) and ) is the
cross-sectional area.

4.1.2. Lagrangian statement LB
Let us "rst state the energy for the particular

problem studied in this work, i.e. the postbuckling
of a rod. Given the fact that I

E
"E

11
and

II
E
"II

e
H"II

e
"0 the derivation of the tensor

S after modifying Eq. (37) gives rise to

&L
B
"

"L
B
#2GL

B
2

I2
E

(66)

and from Eq. (38) gives rise to

S
11

"("L
B
#2GL

B
)E

11
(67)

and S
22

"0. Compare these results with Eqs. (40)
and (41). Now, following the same steps as in the
LA alternative, the stresses in the reference (tx ny kx ) are

p
tt
"pH"("L

B
#2GL

B
)A

j2!1

2 Bj, (68)

p
nn
"p

nt
"0. (69)

As may be observed, one arrives at results analog-
ous to the ones of the previous section (see Eq. (49)).
The nullity of p

nn
is here not imposed but is a natu-

ral result. Thus, the di!erence between the LA and

LB alternatives is only with the elastic constant
de"nition, as follows:

pH"CL
BA

j2!1

2 Bj (70)

with CL
B
,"L

B
#2GL

B
. With this de"nition, expres-

sions (61)}(65) are valid for the LB constitutive law.

4.2. Eulerian statements

In this subsection six constitutive statements us-
ing relationships between Eulerian tensors is de-
veloped. They are named EUA, EUB, EUC, EUD,
EUE and EUF (the last three related to the Hencky
tensor).

Regarding EUA, let us start from the general
expression of the energy as a function of the Alma-
nsi}Hammel tensor and use the Green method
GM1, i.e. the general expression of p

ij
as a function

of the tensors e is linearized. The resulting stress}
strain relation is

p
ij
"2GE

A
e
ij
#"E

A
d
ij
I
e
,pE

Aij
. (71)

in which I
e
"eaa"e

11
#e

22
#e

33
is the strain

linear invariant and GE
A

and "E
A

are LameH elastic
constants. This expression may also be seen as the
application of the Cauchy method (CM), i.e. accept-
ing a hookean constitutive relationship between the
Eulerian tensors for isotropic materials. Eq. (71)
constitute the simplest isotropic relationship
[16,18] satisfying the material indi!erence and in-
variance requirements.

On the other hand, the following de"nite positive
energy is accepted:

&E
B
"

"E
B
#2GE

B
2

I2
e
!2GE

B
II

e
. (72)

Such expression retains terms up to order two in
the Almansi}Hammel tensor e. From Green's
method (GM2) the next stress}strain relationship
yields

pE
Bij

"

o
o
0

(d
kj
!2e

kj
)
L&E

B
Le

ki

(73)
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which when worked out renders the following:

pE
Bij

"

o
o
0

(d
kj
!2e

kj
)("E

B
d
ki
I
e
#2GE

B
e
ki
). (74)

Contrary to the Lagrangian approach, the consti-
tutive statement (71) for the formulation EUA is
not coincident with the one obtained following
EUB, i.e. Eq. (74). Statement EUC is derived from
the energy stated for the particular problem under
study, i.e.

&E
C
"

"E
C
#2GE

C
2

I2
e
. (75)

Making use of an expression similar to Eq. (73) one
obtains (GM3):

pE
Cij

"

o
o
0

(d
kj
!2e

kj
)("E

C
#2GE

C
)d

ki
I
e
. (76)

Finally let us state the alternative EUD (or
Hencky). Recall the Hencky tensor expression (22).
Methods CM and GM1 yield the following consti-
tutive law:

pE
Dij

""E
D
d
ij
I
h
#2GE

D
h
ij
. (77)

Now, assuming the same formal expression of
energy (72) but this time stated with the Hencky
tensor

&E
E
"

"E
E
#2GE

E
2

I2
h
!2GE

E
II

h
(78)

and again by means of the alternative of Green's
method GM2, one is able to "nd the corresponding
stress}strain law (EUE),

pE
Eij

"

o
o
0

L&E
E

Lh
ij

(79)

or

pE
Eij

"

o
o
0

("E
E
d
ij
I
h
#2GE

E
h
ij
). (80)

To state alternative EUF the energy (75) is writ-
ten in terms of h as

&E
F
"

"E
F
#2GE

F
2

I2
h

(81)

which after the application of an expression similar
to Eq. (79) yields

pE
Fij

"

o
o
0

("E
F
#2GE

F
)d

ij
I
h
. (82)

Now each alternative will be worked out so as to
obtain the internal forces N and M.

