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Abstract

We explore the geodesic movement on an effective four-dimensional hypersurface that is embed-

ded in a five-dimensional Ricci-flat manifold described by a canonical metric, in order to applying

to planetary orbits in our solar system. Some important solutions are given, which provide the

standard solutions of general relativity without any extra force component. We study the peri-

helion advances of Mercury, the Earth and Pluto using the extended theory of general relativity

(ETGR). Our results are in very good agreement with observations and show how the foliation

is determinant to the value of the perihelion’s advances. Possible applications are not limited to

these kinds of orbits.
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I. INTRODUCTION, BASIC EQUATIONS, AND MOTIVATION

The advance of the perihelion in the orbit of Mercury is a relativistic effect[1]. Together

with the observation of the deflection of light by Dyson, Eddington and Davidson in 1919[2],

this result was crucial in the final breakthrough of general relativity. Mercury is the inner-

most of the four terrestrial planets in the Solar system, moving with high velocity in the

gravitational field produced by the Sun. Because of this, Mercury offers unique possibilities

for testing general relativity and exploring the limits of alternative theories of gravitation

with enough accuracy to be of interest[3]. A compact calculation of the perihelion preces-

sion of Mercury in general relativity taking into account a nonzero cosmological Constant Λ,

was considered some years ago[4]. The same problem was examined from five-dimensional

physics, but with zero cosmological constant[5].

Lately, extensions or modifications to the standard four-dimensional theory of general

relativity have a great and increasing impact in top original researchin gravitation and cos-

mology. The spectrum of these proposals includes: theories with compact and noncompact

extra dimensions[6], scalar-tensor theories, gravity from non-Riemannian geometries; and

f(R)[7], f(R,G) and f(T ) theories (e. g. ref them[8]).

In 2009 an extended version of general relativity[9] was introduced from a 5D Ricci-flat

space-time, where the extra space-like coordinate is noncompact. After making a static

foliation on the extra coordinate, we obtained an effective 4D Schwarzschild-de Sitter space-

time in which matter is considered with an equation of state ω = pm/ρm = −1 4D vacuum

state, such that the pressure on the effective 4D manifold is P = −3c4/(8πGψ2
0) and ψ0 =

c/H0 is the Hubble radius. The resulting effective 4D metric is static, exterior and describes

spherically symmetric matter (ordinary matter, dark matter and dark energy) on scales

r0 < rSch < c/H0 for black holes or rSch < r < c/H0 for ordinary stars with radius r0.

The radius rga is very important because it delimitates distances for which dark energy and

ordinary matter (dark matter and ordinary matter) are dominant: r > rga (r < rga). We

have suggested that ordinary matter, dark matter and dark energy can be considered matter

subject to a generalized gravitational field which is attractive on scales r < rga and repulsive

on scales r > rga.

In this work we shall study the effective 4D orbits of some planets (or pseudo-planets in

the case of Pluto) of our solar system. In particular we are interested in the calculation of
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the perihelion advances of Mercury, Earth and Pluto. In Sect. 2 we review the formalism to

calculate the orbits of massive text particles from the extended theory of general relativity

(ETGR).

II. ETGR

In a previous work[9] a 5D extension of general relativity was considered such that the

effective 4D gravitational dynamics had a vacuum-dominated, ω = −1, equation of state.

In this section we shall examine some formal aspects of this theory.

A. 5D massive test particles dynamics

We consider the extended Schwarzschild-de Sitter 5D Ricci-flat metric gab[9]

dS2 =

(

ψ

ψ0

)2 [

c2f(r)dt2 − dr2

f(r)
− r2

(

dθ2 + sin2(θ) dφ2
)

]

− dψ2, (1)

where f(r) = 1 − (2Gζψ0/(rc
2))[1 + c2r3/(2Gζψ3

0)] is a dimensionless function. Here, ψ is

the noncompact extra dimension. The space-like coordinates ψ and r have length units, θ

and φ are angular coordinates and t is a time-like coordinate. We denote c the speed of

light. We shall consider that ψ0 is an arbitrary constant with length units and the constant

parameter ζ has units of (mass)(length)−1.

