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  Comparison of algorithms to infer genetic 
population structure from unlinked molecular 
markers    
  Abstract:   Identifying population genetic structure (PGS) is crucial for breeding and conservation. Several 

clustering algorithms are available to identify the underlying PGS to be used with genetic data of maize geno-

types. In this work, six methods to identify PGS from unlinked molecular marker data were compared using 

simulated and experimental data consisting of multilocus-biallelic genotypes. Datasets were delineated 

under different biological scenarios characterized by three levels of genetic divergence among populations 

(low, medium, and high  F  
ST

 ) and two numbers of sub-populations ( K   =  3 and  K   =  5). The relative performance 

of hierarchical and non-hierarchical clustering, as well as model-based clustering (STRUCTURE) and clus-

tering from neural networks (SOM-RP-Q). We use the clustering error rate of genotypes into discrete sub-

populations as comparison criterion. In scenarios with great level of divergence among genotype groups all 

methods performed well. With moderate level of genetic divergence ( F  
ST

   =  0.2), the algorithms SOM-RP-Q and 

STRUCTURE performed better than hierarchical and non-hierarchical clustering. In all simulated scenarios 

with low genetic divergence and in the experimental SNP maize panel (largely unlinked), SOM-RP-Q achieved 

the lowest clustering error rate. The SOM algorithm used here is more effective than other evaluated methods 

for sparse unlinked genetic data.  

   Keywords:    cluster analysis;   multilocus-biallelic genotypes;   plant breeding;   self-organizing maps.  

 DOI 10.1515/sagmb-2013-0006  

   Introduction 
 Genetic variability analysis oriented to identify population genetic structure (PGS) in plant collections is 

a crucial step in the formation of core collections for genetic resources conservation, as well as for plant 

breeding association studies ( Wang et al., 2005 ;  Shriner et al., 2007 ;  Odong et al., 2011 ). The increasing avail-

ability of data from multiple molecular markers allows an exhaustive exploration of genetic diversity in plant 

species ( Bernardo and Yu, 2007 ). Individual multidimensional molecular marker profiles are analyzed under 

a knowledge discovery framework, an overall process of finding and interpreting patterns from data ( Ultsch, 

2005 ). Hence, cluster analysis ( Hartigan, 1975 ;  Gordon, 1999 ) has proved to be a powerful tool to investigate 

 “ natural ”  groups of genotypes. 

 A large number of algorithms have been developed to classify individual genotypes into sub-populations 

using only genetic data. In plant genetics, unsupervised classification of genotypes into discrete or fuzzy 
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2      A. Peña-Malavera et al.: Algorithms for clustering genotypes from unlinked molecular markers

nature groups is commonly applied. Here we focus on unsupervised clustering algorithms that do not use 

any information about the population to which individuals are expected to belong. All of these methods 

attempt to identify cluster of similar genotypes. Most of these methods are associated with other algorithms 

to estimate the underlying number of clusters. However, for simplicity, we assume that the number of clusters 

is known for all studied scenarios. 

 Some clustering algorithms treat marker information as independent (unlinked models), but others con-

sider linkage disequilibrium (LD) (i.e. correlation between markers). In the context of dense genotyping (or 

sequencing), the latter has proven to be more powerful ( Lawson and Falush, 2012 ). However, when the marker 

dataset is largely unlinked the adjustment for correlation between markers does not provide an improve-

ment. Therefore, by assuming LD, several different clustering applications could be applied to describe the 

underlying PGS. 

 Several algorithms of different nature have been used to group genotypes by means of genetic data ( Lee 

et al., 2009 ;  Odong et al., 2011 ;  Lawson and Falush, 2012 ). Hierarchical clustering is a commonly used method 

that can be directly applied on molecular data ( Odong et al., 2011 ), or after eigenanalysis (Principal Com-

ponent Analysis) of such data. The latter is to avoid discarding correlated markers ( Patterson et al., 2006 ). 

Hierarchical and non-hierarchical clustering is applied in a two-stage strategy, since a distance matrix is first 

constructed and then clustering is performed. These distance-based methods can use different metrics of 

multivariate similarity between pairs of genotypes. The similarity between individuals may depend not only 

on their own genetic make-up, but also on that of the rest of the sample (which can be considered by means 

of allele frequencies) ( Weir, 1996 ). In the first case, the average genetic distance between two genotypes 

is a simple interpretation of the relatedness ( McVean, 2009 ). The widely used squared Euclidean distance 

between marker profiles reflects the amount of allele not shared by state between two genotypes ( Bruno and 

Balzarini, 2010 ;  Odong et al., 2011 ). 