4.2.1. Eulerian statement EUA
The stress}strain relation is given by expression

(71). It is also possible to state the Eulerian consti-
tutive equations in the orthogonal local axes
(tx , ny , kx ). Then the relationship between the tensor
rH (of components pH

ij
) and the tensor eH (of compo-

nents eH
ij
) from Eq. (19), and since isotropy implies

unique value of GE
A

and "E
A

at the point,

pH
ij
"2GE

A
eH
ij
#"E

A
d
ij
IH
e
. (83)

Obviously pH
11

,pH. This magnitude is needed
to calculate the characteristic internal forces. Alter-
natively, pH may be found by tensorial transforma-
tion of the tensor r (Eq. (71)). Both ways are
coincident. Then making use of Eqs. (83) and (19)
the following results are obtained:

pH
11

"pH"("E
A
#2GE

A
)eH

11
, (84)

pH
22

""E
A
eH
11

, (85)

pH
12

"pH
21

"0. (86)

Again, as was done in the Lagrangian statement, the
nullity of pH

22
in >"$h/2, is imposed. Then

"E
A
"0. (87)

Consequently, and in view of Eqs. (21), (84) and
(87), one arrives at

pH"CE
A

(j2!1)

2j2
"

CE
A
2 A1!

1

j2B
"CE

A
e
(1#j)

2j2
"CE

A
e

(2#e)
2(1#e)2

(88)

with CE
A
"2GE

A
.
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According to Eqs. (17a), (26), (27) and (88) the
constitutive relations may be written as

N"NE
A
"CE

A
)gE

A
, (89)

M"ME
A
"CE

A
Jk@E

A
, (90)

where

gE
A
"gE

A
(X),

1

2C1!
1

(j2
0
!a2)D, (91)

k@E
A
"k@E

A
(X),

3h@
4a3ClogA

j
0
#a

j
0
!aB!

2j
0
a

(j2
0
!a2)D .

(92)

4.2.2. Eulerian statement EUB
This approach starts from the stress}strain law

(74). Now if the reference (tx ny kx ) in the deformed rod
is considered and recalling eH from Eq. (19), it is
possible to write

I
e
H"E

11
/j2. (93)

Taking i"j"1 in Eq. (74) but referenced to
(tx ny kx ), pH

11
can be written as

pH
11

"pH"
oE

11
o
0
j2

("E
B
#2GE

B
)A1!2

E
11
j2 B. (94)

On the other hand, recall that

o
o
0

"

1

DFD
"

1

j
. (95)

Furthermore after stating pH
22

and imposing its
nullity at >"$h/2, one again concludes that
"E

B
"0. Recalling that E

11
"(j2!1)/2 one has

pH"
GE

B
(j2!1)

j5
"

CE
B
(j2!1)

2j5
"

CE
B
e(2#e)

2(1#e)5
,

(96)

with CE
B
,2GE

B
. Now, making use of Eqs. (26) and

(27) the internal forces render the following:

N"NE
B
"CE

B
)gE

B
, (97)

M"ME
B
"CE

B
Jk@

B
E (98)

with

gE
B
"

j
0

2(j2
0
!a2)4

[(j2
0
!a2)2!(j2

0
#a2)], (99)

k@E
B
"

h@
2 C

3(j2
0
!a2)2!5j2

0
#a2

(j2
0
!a2)4 D. (100)

4.2.3. Eulerian statement EUC
The derivation of the constitutive law from the

energy stated for the particular problem of the title
(consider that I

e
H"E

11
/j2) gives rise to the expres-

sion of pH
11

similar to the alternative EUB (see Eq.
(94) although pH

22
"0 a priori). Consequently, one

arrives at the constitutive law EUC which di!ers
from EUB by a constant;

pH"
CE

C
(j2!1)

2j5
"

CE
C
e(2#e)

2(1#e)5
, (101)

with CE
C
,"E

C
#2GE

C
. Eqs. (97)}(100) are also valid

with this new constant de"nition.

4.2.4. Eulerian statement EUD (Hencky)
The constitutive law is Eq. (77). Fortunately, as

mentioned in Section 2, when using the reference
tx ny kx the Hencky tensor may be expressed very sim-
ply as h

ij
"d

i1
d
j1

log j and in particular
h
11

"log j the only non-null component. Then

pH
11

"pH"("E
D
#2GE

D
) log j. (102)

Again, when stating the nullity of pH
22

for >"
$h/2 one "nds that "E

D
"0. Finally

pH"CE
D

log j"CE
D

log(1#e) (103)

with CE
D
,2GE

D
. The equilibrium conditions and

integration render the following expressions for the
internal forces:

N"NE
D
"CE

D
)gE

D
, (104)

M"ME
D
"CE

D
Jk@

D
E (105)
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with

gE
D
"

1

2aC!2a#j
0

logA
j
0
#a

j
0
!aB

#a log(j2
0
!a2)D, (106)

k@E
D
"

3h@
2a3CA

j2
0
!a2
2 B logA

j
0
#a

j
0
!aB!j

0
aD. (107)

4.2.5. Eulerian statement EUE (Hencky)
The corresponding stress}strain relationship is

written in Eq. (80). Then

pH
11

"pH"("E
E
#2GE

E
)
log j

j
. (108)

Again, when stating the nullity of pH
22

for >"
$h/2 one "nds that "E

E
"0. Finally

pH"CE
E

log j
j

"CE
E

log(1#e)
(1#e)

(109)

with CE
E
,2GE

E
. Integration according to Eqs. (26)

and (27) yields the internal forces in this formula-
tion:

N"NE
E
"CE

E
)gE

E
, (110)

M"ME
E
"CE

E
Jk@E

E
(111)

with

gE
E
"

1

4a
M[log(j

0
#a)]2![log(j

0
!a)]2N, (112)

k@E
E
"

3h@j
0

2a3
S(j

0
!a) log(j

0
!a)

!(j
0
#a) log(j

0
#a)#2a (113)

!

j
0
2

M[log(j
0
!a)]2![log(j

0
#a)]2NT.