For a massive free test particle outside of a spherically symmetric compact object, the

5D Lagrangian is

(5)L =
1

2
gabU

aU b =
1

2

(

ψ

ψ0

)2
[

c2f(r)
(

U t
)2 − (U r)2

f(r)
− r2

(

Uθ
)2 − r2sin2θ

(

Uφ
)2

]

−1

2

(

Uψ
)2
.

(2)

We shall take θ = π/2. Because t and φ are cyclic coordinates, their associated constants of

motion pt and pφ, are constants of motion. Using the five-velocity condition gabU
aU b = 1,

we obtain the equation of energy for a test particle that moves on space-time (1)

1

2
(U r)2 +

1

2

(

ψ0

ψ

)2
(

Uψ
)2

+ Veff (r) = E. (3)

If we identify the energy, E, as

E =
1

2

(

ψ0

ψ

)4

(p2t c
−2 + p2φψ

−2
0 )− 1

2

(

ψ0

ψ

)2

, (4)

3



the effective 5D potential, Veff (r), is

Veff(r) = −
(

ψ0

ψ

)2
Gζψ0

r
+

(

ψ0

ψ

)4 [ p2φ
2r2

−
Gζψ0p

2
φ

c2r3

]

− 1

2

(

ψ0

ψ

)2
[

(

Uψ
)2

(

2Gζψ0

c2r
− r2

ψ2
0

)

−
(

r

ψ0

)2
]

. (5)

However, we are interested in the study of this potential for massive test particles on

static foliations ψ = ψ0 = c/H0, such that the dynamics evolves on an effective 4D manifold

Σ0. From the point of view of a relativistic observer, this implies that Uψ = 0.

B. Geodesics equations for 5D canonical metrics

We consider a 5D line element dS2 = gab(x
c)dxadxb. We are interested in studying the

geodesics equations on a 5D canonical metric

dS2 =

(

ψ

ψ0

)2

ds2 − dψ2, (6)

where ds2 = hαβ(x
µ)dxαdxβ, such that in the absence of external forces the 5D geodesic

equation is
d2xa

dS2
+ Γabc

dxb

dS

dxc

dS
= 0. (7)

For a test particle in a time-like geodesic we must require

gabU
aU b = 1, (8)

such that the velocity components are U c = dxc

dS
1. To study the effective 4D geodesic

equations on a hypersurface obtained after making a constant foliation ψ = ψ0, we shall

decompose (7) in the geodesic equations

d2xµ

ds2
+ Γ̄µαβ

dxα

ds

dxβ

ds
= − d2s

dS2

(

ds

dS

)−2
dxµ

ds
− 2

1

ψ0
δµν
dxν

ds

dψ

ds
, (9)

d2ψ

ds2
+ Γ4

αβ

dxα

ds

dxβ

ds
= − d2s

dS2

(

ds

dS

)−2
dψ

ds
, (10)

where

ds

dS
=

[

(

ψ

ψ0

)2

−
(

dψ

ds

)2
]−1/2

. (11)

1 The case of 5D null geodesics have been studied in earlier works[10].

4



Deriving the last expression with respect to S, we obtain

d2s

dS2

(

ds

dS

)−2

= −
(

ds

dS

)2
dψ

ds

[

ψ

ψ2
0

− d2ψ

ds2

]

. (12)

Using (8) and (12) in (9) and (10), we obtain

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
=
dxµ

ds

dψ

ds

(

ds

dS

)2 [
ψ

ψ2
0

− d2ψ

ds2

]

, (13)

d2ψ

ds2
+

ψ

ψ2
0

=

(

ds

dS

)2
dψ

ds

[

ψ

ψ2
0

− d2ψ

ds2

]

. (14)

Using (11) and (12) in (13) we obtain that the right-hand side of (13) becomes null, so that

the system (13)-(14) finally becomes

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0, (15)

d2ψ

ds2
+

ψ

ψ2
0

=
2

ψ

(

dψ

ds

)2

. (16)

The solution of this set of equations is

ψ(s) = − 2e−s/ψ0

ψ0 [C1 e−2s/ψ0 + C2]
. (17)

We are interested in studying the induced dynamics of observers who moves on the hyper-

surface Σ0, resulting from setting a constant foliation ψ(s) = ψ0. In the next section we

shall consider this case which will be relevant to the study of planetary dynamics on an

effective 4D Schwarzschild-de Sitter space-time.