 The model-based method implemented in STRUCTURE ( Pritchard et al., 2000 ) depends on Bayesian clus-

tering and is usually chosen to identify PGS in germplasm collections with high level of relatedness due to its 

fuzzy nature. The software STRUCTURE produces a clear visualization of the resulting clustering by means 

of a bar plot; each individual in the data set is represented in the bar plot by a single vertical line, which is 

partitioned into  K  colored segments representing the probability to belong to one specific cluster. To run 

STRUCTURE can be computationally intensive and time-consuming in scenarios with high numbers of geno-

types ( Odong et al., 2011 ). Another alternative for grouping molecular marker profiles is Self-Organizing Maps 

(SOM) ( Kohonen, 1997 ). It is an unsupervised neural network algorithm able to find relationships between 

high dimensional data, grouping and mapping them topologically. The central idea supporting the SOM algo-

rithm is that similar objects in the input space will map close to each other into the self-organizing map. In 

the SOM array, PGS is recognized as a group of nodes (cluster). The identification in SOM is mainly achieved 

through visualization methods ( Ultsch, 2005 ). An additional algorithm known as SOM-RP-Q ( Fern á ndez and 

Balzarini, 2007 ) can be used to enhance and facilitate visualization and interpretability of SOM results. In 

plant breeding, SOM applications to explore relationship between genotypes are not as frequent as in other 

fields ( Toronen et al., 1999 ). 

 Because there is a large and diverse set of clustering techniques available, it is necessary to compare 

the performance of methods belonging to different families to support applications ( Lee et  al., 2009 , 

 Odong et al., 2011 ). The relative performance of different methods may depend on specific features of the 

underlying PGS which can be characterized by the number of subpopulations ( K ) and the genetic similar-

ity among them.  Evanno et al. (2005)  carried out a simulation study to evaluate the ability of STRUCTURE 

to recognize PGS under several biological scenarios derived from different migration patterns.  Odong 

et al. (2011)  evaluated traditional hierarchical clustering algorithms with molecular marker data under 

different levels of genetic divergence in a plant germplasm collection using the results of STRUCTURE as 

a gold standard.  Lee et al. (2009)  compared PCA, STRUCTURE and non-hierarchical clustering techniques 

in a simulation study. 

 Given that methods belonging to different families of clustering techniques differ in the way they 

handle the clustered objects and have different outputs, the measures of agreements between the 
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 Table 1      Number of populations and genetic divergence characterizing the population genetic structure in six simulated 

 scenarios of multilocus-biallelic genotypes.  

Scenario      Number of 
populations ( K )    

 
 

Genetic divergence  

 F  ST  statistic    Level  

I   3   0.07  Low

II   5   0.06  Low

III   3   0.23  Medium

IV   5   0.17  Medium

V   3   0.38  High

VI    5    0.38    High  

groupings could vary ( Milligan and Cooper, 1985 ). Under a fixed  K , the level of agreement between the 

true grouping of genotypes and the cluster structure obtained by a particular technique can be considered 

an indicator of the method performance. The scope of this paper was to evaluate the SOM-RP-Q algo-

rithm and other widely used methods in terms of their performance in clustering genotypes from sparse 

unlinked genetic data.  

  Materials and methods 

  Simulated data 

 Molecular marker data were simulated using QMSim ( Sargolzaei and Schenkel, 2009 ) and scenarios involv-

ing numbers of genotypes and molecular markers that mimic maize plant breeding data were designed. A 

genome with 300 multilocus-biallelic markers, with a random selection design and random mating was 

used. Six biological scenarios were artificially created, corresponding to three levels of genetic divergence 

among populations (low, medium, and high  F  
ST

 ) and two numbers of populations ( K   =  3 and  K   =  5). The number 

of genotypes per scenario was 180. Such population size is common in plant breeding studies. Simulated 

data were created from an historical population (200 individuals) and the mating system was based on the 

union of gametes randomly sampled for many generations. The average coancestry was low. Different levels 

of population genetic divergence were produced by variation of the number of generations from a founder 

population. Simulated data were coded as 0 and 1, for each marker, and each scenario was replicated several 

times. The average  F  
ST

  statistic ( Wright, 1951 ) from the analysis of molecular variance (AMOVA) ( Excoffier 

et al., 2009 ) was used to quantify the degree of genetic differentiation among populations in each scenario 

( Table 1  ).  