(114)

4.2.6. Eulerian statement EUF (Hencky)
The derivation of the constitutive law from the

energy stated for the particular problem of the title

(consider that I
h
H"log j and II

h
H"III

h
H"0)

gives rise to an expression of pH
11

analogous to
alternative EUE (see Eq. (108) but pH

22
"0 a priori).

Consequently one arrives at the constitutive law
EUF di!erent from EUE only by a constant,

pH"CE
F

log j
j

"CE
F

log(1#e)
(1#e)

(115)

with CE
F
,"E

F
#2GE

F
. Eqs. (110)}(114) are formally

valid with this new constant de"nition.

4.3. Strength of Materials' statement

For the sake of comparison the already known
approach of Strength of Materials [14] is now
addressed. In this case one simply assumes that

pH"CSe"CS(j!1), (116)

where CS,E (modulus of elasticity). According to
Eqs. (26) and (27) it is possible to write

N(X)"NS"CS)gS, (117)

M(X)"MS"CSJk@S (118)

in which

gS"e
0
"j

0
!1, (119)

k@S"!h@. (120)

5. Solution of the problem

Once the general conditions of equilibrium *
expressions (30) and (33) * and the constitutive
equations * found in the previous section * are
available, it is possible to "nd the di!erential equa-
tion which governs the postbuckling problem. In
this paper four solutions will be contrasted:
(a) a Lagrangian statement;
(b) an Eulerian statement (EUA) and
(c) the classical Strength of Material's approach.
Formulations LA and LB are included in (a) (they
di!er in the elastic constant de"nition). Explicit
solutions of the other formulations, EUB to EUF,
are not included.
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The governing non-linear di!erential equations
will be obtained and from them the secondary
equilibrium paths. The linearization of the nine
approaches will be reported in Section 6. In Section
7 the postbuckling curves are numerically evalu-
ated for a particular example: an extensible simply
supported rod. The discrepancy in the results will
be graphically depicted. Also an unexpected unsta-
ble behavior when using EUA in a rather short rod
will be shown.

After non-dimensionalizing the variables,
XK ,X/l (0)XK )1) (l is the original length of
the rod), the di!erential equation of rotational
equilibrium, for instance Eq. (33), is written now as

kA!j
0
(bsh#cch)"0, (121)

where d( ' )/dXK "( ' )@ and the following parameters
are introduced:

b,
Pl2

CJ
, c,

<l2

CJ
. (122)

Also it is true (from the constitutive relationship)
that, in general, N"N(X)"C)g(X) and from ex-
pression (30), N"!(Hch!<sh). Then if we intro-
duce

i2,
J

)l2
(123)

and equate both N expressions we obtain (since
H"P) the following:

g(XK )"!i2[bch (XK )!csh (XK )]. (124)

The value of j
0
(XK ) may be derived from the last

equation. Replacing it in k@(XK ) expression and then
from Eq. (121) the de"nitive di!erential equation is
obtained. The value of j

0
will be di!erent in each of

the approaches, introducing the notation uL
A
, uE

A
or

uS, respectively. For the sake of algebraic simplicity
only problems with <"c"0 will be considered.
In Ref. [19] the authors have solved the Strength of
Material's equation for cO0. In what follows the
variable XK will be omitted.

5.1. Lagrangian solution LA (, LB)

For this case and according to Eq. (63), expres-
sion (124) renders

j
0
2

(j2
0
#a2!1)"!i2bL

A
ch (125)

in which, if

q,h/lNi2"q2/12 for the rectangular section

and now a"h@q/2. (126)

In order to "nd uL
A
(,j

0
) we will proceed as

follows: "rst, the cubic equation (125) is solved for
j
0

after introducing the following notation:

b,!bL
A
i2ch , a,

1!a2
3

, cos l,ba~3@2. (127)

From the three roots (the three are real if
b2!a3(0) we choose the one whose limit tends
to unity when the axial rigidityPR(Ni2P0).
This requirement leads to

uL
A
"2a1@2 cos(l/3)"uL

A
(h, h@). (128)

At the same time, from Eq. (64) one has

k@L
A
"

h@
2 A1!3uL2

A
!

3a2
5 B"k@L

A
(h, h@) (129)

from which the di!erential equation (121) results
for this case,

kAL
A

!uL
A
bL
A
sh"0. (130)

After performing rather cumbersome derivatives
the second order, non-linear DE in h is obtained:

hA#uL
A
bL
A
sh'L

A
"0, (131)

where

'L
A
"'L

A
(h, h@)"

<H

;
,

<H"<H(h, h@)"1#3h@R,

;";(h, h@)"
3uL2

A
!1

2
#

9a2

10
#3uL

A
=,
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="=(h, h@)

"!2
3
a2a~1@2[cos l/3#bL

A
i2(a3!b2)~1@2

]ch sin l/3],

R"R(h, h@)"2
3
h@i2a1@2(a3!b2)~1@2 sin l/3.