III. PHYSICS ON THE 4D MANIFOLD Σ0 IN THE SOLAR SYSTEM

Now we consider the static foliation {Σ0 : ψ = ψ0} on (1). In this case we obtain the

effective 4D line element

dS2
ind = c2f(r)dt2 − dr2

f(r)
− r2

[

dθ2 + sin2(θ) dφ2
]

, (18)

which is known as the Schwarzschild-de Sitter metric. From the relativistic point of view,

observers that are on Σ0 move with Uψ = 0. We assume that the induced matter on

Σ0 can be globally described by a 4D energy momentum tensor of a perfect fluid Tαβ =

(ρc2 + P )UαUβ − Pgαβ, where ρ(t, r) and P (t, r) are respectively the energy density and

pressure of the induced matter, such that

P = −ρc2 = − 3c4

8πG

1

ψ2
0

, (19)
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which corresponds to a vacuum equation of state. The energy density of induced matter

is denoted ρ. Because we are interested in studying the orbits of some planets of our solar

system, we shall consider that the main gravitational source is the Solar mass M⊙ ≡ ζψ0

and radius r0. We shall assume that we live on the 4D hypersurface ΣH0
: ψ0 = cH−1

0 , H0

and Gζ ≤ 1/(2
√
27) ≃ 0.096225, being H0 = 73 km

sec
Mpc−1 the present day Hubble constant.

When one takes Uψ = 0, the induced potential Vind(r) on the hypersurface Σ0 is given by

Vind(r) = −GM⊙

r
+

p2φ
2r2

− GM⊙

c2
p2φ
r3

− 1

2

(

r

ψ0

)2

. (20)

The first two terms on the right hand side of (20) correspond to the classical potential,

the third term is the usual relativistic contribution and the last term is a new contribution

coming from 5D metric solution (1). The acceleration associated with the induced potential

(20) reads

a = −GM⊙

r2
+
p2φ
r3

− 3GM⊙

c2
p2φ
r4

+
r

ψ2
0

. (21)

By expressing (3) as a function of the angular coordinate, φ (indeed assuming 1/u = r =

r(φ)), we obtain
(

du

dφ

)2

+ (1− 2GM⊙

c2
u)(p−2

φ + u2)− p−2
φ (uψ0)

−2 = c−2p2tp
−2
φ + ψ−2

0 . (22)

This equation of the orbit is almost the same that the one usually obtained in the 4D

general theory of relativity for a Schwarzschild-de Sitter metric. However, notice that here

the cosmological constant is well determined by the constant ψ−2
0 = H2

0/c
2, and not any

constant of arbitrary signature (as in 4D general relativity). In other words, in our formalism

the cosmological constant is determined geometrically by the foliation.

A. Effective geodesics equations on the 4D hypersurface

If we require that S(s) = s, we must place (17) in (11). Hence, after taking a constant

foliation ψ = ψ0, the solution for S(s) is

S(s) = s = −ψ0

2
ln

(

−C2

C1

)

. (23)

In this case both (15) and (16) evaluated on the foliation ψ = ψ0 are free of sources

d2xµ

ds2
+ Γ̄µαβ

dxα

ds

dxβ

ds
= 0, (24)

d2ψ

ds2
+

1

ψ0
= 0, (25)
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where Γ̄µαβ = Γµαβ
∣

∣

ψ=ψ0

. Finally, we must additionally require that C2 = −1/(ψ4
0 C1) in order

to obtain ψ(s) = ψ0 in (17). Notice that there are no extra force components in (24) and

(25).