  Experimental data 

 A public set containing  n   =  334 maize inbred lines genotyped by  p   =  210 SNPs loci was used to identify PGS 

( Hansey et al., 2011 ). In a previous work on the same material  Hansey et al. (2011)  identified eight clusters or 

sub-populations that were verified from biological knowledge of maize genetic resources. Such classification 

was used as a gold standard in the current work. Therefore, all of the analyses on the empirical data set were 

done assuming the existence of eight well known clusters. 

 A LD heat map plot was performed to evaluate LD ( Figure 1  ). A low level of correlation among the 210 

SNPs was found.  
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4      A. Peña-Malavera et al.: Algorithms for clustering genotypes from unlinked molecular markers

  Clustering algorithms 

  Distance-based clustering 

 Hierarchical and non-hierarchical cluster methods were implemented. Two hierarchical algorithms: 

Average Linkage or UPGMA ( Sokal and Michener, 1958 ) and  Ward (1963) , both on the molecular markers 

data were used. The Ward algorithm was also applied to the principal components of the molecular data 

previously recognized as significant according to Tracy-Widom (TW) distribution ( Tracy and Widom, 

1994 ). The principal component analysis together with a modern statistic (TW theory) provides a fast 

and effective way to answer if individuals can be regarded as randomly chosen from a homogeneous 

population or if the data implies the existence of underlying PGS.  Patterson et al. (2006)  modeled the 

eigenvalues using the TW distribution, which describes the largest eigenvalue of the matrix ZZ T , where 

Z is a matrix of molecular marker data. Therefore, TW can be used for assessing significant principal 

components. The combination of the eigenanalysis as a first step of the Ward algorithm was denoted as 

PCA + Ward. 

 In the UPGMA the clustering process starts from a multivariate distance matrix containing all pairwise 

distances between genotypes. Then, genotypes are clustered using a grouping criterion based on average 

unweighted distances. In the Ward method the process is similar, but the grouping criterion is based on 

weighted (by covariances) average distances. To display hierarchical clustering, dendrograms are used, i.e., 

tree-based representations that track the history of union between genotypes and clusters ( Johnson and 

Wichern, 1998 ). 

 Our paper also included the non-hierarchical K-Means method ( MacQueen, 1967 ). The non-hierarchical 

clustering algorithm starts with an initial (random) partition of the genotypes in  K  groups and continues by 

reallocating each genotype in one of the clusters such that the distance between the genotype and the cen-

troid of the cluster to which it was assigned is lower than the distance to any other centroid. Then it brings 

together individuals in  K  clusters so that the difference between clusters is maximized and the differences 

within each cluster are minimized (objective function). Results are visualized by plotting the objective func-

tion values for different  K .  

R2 Color key

0 0.2 0.4 0.6 0.8 1

 Figure 1      LDheatmap for experimental data. Each element of the upper triangular matrix is a LD measure ( R  2 ) between SNPs. Low 

 R  2  indicates uncorrelated markers.    
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  Model-based clustering 

 The fuzzy clustering method implemented in the software STRUCTURE ( Pritchard et  al., 2000 ) was also 

evaluated. This method based on Bayesian Markov Chain theory is used to assign genotypes to a  K  specific 

structure. Linkage equilibrium between markers and Hardy-Weinberg equilibrium are assumed. Genotypes 

in the collection are assigned probabilistically to these groups, or jointly by two or more populations if their 

genotype indicates a mixture of molecular patterns. STRUCTURE ( Pritchard et al., 2000 ) produces a visuali-

zation of the resulting PGS by means of a bar plot; each individual in the data set is represented by a single 

vertical line, which is partitioned into  K  colored segments that represent that individual ’ s estimated member-

ship fraction in each of the  K  inferred clusters. One of the good properties of fuzzy clustering is that posterior 

probabilities indicate the uncertainty of the cluster assignment.  