The particular case of an inextensible member
requires the following restrictions: uL

A
"1 (e

0
"0);

i2"q"0; ="a"R"0; ;"<H"1N'L
A
"1.

Thus k@
A
L"!h@ is obtained, coincident with the

Strength of Materials solution (see below).

5.2. Eulerian solution EUA

For this approach, according to Eq. (91), expres-
sion (124) is

1

2C1!
1

(j2
0
!a2)D"!i2bE

A
ch . (132)

Here uE
A
("j

0
) is simply found from Eq. (132):

uE
A
"Aa2#

1

KB
1@2

"uE
A
(h, h@), (133)

where K"K(h),1#2bE
A
i2ch . On the other hand,

from Eqs. (92) and (133)

k@E
A
"

3h@
4a3ClogA

uE
A
#a

uE
A
!aB!2KuE

A
aD

"k@
A
E(h,h@) (134)

"!

3h@
uE3

A

=
+
j/0

(j#1)

(2j#3)A
a

uE
A
B

2j
. (135)

The di!erential equation (121) is now written as

kAE
A

!uE
A
bE
A
sh"0 (136)

which after the necessary algebraic steps results in
the non-linear DE in h:

hA#
uE

A
bE
A
sh

'E
A

"0, (137)

where

'E
A
"'E

A
(h, h@)"3K(KuE

A
!2B)

using

B"B(h, h@)"
1

uE
A

m
+
j/0

(j#1)

(2j#3)A
a

uE
A
B

2j
,

with mPR but it may be set at will depending
on the desired accuracy. Again considering an inex-
tensible bar (q"i2"0; uE

A
"K"1 and B"

1/3N'E
A
"1) the equation k@E

A
"!h@ is obtained.

5.3. Strength of Materials' solution

When equating the internal normal force given
by gS of expression (119) with the external one
(recall Eq. (124)) the value of j

0
(with c"0) yields

uS"j
0
"1!bSi2ch (138)

which substituted in Eq. (121), taking into account
Eq. (120), gives rise to

hA#bS(1!bSi2ch)sh"0 (139)

coincident with the one reported in [14]. In this
case

bS"
Pl2

CSJ
, (140)

where CS,E is the classical modulus of elasticity
(Young's modulus).

Next the linearization of all the alternative for-
mulations will be performed. The postbuckling
curves are numerically evaluated for a particular
example: an extensible simply supported rod in
Section 7.

6. Linearization: critical loads

In order to "nd the bifurcation points, a lineariz-
ation procedure will be carried out on the di!eren-
tial equations. This is achieved by assuming that

DhD;1Nh2"0, (141)

Dh@D;1Nh@2"0. (142)

Introducing this simpli"cation the di!erential
equations of solutions LA, EUA, EUB, EUD, EUE
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and S (LB, EUC and EUF di!er from LA, EUB
and EUE respectively in a constant) are reduced to

hA#k2h"0 (143)

in which k2 stands for the following expressions
according to the considered approach:

kL2

A
"

2bL
A
uL

A
(3uL2

A
!1)

, (144a)

with

uL
A
"

2

J3
cosC

arccos(!3J3bL
A
i2)

3 D, (144b)

kE2

A
"

bE
A

(1#2bE
A
i2)2

, (145)

kE2

B
"

2bE
B
j7
0

(5!3j2
0
)
, (146)

kE2

D
"bE

D
exp(!2bE

D
i2), (147)

kE2

E
"bE

E
j3
0
, (148)

kS2"bS(1!bSi2). (149)

The other equilibrium condition * regarding the
normal force N* is written for each of the formu-
lations and after linearization as

2bL
A
i2#j3

0
!j

0
"0, (150)

j2
0
(1#2bE

A
i2)!1"0, (151)

2bE
B
i2j5

0
#j2

0
!1"0, (152)

log j
0
#bE

D
i2"0, (153)

log j
0
#j

0
bE
E
i2"0, (154)

bSi2#j
0
!1"0. (155)

It should be noted that when dealing with the
Lagrangian, Eulerian EUA and EUD and Strength of
Materials solutions it was rather convenient to
analytically obtain j

0
from Eqs. (150), (151), (153)

and (155), respectively, and then their replacement

in the moment equilibrium equation (143) with the
corresponding value of k2 (Eqs. (144a), (145), (147)
and (149)). In the other cases, i.e. the Eulerian solu-
tions EUB and EUE, this advantage was not ap-
parent and the equilibrium equations were used
interchanging the order.

The solution of Eq. (143) is of the form

h"h(XK )"A sin kXK #B cos kXK (0)XK )1).

(156)

A typical eigenproblem arises after stating the
two homogeneous boundary conditions in h and/or
h@ in accordance with the type of support. The
eigenvalues are the bifurcation points.

In order to "x ideas let us analyze the simply
supported bar with an axial compressive load. In
this case the boundary conditions are

h@(0)"h@(1)"0 (157)

with which the following result should stand for all
the k's:

k2"(nn)2 (n"1, 2, 3,2). (158)

Observe that in the case of an inextensible bar,
i"0, one obtains kL2

A
"bL

A
, kE2

A
"bE

A
, kE2

B
"bE

B
, and

so on.