IV. CALCULATION OF THE PERIHELION ADVANCE

In order to study the advances of perihelions for massive test particles in the solar system

we consider (22). After making u(φ) = 4/rs v(φ) and M = rs/256p
2
φψ

2
0, we obtain

v2
(

dv

dφ

)2

= 4v5 − v4 +
v3r2s
4p2φ

− v2[
r2s

16p2φ
− r2s

16
[p2tp

−2
φ + ψ−2

0 ]] +M,

where

P5(v) = 4v5 − v4 +
v3r2s
4p2φ

− v2[
r2s

16p2φ
− r2s

16
[p2tp

−2
φ + ψ−2

0 ]] +M.

The half-period of the orbit will be

φ+ φ0 =

∫ e2

e1

v
√

P5(v)
dv, (26)

where e1 and e2 are the real and positive roots of P5(v).

The advance of the perihelion for the orbits will be given by two times the difference

between π and the angle described by the orbit in (26)

∆MI
φ = 2π − 2

∫ e2

e1

v
√

P5(v)
dv. (27)

It must be noted that M ≪ 1. In order to calculate the integral in (27), we shall make the

following expansion of v/
√

P5(v)

v
√

P5(v)
|M≪1 ≃=

1
√

P3(v)
− M

2
√

[P3(v)]
3
+

3M3

8
√

[P3(v)]
5
+ ... , (28)

with P5(v) = v2P3(v) +M , and

P3(v) = 4v3 − v2 +
r2sv

4p2φ
− r2s

16p2φ
− r2s

16
[p2tp

−2
φ + ψ−2

0 ]. (29)

Notice that all the terms in the series are integrable. Finally, if we make the substitution

v(φ) = w(φ) + 1/12, we obtain the result

∆MI
φ = φ1 + φ2 =

∫

∞

ǫ1

dw
√

4w3 − g2w − g3
− M

2

∫

∞

ǫ1

dw
(

w + 1
2

)2√

4w3 − g2w − g3
+ ... , (30)

7



with

φ1 =

∫

∞

ǫ1

dw
√

4w3 − g2w − g3
, (31)

φ2 = −M
2

∫

∞

ǫ1

dw
(

w + 1
2

)2√

4w3 − g2w − g3
, (32)

where g2 and g3 are the invariants of Weierstrass

g2 =
1

12
− r2s

4p2φ
, (33)

g3 =
1

216
+
r2s
16

[

1

p2φ

(

1− p2t
c2

)

+
1

ψ2
0

]

− r2s
48 p2φ

, (34)

and e1 = ǫ1 + 1/12, such that P3(w = ǫ1) = 0. The constants pt and pφ are the two free

parameters of the theory and they are related to the energy by mass unit, E = c pt, and the

angular moment by mass unit, LM = c pφ, such that the invariants of Weierstrass hold

g2 =
1

12
− r2sc

2

4L2
M

, (35)

g3 = − r2sc
2

48L2
M

+
1

216
+

r2sc
2

16L2
M

− r2s
16

[

E2

c2L2
M

+ ψ−2
0

]

. (36)

Furthermore, because 0 < r <∞, the range of validity of w(φ) is: −1/12 < w <∞.

A. Limit case with ψ0 → ∞

Because ψ0 = c/H , the case with zero cosmological constant corresponds to the limit

case ψ0 → ∞. Notice that H is the Hubble parameter which is experimentally determined

so that the foliation ψ = ψ0 is given physical parameters. If we take this limit in (35) and

(36) we obtain exactly the same solution as (30), but the invariant of Weierstrass ĝ2 and ĝ3

ĝ2 =
1

12
− r2sc

2

4L2
M

, (37)

ĝ3 = − r2sc
2

48L2
M

+
1

216
+

r2sc
2

16L2
M

− r2s
16

[

E2

c2L2
M

]

. (38)

These expressions are in agreement with the results obtained when we use the standard 4D

formalism for general relativity.
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V. NUMERICAL RESULTS

With the aim to illustrate the formalism we shall calculate the advance for the perihelions

of Mercury, the Earth and Pluto. We shall use for our calculations the respective values

for the Schwarzschild radius (rs), the speed of light (c) and the Hubble radius (c/H): rs =

2.95325008× 105 cm, c = 2.9979245800× 1010 cm/seg and c/H = 1.2701000000× 1028 cm.