  Heuristic clustering 

 A Self-Organizing Map (SOM) ( Kohonen, 1997 ) is an artificial neural network capable of converting high 

dimensional data into a two-dimensional map in which data points that are found close together on the 

map are more similar than those that are farther away. A SOM consists of two layers of artificial neurons, the 

input layer and the output layer ( Paini et al., 2010 ). In the SOM, the input layer is essentially the raw data 

and comprises  p  neurons (one neuron for each molecular marker in our case), with each neuron connected 

to all  n  individual genotypes. The output layer is the two-dimensional map comprising  n  artificial number of 

neurons (nodes), laid out in a grid. Each of the genotypes occupies a particular point in the  p  dimensional 

space. The SOM projects its nodes onto this space via neuron weight vectors; each SOM neuron occupies a 

point in the same multidimensional space as the genotypes, thereby interacting with the genotypes ( Worner 

and Gevrey, 2006 ). When the analysis is initiated, each raw data point is assessed and the neuron that is 

closest to this data point in this multidimensional space is deemed to be the winning node or best matching 

node. The neuron weight vector of the winning node is adjusted so that it moves closer to the data point. 

Because all neurons are connected together, the process of the neuron moving exerts force that drags other 

neurons in the SOM. When the analysis is complete each data point will have a winning node, which is its 

closest neuron. In this way, genotypes that have very similar molecular marker assemblages will be located 

close together in the multidimensional space and will have the same winning node. In SOM, clusters are iden-

tified through specific visualization algorithms, such as the RP-Q method ( Fern á ndez and Balzarini, 2007 ). 

In this method a relative position (RP) is attached to each node in the SOM structure. The RP is a new node 

adaptive attribute that moves in a two-dimensional virtual space imitating the movement of the neurons. 

The final RP of the net nodes is shown in a scatter plot. Each node is represented by a circle whose diameter 

is proportional to the  “ activation frequency ”  (frequency of winning) during the learning phase. To assist in 

the identification of similarities, the nodes are linked. The length of the segment joining two nodes provides 

information about distances between them. The nodes will be linked to each other to form a cluster if the 

distance between them is less than or equal to a specified threshold value. The Q-statistic is used to obtain 

the classification. The Q-statistic handles isolated nodes for which codebook vectors are often a mixture 

of patterns from other clusters instead of representing a true pattern in the input space (transition nodes) 

( Fern á ndez and Balzarini, 2007 ).   

  Algorithm specifications 

 To implement hierarchical and non-hierarchical clustering we used the squared Euclidean distance between 

genotypes. Hierarchical and non-hierarchical clustering were performed using Info-Gen ( Balzarini and Di 

Rienzo, 2004 ) assuming a known number of clusters ( K   =  3 and  K   =  5 for simulated data, and  K   =  8 for experi-

mental data). STRUCTURE was run under the assumption of an admixture model with an independent allele 
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6      A. Peña-Malavera et al.: Algorithms for clustering genotypes from unlinked molecular markers

frequency model using the number of clusters ( K ) as prior information with a burn-in time and with a replica-

tion number of 50,000 for each run. The L-SOM software was used for training network in the SOM algorithm 

and RelPos visualization tool of Matlab  ®   to implement the SOM-RP-Q method ( Fern á ndez and Balzarini, 

2007 ). An array of 10  ×  10 nodes (net sizes) was used to start the learning process.  

  Comparison criterion 

 To simultaneously compare the performance of methods to infer the underlying grouping of genotypes, a 

clustering error rate (CER) was used. CER is defined as follows: 

   

=
∑

CER

K

i
i
Er

N
 

 where  N  is the number of genotypes,  K  is the number of groups,  Er  
 i   is the cluster error rate in the  i -th group, 

with  i   =  1,  … ,  K . It is based on the difference between the true number of individuals belonging to the  i -th 

group ( N  
 i  ) and the individuals correctly classified into that group ( C  

 i  ). The classification error rate for the  i -th 

group was estimated as  Er  
 i    =  ( N  

 i   –  C  
 i  )/ N  

 i  . CER is the average of the classification error rate through the  K  groups. 

For STRUCTURE, genotype classification was based on the highest cluster proportion for that individual. For 

SOM-RP-Q, classification of nodes into clusters (and consequently classification of genotypes) was based on 

the number of individuals of each underlying group at a given node. If the highest proportion of individuals 

belonged to group  i , then the node was assumed to be a component of cluster  i . The proportion of individu-

als of group  i  in the node classified as part of cluster  i  (named posterior probability) was used as indicator of 

the certainty in cluster assignment. The average, across nodes, of its complement was used as a measure of 

uncertainty of the cluster assignment by using SOM-RP-Q.   