6.1. Lagrangian case

The linearized solution is coincident for ap-
proaches LA and LB if the results are referred to
the non-dimensionalized load parameter (i.e. b).
From expressions (144a) and (158) the following
expression should be satis"ed:

2bL(n)

A
uL(n)

A
3uL(n)2

A
!1

"(nn)2 (159)

which when solved for uL
A

gives

uL(n)

A
"

bL(n)

A
3(nn)2C1#S1#3

(nn)4

bL(n)2

A
D. (160)

The choice of the positive sign is justi"ed since
uL
A
(,j

0
) is essentially positive.
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Table 3
Bifurcation points using the Lagrangian approach LA"LB for an inextensible bar (q"0, bifurcation points equal to (nn)2) and
extensible bars (q"0.01, 0.1, 0.35); n"1,2, 5 and n"20 denote the order of the bifurcation load

q n

n"1 n"2 n"3 n"4 n"5 n"20

0 9.8696 39.478 88.826 157.91 246.74 3947.8
0.01 9.8679 39.452 88.695 157.50 245.73 3690.6
0.1 9.7076 36.906 76.031 118.84 156.87 230.53
0.35 7.9625 16.580 18.380 18.707 18.794 18.852

Requiring the positiveness of the di!erent k's
(otherwise one would not have an eigenproblem)
and uL

A
'0, one obtains

uL
A
*

1

J3
. (161)

On the other hand, from Eq. (144b) and since b'0,
the cosine argument is between 30 and 603 with
which

J3

3
)uL(n)

A
)1 (162)

that includes Eq. (161). By the same argument it is
also found that

bL(n)

A
)

J3

(3i)2
. (163)

From Eqs. (160) and (162) another restriction for
bL(n)

A
yields

bL(n)

A
)(nn)2. (164)

Eq. (164) should combine with Eq. (163). The nov-
elty is that due to Eq. (164) the Lagrangian critical
loads are always smaller than those found by Euler
for all the values of i.

On the other hand (easy to see from Eq. (159)) if
n is very large (nPR),

uL2

A
P1

3
(nPR) (165)

with which the value of bL(n)

A
is limited by

bL(n)

A
P

J3

(3i)2
. (166)

The limit (166) is an accumulation point of the
Lagrangian critical loads. According to Eq. (163)
the limit is approached from below.

Numerical results of bifurcation points for sev-
eral values of n (mode) and q ("h/l in the rectan-
gular cross section), based on the Lagrangian
constitutive statement are listed in Table 3.

6.2. Eulerian case EUA

The following condition derives from Eqs. (145)
and (158):

bE(n)

A
(1#2bE(n)

A
i2)2

"(nn)2 (167)

which can be solved for bE(n)

A
:

bE(n)

A
"

1!(2nni)2$J1!2(2nni)2

2(2nni2)2
. (168)

In order for bE(n)

A
to be real the next inequality

should be true:

1!2(2nni)2*0 (169)

or in other form

n)
1

2J2ni
(170)

from which a relevant as well as an unusual con-
clusion may be drawn when the Eulerian statement
EUA is used: there is a xnite number of critical loads.
The same result found in a similar way, but using
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Table 4
Same as Table 3 but using the Eulerian approach EUA

q n

n"1 n"2 n"3 n"4 n"5 n"20

0 9.8696 39.478 88.826 157.91 246.74 3947.8
0.01 9.8728 39.530 89.090 158.75 248.79 4572.4

3.6]108 9.1]107 4.0]107 2.2]107 1.1]107 7.8]105

0.1 10.208 45.724 132.32 * * *

3.5]104 7873.1 2720.5 * * *

0.35 19.027 * * * * *

126.08 * * * * *

Table 5
Same as Table 3 but using the Eulerian approach EUB"EUC

q n

n"1 n"2 n"3 n"4 n"5 n"20

0 9.8696 39.478 88.826 157.91 246.74 3947.8
0.01 9.8777 39.608 89.488 160.02 251.92 5923.8

1.7]1013 5.4]1011 7.1]1010 1.6]1010 5.4]108 3.6]106

0.1 10.756 59.238 546.00 * * *

1.6]1013 3.6]104 1171.31 * * *

0.35 * * * * * *

* * * * * *

the Strength of Materials formulation (see Section
6.6 below) has been reported in Ref. [14].

In case iO0, the value of the square root in
expression (168) is smaller than the "rst term. The
two signs are theoretically possible for the same
n and i. This fact gives rise to a double-bifurcation
point. In all cases n must satisfy Eq. (170).
Table 4 depicts values of bifurcation points for
inextensible and extensible bars.

It should be noted that, for a value of n given,
there is a q

-*.
to guarantee the existence of real

bifurcation loads, i.e. from Eq. (170)

q
-*.