In all cases we shall consider that the angular moment by mass unit is given by LM = vprp,

such that vp and rp are the velocity and distance, respectively, of the planet at the perihelion.

A. Mercury

The orbital period of Mercury is 87.9695 Earth days. Its angular moment by mass

unit is LM = 2.71308044481 × 1019 cm2/seg and the energy by mass unit being given by

E = 2.99792454178 × 1010 cm/seg. The only finite real root on the physical domain is

ǫ1 = 0.166666640044. Using (26), we can calculate the half-period: φ = 3.14159290450.

It is very important to notice that the result of the second integral in (32) is negligible:

φ2 = −9.71527962041 × 10−52, so that the advance of the perihelion results given totally

by the first integral (31): ∆MI
φ = 42.9773350296 arcseg/century. This value is in very

good agreement with observations: ∆MI
φ

∣

∣

exp
= 42.98± 0.04 and with predictions of general

relativity[4].

B. Earth

The Earth is densest and fifth-largest of the eight planets in the Solar System. Its angular

moment per mass units is LM = 4.52332500000×1019 cm2/seg and and its energy per mass

units is E = 2.99792457200× 1010 cm/seg. The only finite real root on the physical domain

is ǫ1 = 0.166666657089. Therefore, for an orbital period of 365 days, the half-period can be

calculated from eq. (26): φ = 3.14159274386. The advance of the perihelion of the Earth

can be calculated from the first integral (31): ∆MI
φ = 3.72390481198 arcseg/century. This

value agree with the experimentally observed value. Because in the case of Mercury the

second integral (32) is very small: φ2 = −3.49514238656× 10−52.
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C. Pluto

It is well known that Pluto it is not a true planet. It is the second most mas-

sive known dwarf planet, after Eris. In this case the angular moment by mass unit

is LM = 2.7025100000 × 1019 cm2/seg and the energy by mass unit that we use is

E = 2.9979245418 × 1010 cm/seg, so that the root in the physical domain takes the value

ǫ1 = 0.16666666639. Pluto has an orbital period of 247.08 terrestrial years so that the

half-period is φ = 3.1415926561. This value being given by the first integral (31), be-

cause the second one (32) is two orders of magnitude smaller than the other two cases:

φ2 = −9.791421275× 10−54. With these values we can calculate the advance of the perihe-

lion, which takes the value ∆MI
φ = 0.000417 arcseg/century.

VI. FINAL COMMENTS

Induced matter theory[11–15], has been of much interest in recent years and the explo-

ration of the geodesic equations from a 5D vacuum is an important topic of this theory[16].

In this paper we have re-examined this topic to apply to possible applications of ETGR

to orbits like planetary orbits in our solar system. ETGR has been proposed some years

ago[9] and has been studied in the framework of astrophysical[17] and cosmological[18, 19]

applications. However, the possible applications are not limited to these kinds of orbits. A

very important result is the particular solution with S(s) = s described in Sect. IIIa, for

which there are no extra force components due to the foliations on the extra dimension [see

(24) and (25)].

We have studied analytically the advances for the perihelions for Mercury, the Earth and

Pluto. This work was the first to use ETGR, where the cosmological constant is determined

by the foliation ψ = ψ0 = c/H , so once the Hubble constant, is experimentally determined,

we have the cosmological constant: Λ = 3/ψ2
0 = 3H2. In our calculations we have not

considered the quadrupolar moment of the Sun, which may be important for the orbit of

Mercury[20].

This method can be used to calculate other orbits of comets with large period that come

from the Oort cloud. Some of these comets, as for example, the Ison comet, pass very close

to the Sun and therefore are subject to an intense gravitational field[21].
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