  Results 
 A multidimensional scaling was performed on genomic data to display the level of genetic divergence of each 

simulated scenario.  Figure 2   shows the scatter plots of the first two axes resulting from the multidimensional 

scaling of data from six scenarios with different levels of  F  
ST

  (low, medium, and high, from top to bottom, 

respectively) and numbers of clusters ( K   =  3 and  K   =  5). 

 In  Figure 3   real genotypes are ordered in the plane formed by the first two axes resulting from the multi-

dimensional scaling of maize experimental data. This figure provides information regarding genetic distance 

between genotypes and the group to which these genotypes were classified by  Hansey et al. (2011) . The  F  
ST

  

statistic calculated from the data was 0.02, i.e., closer to the simulated values that indicate low divergence. 

  Analysis of simulated data 

 In scenarios where genetic divergence was low ( F  
ST

   <  0.10), the SOM-RP-Q method performed best, with CER 

below 0.25, whereas the clustering error of the hierarchical methods reached 0.73 ( Table 2  ). The estimate of 

posterior probability in the SOM-RP-Q algorithm indicated that, even under low genetic differentiation, the 

uncertainty of the cluster assignment was lower than 0.10. 

 For the PCA + Ward method the average number of significant components decreased with increasing  F  
ST

  

statistic, i.e., with greater divergences between populations. In scenarios I and II, with low genetic differ-

ence, the TW statistic identified more than 20 significant components. Clustering errors were similar to those 

observed for other hierarchical methods used without previous eigenanalysis. For more complex structures 
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 Figure 2      Scatter plots of the first two axes resulting from principal coordinates analysis of molecular data. On the left 

 scenarios involving three populations, while at the right stage scenarios with five populations. From top to botton low 

( F  
ST

   =  0.06 – 0.07), medium ( F  
ST

   =  0.23 – 0.17), and high ( F  
ST

   =  0.38).    

( K   =  5), the CER increased in all methods ( Figure 4  ). With strong population structure (scenarios V and VI) 

all methods performed well, having low clustering error rates (CER  <  0.02) ( Table 2 ). Hierarchical methods 

were competitive only in scenarios with high levels of divergence (V and VI), both when applied directly on 

genomic data and when used on the significant synthetic variables. 

 The trend in the CER was dependent on the level of genetic divergence between populations ( Figure 4 ). The 

SOM-RP-Q method (black solid line) showed the lowest clustering error ( Figure 4 ). For  F  
ST

  values close to 0.3, 

the error reached negligible values. CER trends for K-Means and STRUCTURE were similar for both values of  K.  
However, the posterior probability given by STRUCTURE indicates uncertainty of the cluster was only neglected 

with high  F  
ST

 , but these reached average values of 0.40 under the low  F  
ST

  scenario. On the simulated data sets 

considered here, STRCUTURE and SOM had similar performances under the same biological scenarios.  

  Analysis of experimental data 

 The methods SOM-RP-Q, Ward and STRUCTURE recognized the underlying structure (eight clusters) well, 

with clustering errors of 0.09, 0.21, and 0.23, respectively. By contrast, the methods UPGMA, K-Means and 
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8      A. Peña-Malavera et al.: Algorithms for clustering genotypes from unlinked molecular markers

PCA + Ward, were not able to identify the underlying PGS. The dendrogram plot, which is shown in the top-

right panel, is the resulting diagram from the hierarchical clustering analysis. The  “ x ”  axis in the dendrogram 

indicates distance between individual genotypes and clusters ( Figure 5  ). 

 In the  Figure 5  bottom panel, a bar plot from STRUCTURE is shown, where vertical lines represent indi-

viduals. On each line, the probability of belonging to each group is represented by a color code. The figure 

also shows the graphical output of SOM-RP-Q applied to the experimental maize data. In the SOM-RP-Q plot 

(top-left panel), small circles represent SOM nodes and are grouped into clusters (marked with ellipses) 

according their relative position. Node sizes are proportional to the winning frequency on the node during 

the training phase, and the numbers in each node represent their position in the SOM structure. The arbitrary 

RP space is shown on the  “ x ”  and  “ y ”  axis.   
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 Figure 3      Scatterplot of the first two axes resulting from principal coordinates analysis of molecular data (SNPs) from eight 

groups of experimental maize data.    

 Table 2      Proportion of classification error of the evaluated algorithms to identify PGS from simulated molecular data.  