E
A
"

0.389849

n
. (171)

Also it is possible to show that unlike the Lagran-
gian formulation, the Euler loads are a lower bound

for the bE(n)

A
, i.e.

bE(n)

A
*(nn)2. (172)

6.3. Eulerian case EUB

Again when the non-dimensionalized load is
used, the bifurcation points EUB and EUC are the
same. The critical loads may be found (from Eqs.
(146) and (158)) by means of the expression

bE
B
"

(nn)2(5!3j2
0
)

2j7
0

(173)

using the value of j
0

obtained from the N equilib-
rium (after linearization) (152),

(nn)2i2(5!3j2
0
)#j4

0
!j2

0
"0. (174)

The bifurcation loads corresponding to the Eu-
lerian approach EUB are listed in Table 5. Both
inextensible and extensible bars are considered.
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Table 6
Same as Table 3 but using the Eulerian approach EUD (Hencky)

q n

n"1 n"2 n"3 n"4 n"5 n"20

0 9.8696 39.478 88.826 157.91 246.74 3947.8
0.01 9.8712 39.504 88.958 158.33 247.76 4236.6

6.6]105 5.7]105 5.2]105 4.8]105 4.5]105 2.4]105

0.1 10.036 42.366 105.98 232.75 * *

3527.3 2485.4 1807.9 1233.1 * *

0.35 12.823 * * * * *

123.93 * * * * *

Table 7
Same as Table 3 but using the Eulerian approach EUE"EUF (Hencky)

q n

n"1 n"2 n"3 n"4 n"5 n"20

0 9.8696 39.478 88.826 157.91 246.74 3947.8
0.01 9.8720 39.517 89.024 118.54 248.27 4388.9

1.7]108 6.9]107 3.9]107 2.6]107 1.9]107 1.9]106

0.1 10.120 43.889 115.77 282.56 * *

6.6]104 1.9]104 8156.6 3446.1 * *

0.35 14.616 * * * * *

439.16 * * * * *

Again there is a range of n and q (i2"q2/12 with
q"h/l for a rectangular cross section) in which no
real bifurcation points exist. The same comment is
valid for the rest of the Eulerian linearized problem.

6.4. Eulerian case EUD (Hencky)

This solution derived from the constitutive alter-
native found from the Cauchy method and using
the Hencky tensor yields the linearized equation

(nn)2 exp(2i2bE(n)

D
)!bE(n)

D
"0 (175)

from which the bifurcations loads may be cal-
culated. Table 6 shows the corresponding values of
the bifurcation points which like the other Eulerian
solutions are double for each mode excepting the
inextensible rod.

6.5. Eulerian case EUE (Hencky)

This approach using the Hencky tensors renders
the following equation to "nd the critical loads for
a simply supported rod. From Eqs. (148) and (158)

bE(n)

E
"

(nn)2

j3
0

Nj
0
" 3S

(nn)2

bE(n)

E

(176)

which replaced in Eq. (154) gives the solving equa-
tion

log 3S
(nn)2

bE(n)

E

#bE(n)

E
3S

(nn)2

bE(n)

E

i2"0. (177)

Table 7 shows the corresponding values of the
bifurcation points. Again such points are double
when qO0 (extensible rods). The results are coinci-
dent for the linearized approach EUF.
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Table 8
Same as Table 3 but using the Strength of Materials approach

q n

n"1 n"2 n"3 n"4 n"5 n"20

0 9.8696 39.478 88.826 157.91 246.74 3947.8
0.01 9.8704 39.491 88.892 158.12 247.25 4087.0

1.199]105 1.199]105 1.199]105 1.198]105 1.197]105 1.159]105

0.1 9.9521 40.870 96.603 187.07 347.19 *

1190.0 1159.1 1103.4 1012.92 852.80 *

0.35 11.135 * * * * *

86.824 * * * * *

6.6. Strength of Materials case

bS may be found from the following expression
(recall Eqs. (149) and (158)):

bS(n)(1!bS(n)i2)"(nn)2 (178)

from which

bS(n)"
1$J1!(2nni)2

2i2
. (179)

Both signs make sense but also, as said before,
a "nite number of bifurcation loads arise in order
for bS(n) to be real, i.e.

n)
1

2ni
. (180)

Results (179) and (180) were reported in [14].
Similar to the Eulerian case, the Strength of Mater-
ials approach yields eventual critical loads always
larger than the well-known Euler loads ("(nn)2).
Table 8 depicts critical loads found for inextensible
as well as extensible rods according to this formula-
tion.

7. Secondary equilibrium paths: numerical examples

An analysis of the postbuckling secondary equi-
librium paths, b vs. displacement, will be performed
in this section. As mentioned in Section 5, four
solutions are numerically handled, say Lagrangian
(LA,LB, unless a constant), Eulerian EUA and

Strength of Materials formulations. The last is sol-
ved for the sake of comparison. Firstly a word must
be said regarding the elastic constants CL

A
, CL

B
,

CE
A

and CS. The representation of the equilibrium
curves, due to the non-dimensionalization, is inde-
pendent of the real value of those constants. The
comparison in the results is then only qualitative
since they are performed among non-dimen-
sionalized quantities. For instance, it was shown
that the Lagrangian bifurcation loads are smaller
than Euler loads of linear buckling, while Eulerian
and Strength of Materials' ones are larger; actually
it should be taken into account that the Euler loads
for a simply supported bar are, respectively,

PL
A #3

"

n2CL
A
J

l2
as for LB, (181)

PE
A #3

"

n2CE
A
J

l2
, (182)

PS
#3
"

n2CSJ

l2
"

n2EJ

l2
. (183)

At the "rst sight, they are not comparable since
a criterion among the constants should be estab-
lished. Or at least* as happens with the in"nitesi-
mal deformations case* a test (similar to a simple
tensile test) should be standardized so as to "nd the
mechanical constants. The authors considered that
this discussion is beyond the scope of the present
work. Thus the issue of elastic constants remains
open.
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Fig. 5. Secondary equilibrium path corresponding to the first
mode. Lagrangian approach. Extensible bar with q"0.1.
LA,LB.