Genetic divergence   
 

Populations  
 K   

Clustering method  

Level     F   ST   statistic  UPGMAa    Ward  b      PCA + Ward  c      K-Means  d      STRUCTURE   e       RP-Q-SOM  f      

Low   0.07   3   0.61   0.56   0.57 (22)   0.52   0.48   0.17

Low   0.06   5   0.73   0.68   0.71 (20)   0.69   0.68   0.22

Medium  0.23   3   0.09   0.03   0.09 (8)   0.01   0.02   0.01

Medium  0.17   5   0.47   0.22   0.15 (9)   0.08   0.09   0.03

High   0.38   3   0   0   0 (7)   0   0   0

High    0.38    5    0.04    0.01    0 (6)    0    0    0  

    a Unweighted Pair Group Method using Arithmetic Average. 

   b  Ward Method. 

   c  Ward algorithm applied to the principal components (PC) which were significant according to Tracy-Widom (TW), the average 

number of PCs used is shown between brackets. 

   d  Non hierarchical method K-Means. 

    e   Bayesian method implemented in STRUCTURE. 

   f    The relative position self organizing map method.   
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 Figure 4      Clustering error rate with respect to the level of genetic divergence ( F  
ST

 ) among populations for PGS with three (left) 

and five subpopulations (right). Six clustering procedures are compared.    

  Discussion 
 Identifying genotype clusters from marker profiles is a common task in genetics and molecular biology. 

Cluster analysis has proved to be a powerful tool to investigate  “ natural ”  groups of molecular marker data. 

In most cluster analyses, groups are not known a priori, and the interest is focused on finding them without 

the help of a response variable (unsupervised learning). Hierarchical (e.g. UPGMA and Ward ’ s method) and 

non-hierarchical (e.g. K-Means) clustering algorithms provides a simple and powerful tool for determining 

the PGS of germplasm collections using molecular marker data ( Odong et al., 2011 ). The analysis can be con-

ducted directly from/onto the data sets and followed by other procedures to estimate the number of clusters 

in the underlying PGS ( Gordon, 1999 ;  Still and Bialek, 2004 ;  Tibshirani et al., 2001 ). 

 Recent studies looking for PGS, show that molecular information can also be effectively handled by 

model-based clustering and principal component analysis. The former (probabilistically) assigns individu-

als in the sample to clusters, or jointly to two or more populations if their genotypes indicate that they are 

admixed. The widely used software STRUCTURE allows us to implement a model-based clustering that can 

be applied to most of the genetic markers, provided that they are not closely linked ( Pritchard et al., 2000 ). 

The approach to the study of PGS from principal component analysis provides a formal test for the presence 

of structure in the genetic data ( Patterson et al., 2006 ). The performance of PCA, as the other of distance-

based clustering techniques, depends only on subgroup differentiation and does not require other biological 

assumptions. 

 In this work these generic clustering algorithms were compared, among them and with other cluster-

ing method from the artificial neural network family (SOM-RP-Q). The overall performance of the selected 

methods for cluster marker profiles were evaluated over several simulated scenarios and using a well-known 

experimental data set of maize inbred lines ( Hansey et al., 2011 ). SOM-RP-Q produced a good estimation of 

the number of simulated clusters in the artificial data sets, being robust to the appearance of isolated nodes 

( Fern á ndez and Balzarini, 2007 ). The identification of the nodes belonging to the clusters makes it possible 

to calculate uncertainty coefficients in a cluster assignment. 

 The results showed that UPGMA hierarchical clustering applied to molecular data was not efficient to 

detect population genetic structures in cases of low genetic divergence. At medium levels of population 
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genetic divergence (0.1  <   F  
ST

   <  0.25), UPGMA improved its relative performance in the situations of simple 

population structure (e.g.: 3 subpopulations) but maintained high clustering error rates with more complex 

structures (e.g.: 5 subpopulations). Therefore, this cluster analysis cannot be the recommended as a choice 

for determining the genetic structure of a genotype set, except in situations in which high divergence among 

plant populations is expected.  Odong et al. (2011)  suggested that the poor performance of UPGMA method 

in recovering the original structure with low divergence is because it produces highly unbalanced clusters. 

 At higher levels of genetic divergence ( F  
ST

   >  0.2), the performance of all procedures became similar and 

acceptable. The differences in classification error between Ward and UPGMA in real data confirmed the find-

ings from simulation results that show better performance of Ward than UPGMA under lower genetic diver-

gence.  Jobson (1992)  discusses the ability of Ward to keep outlying accessions within clusters. Therefore, 

Ward ’ s algorithm was the preferred choice between the hierarchical clustering methods. However, our results 

indicate that SOM-RP-Q performed the best in classifying molecular marker profiles and discovering PGS. 