Fig. 6. Same as Fig. 5: Eulerian EUA approach.

Fig. 7. Same as Fig. 5: Strength of Materials approach.

Fig. 8. Same as Fig. 5: Superposition of three solutions: *,
Lagrangian formulation; - - -, Eulerian formulation; - ' -, Strength
of Materials formulation.

The bifurcation curves for each approach are
plotted in Figs. 5}7. In all cases an extensible rod
with q"0.1 was assumed and the loads are refer-
red to their respective critical load; n"1.

Fig. 8 shows a superposition of the results from
three formulations, i.e. Lagrangian LA, Eulerian
EUA and Strength of Materials. In this graph the
parameter b is not referred to the critical one. As
said before, no criterion is assumed with respect to
the constant. Then the comparison is only qualita-
tive. The Lagrangian approach yields real values
only in a limited range (see Figs. 5 and 8).

A special case of an unstable behavior using the
EUA statement occurs, for instance, when q"0.35
and the equilibrium curve is shown in Fig. 9.
A lower limit load b of about 14.35 arises, which is
signi"cantly smaller than the "rst bifurcation load
(see Table 4 with n"1). In the range between the
limit load and the bifurcation point two elastica are
obtained for each load value. The corresponding
modal shapes are schematically drawn in Fig. 10
for the case of b"15. Obviously, this is the math-
ematical solution of the postbuckling behavior of
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Fig. 9. Example of unstable behavior using the Eulerian ap-
proach EUA. q"0.35.

Fig. 10. Modal shapes corresponding to b"15 in Fig. 9.

a rather short rod and a comment on this regard is
included in the next section.

8. Discussion

The numerical values included in Tables 4}8,
serve to illustrate the fact that the linearized Euler-
ian and the Strength of Materials solutions exhibit
double bifurcation points for each mode. Also they
have a "nite number of real critical loads. These
features are not present in the Lagrangian formula-

tion. An accumulation point for the critical load
when nPR is a characteristic of this approach.
Furthermore, the non-dimensionalized Lagrangian
critical loads are smaller than the Euler's loads
while all the Eulerian's loads are higher.

Regarding the postbuckling curves, the rod with
extensibility parameter q"0.1 exhibits a stable
behavior, as expected, though the Lagrangian equi-
librium paths are real only in a range of the plot.
When dealing with extensible rods the three alter-
natives yield di!erent results (curves). On the other
hand, it was shown analytically that all solutions
are coincident when the rod is theoretically inex-
tensible. The unstable behavior found with the Eu-
lerian formulation EUA (Fig. 9) for rather short
bars is an unexpected result. Neither the Lagran-
gian nor the Strength of Materials solutions exhib-
ited this change when their behavior was studied.
One may infer that the constitutive equation (71)
would not be exactly derivable from a non-negative
strain energy. Truesdell [15] made a similar com-
ment on Seth's work. Fung [16] employed an ex-
pression similar to Eq. (71) applying the Cauchy
method. This result must be considered as
a counterexample to the assumption of an hy-
perelastic behavior in the stress}strain constitutive
relation (71). Instead, since the Eulerian statements
EUB and EUC (not solved numerically in this
paper) come essentially from positive potentials
(strain energy), it could be asserted that this unsta-
ble behavior would not arise.

As is known, any rod of real materials is exten-
sible. So the inextensible model is an idealization of
the behavior. It should be mentioned when stating
the inextensibility condition (i.e. j

0
"1) that the

formulations are only compatible with q"0.
Although not dealing with the postbuckling of

extensible elastic rods, Gummadi and Palazotto
[12] address the issue of the Lagrangian and Euler-
ian formulations and comment that both ap-
proaches are to be considered equal when small
strains are involved. An interesting graph is in-
cluded showing the range of practical validity of
this assertion. However in the present work, it was
found that even for small strain there are discrepan-
cies in the response (say critical loads or secondary
equilibrium paths) when using the di!erent alterna-
tives proposed above.
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8.1. Trivial (primary) equilibrium paths

As was mentioned only the secondary equilib-
rium paths of the bifurcation problem have been
addressed. The trivial solution (pure compression,
primary path) arises after imposing h"h@"
v
0
"0Na"0, with which the rotational equilib-

rium is satis"ed identically. In this problem when
an extensible rod is tackled only the equilibrium
equation of the force N should be satis"ed, i.e. in
general,

g"!i2b ∀b with ch"1, a"0. (184)

Formally, the equation to be solved to "nd b
#3

is
identical to Eq. (184). However in the linearization
procedure one takes a mathematical limit. Solution
(184) is obviously valid if j

0
'0. Note that in the

Strength of Materials solution, Eq. (138) with h"0
is written as

j
0
"1!bSi2. (185)

Then one "nds

bS(
1

i2
(186)

a bound to the validity of this solution. Also for all
the formulations, and dealing with compression,
b*0 and j

0
(1.