SOM-RP-Q recovered the underlying populations even for relatively low divergence among subpopulations 

( F  
ST

   <  0.1). SOM-RP-Q provided the means to map molecular markers profiles in a two-dimensional space. 

The inner net structure allows inference about the number of clusters emerging over the learned net. The 

performance of STRUCTURE was close to that of SOM-RP-Q, but the identification of the underlying PGS by 

means of SOM-RP-Q was faster. The model-based algorithm in the software STRUCTURE uses Markov Chain 

method for parameter estimation, which is computationally time-consuming with respect to neural networks 

algorithms ( Roux et al., 2007 ;  Lee et al., 2009 ). 

 Wang et al. (2002) concluded that by using neural networks as an intermediate step to analyze genome 

wide gene expression data, the gene expression patterns can be more easily revealed than by using hierar-

chical clustering and a non-hierarchical clustering.  Evanno et al. (2005)  stated that STRUCTURE was able to 

detect the subpopulations in simulated data sets according to an island migration model. Our results agree 

with findings of  Evanno et al. (2005) , but only when the subpopulation divergence is not very low. Zhao et al. 

(2007) reported that the model-based clustering method could not adequately define the structural complex-

ity of the populations. 

 Lawson and Falush showed that model-based algorithms could outperform generic clustering 

approaches under LD among genetic markers and high relatedness between individuals. They dis-

cussed the problem of high statistical correlation between physically close sites and the subsequent loss 
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 Figure 5      Graphical output of the SOM-RP-Q (top-left panel), hierarchical Ward (top-right panel) and the STRUCTURE (bottom 

panel) methods applied to the experimental maize data.    
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of information to calculate similarities between individuals. Model-based algorithm FineSTRUCTURE 

( Lawson et al., 2012 ), is recommended to be used for clustering with LD among markers. This method was 

not used here because, given the low amount of markers (mostly unlinked) (200 – 300 SNPs), the data sets 

could be largely unlinked.  Lawson and Falush (2012)  worked in the context of full sequenced data, simulat-

ing data sets that contain 500,000 SNPs for a small number of individuals ( n   =  140). The methods included 

in our paper assume that each marker is independent of most of the other markers in the panel (  >  95%). 

Such unlinked models give equal weight to all markers in the study. By using QMSim, we simulated data 

in which statistical correlation between markers was low, and in the experimental maize data used as 

illustration, the levels of ancestry and the LD were also low. When high ancestry is expected, the similar-

ity measures that include the linkage concept may provide an extra gain during the clustering process. 

The present study also showed that non-hierarchical cluster K-Means performed comparatively well with 

respect to SOM-RP-Q under the different scenarios. Similar results were reported by  Lee et al. (2009) , but 

the use of non-hierarchical cluster K-Means with the experimental data set was not successful to recovery 

PGS in the data set. 

 Based on the results of this work, we recommend using the algortihms SOM-RP-Q and the one imple-

mented in the software STRUCTURE to infer PGS from molecular markers rather than other of the evaluated 

clustering procedures, especially with genotypes with low genetic divergence. SOM is an efficient method 

for analyzing systems ruled by complex non-linear relationships and provides an alternative to traditional 

statistical methods for classifying complex data (Nikolic et al., 2009;  Worner and Gevrey, 2006 ). SOM is 

widely used for knowledge discovery, pattern recognition, and clustering and visualization of large multi-

dimensional data sets.  Worner and Gevrey (2006)  found that SOM was able to reduce very high dimensional 

data into patterns that could be usefully interpreted. SOM-RP-Q analysis can not only perform significant 

data reduction but also could provide information about typical genotype marker profiles representing 

each cluster ( Fern á ndez and Balzarini, 2007 ). While other clustering techniques are more conventional 

methods used for the analysis of molecular marker profiles in plant breeding, SOM-RP-Q is an unsuper-

vised learning algorithm able to uncover PGS that preserve topology of clusters into a two-dimensional 

form, which allows its visualization. This qualifies SOM to be a good tool for molecular marker profile 

clustering. The SOM algorithm used here resulted more effective than other evaluated methods for sparse 

unlinked genetic data.  
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