8.2. Strength of Materials approach

In the traditional (and specially in the Strength of
Materials) approach the constitutive equation links
the Cauchy tensor (equilibrated deformed con"g-
uration) with the axial strain of the corresponding
"ber. Thus the stresses would be those required to
produce an axial deformation of the "ber con-
sidered. The axial (tensile or compression) test in
which the axial load deforms the sample is erron-
eously extended to each body point. This concep-
tual misunderstanding arises from imagining
a micro, local axial test in each point. Now,
Hooke's law proposes a relationship between the
stress components and the speci"c strains. Not-
withstanding the "rst of these entities should be
associated with area elements oriented in each

point while the strains are related to the behavior of
"bers at the material point. Recall that the tensor
character of the measures of deformation is only
valid in the in"nitesimal theory. From this one may
conclude that in order to ful"ll the invariance con-
ditions required by the constitutive relationships, it
is necessary to relate tensors. When dealing with
non-in"nitesimal deformations one should handle
strain tensors and not measures of deformation
which do not have a tensorial character.

Let us try to justify the constitutive equations of
Strength of Materials. Expansion of the expressions
of gL

A
and gE

A
up to a quadratic approximation in

the strain gradients involved in the problem, i.e. u@
0
,

v@
0

and h@ leads to

gL
A
&u@

0
#

1

2
(3u@2

0
#v@2

0
)#

a2
2

, (187)

gE
A
&u@

0
#

1

2
(!3u@2

0
#v@2

0
)!

a2
2

. (188)

In order for these two expressions to be coincident
the in#uences of u@

0
2 and h@2 should be disregarded

and, since the quadratic approximation of e
0

is

e
0
"j

0
!1"J1#2E

110
!1"u@

0
#

v@2
0
2

, (189)

one arrives at

gL
A
"gE

A
"gS"u@

0
#

v@2
0
2

"e
0
. (190)

The same reasoning may be carried out with the
expressions for k@L

A
and k@E

A
:

k@L
A
&!h@#3h@u@

0
, (191)

k@E
A
&!h@!3h@u@

0
. (192)

To make them equal, the term h@u@
0

should be
neglected. Then

k@L
A
"k@E

A
"k@S"!h@. (193)

These strong restrictions should have to be ac-
cepted if one would attempt to equate the Lagran-
gian, Eulerian and Strength of Materials
formulations.
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Also, and with the purpose of illustration, it is
known that (Frenet}Serret) (see Fig. 2)

s
0
ny "

dtx
ds

0

"

dh
ds

0

ny (194)

from which the curvature of the deformed axis is
s
0
"dh/ds

0
. On the other hand,

h@"
dh
ds

0

s@
0
"s

0
s@
0

(195)

but also

e
0
" lim

*X?0

*s
0
!*X

*X
" lim
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Finally one can "nd that

h@"j
0
s
0
"(1#e

0
)s

0
. (197)

Consequently it is observed from Eqs. (118) and
(120) that the moment is not proportional to
s
0

when the bar is extensible.

9. Conclusions

The postbuckling analysis of extensible bars has
been carried out in this work by means of nine
alternative constitutive laws which lead to the so-
called Lagrangian LA and LB, Eulerian EUA, EUB,
EUC, EUD, EUE and EUF as well as the Strength
of Materials, solutions. Some of these constitute*
to the authors' knowledge* a step forward in the
postbuckling analysis of extensible rods and the
last one is included for the sake of comparison.

Only two assumptions, commonly accepted, are
made: "rst, the Navier}Bernoulli condition is
imposed to the geometrical formulation; second,
the thickness is assumed as constant for all the
states. Regarding the constitutive models all the
approaches were worked out without further sim-
pli"cations. Explicit solutions of the non-linear dif-
ferential equations are given for the Lagrangian,

Eulerian EUA and Strength of Materials' ap-
proaches.

The linearized problem was solved for all the
alternatives and the critical loads were obtained for
each formulation for various modes and values of
the extensibility parameter.

The postbuckling curves were numerically evalu-
ated for an extensible simply supported rod. The
secondary equilibrium paths were computed for
extensible bars using Lagrangian LA ("LB), Eu-
lerian EUA and Strength of Materials solutions.
The case of q"0.1 is reported in graphs showing
a stable behavior. The discrepancy of the results is
graphically depicted. Also an unexpected unstable
behavior was observed when using EUA in a rather
short rod and a comment regarding this feature is
included. When dealing with the theoretical prob-
lem of an inextensible rod, all the results (both
critical loads and secondary equilibrium paths) are
coincident but this is not the case for the real
extensible rod. In the authors' opinion the in#uence
of extensibility justi"es the study of alternative con-
stitutive models for the postbuckling of an elastic,
highly #exible rod, as is done in this work. The
authors have analyzed the alternative formulations
for the constitutive laws to the solution of the
postbuckling of extensible rods, which are, at least,
as valid as the traditionally known and commonly
used Strength of Material formulation.
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