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Abstract

We propose a dispersive representation of the charged pion vector form
factor that is consistent with chiral symmetry and fulfills the constraints
imposed by analyticity and unitarity. Unknown parameters are fitted to
the very precise data on τ−

→ π−π0ντ decays obtained by Belle, lead-
ing to a good description of the corresponding spectral function up to
a ππ squared invariant mass s ≃ 1.5 GeV2. We determine the ρ(770)
mass and width pole parameters and obtain the values of low energy
observables. The significance of isospin breaking corrections is also dis-
cussed. For larger values of s, this representation is complemented with
a phenomenological description to allow its implementation in the new
TAUOLA hadronic currents.
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1 Introduction

Last years have witnessed a notorious progress in the knowledge of the two-pion
system, both from theoretical and experimental sides. In particular, the high
precision measurements of the charged and neutral pion vector form factors per-
formed at the flavour factories BaBar [1], Belle [2], CMD-2 [3], KLOE [4] and
SND [5] have significantly improved the accuracy of previous data. As it is well
known, theoretical predictions for these form factors cannot be obtained analyt-
ically from first principles through standard calculations, since this involves in
general the hadronization of QCD currents in a nonperturbative energy regime
(E . 1 GeV). In order to overcome this problem, one can rely on effective mod-
els [6, 7, 8] that intend to describe the involved dynamics within a simplified
scheme. In general, in these models the form factors are required to satisfy
the proper behaviour at very low energies, and the effect of intermediate reso-
nances is taken into account through the inclusion of Breit-Wigner functions.
In this way one can obtain phenomenologically adequate hadronic matrix ele-
ments [9, 10, 11, 12], which have been included e.g. in the standard Monte Carlo
Generator for tau decays, TAUOLA [13]. However, in general these models in-
clude several ad-hoc assumptions, and can even have problems of consistency
with QCD [14, 15]. In addition, even when the agreement with experimental
data can be very good, usually the model parameters can be hardly related to
the underlying strong interaction theory.

Another possible approach is to consider just the symmetry properties of
QCD in order to build a general effective action adequate for the desired energy
regime. At very low energies E ≪ Mρ, where Mρ is the ρ(770) resonance mass,
the approximate chiral symmetry of QCD allows to build the effective quantum
field theory known as Chiral Perturbation Theory (χPT) [16]. The latter pro-
vides a successful description of the low-energy phenomenology of strong and
electroweak interactions, in which hadronic observables are calculated through
an expansion in powers of ratios of momenta and masses of the lightest degrees
of freedom (light pseudoscalar mesons) over a chiral symmetry breaking scale,
4πFπ ∼ 1.2 GeV. However, for E ∼ Mρ the expansion parameters become large,
and new degrees of freedom, namely the lowest-lying light-flavoured resonances,
become active. Even though in this regime there is no straightforward expan-
sion parameter, one can build an effective theory by considering an expansion
in powers of the inverse of the number of colours, 1/NC , with the introduction
of resonances as active fields in the effective action. Indeed, it is found that
this approach allows to describe satisfactorily most salient features of meson
phenomenology [17, 18], which suggests that the large-NC limit of QCD is a
good starting point to derive a chiral Lagrangian that includes resonance fields
[19, 20, 21].

In this work we study one of the simplest hadronic observables, namely the
pion vector form factor Fπ

V (s), defined through

〈

π0π−|d̄γµu|∅
〉

=
√
2Fπ

V (s) (pπ− − pπ0)
µ
, (1)

where s ≡ q2 ≡ (pπ− +pπ0)2. For s > 0, this form factor is probed by the decay
τ− → π−π0ντ , while in the isospin symmetry limit it can be experimentally
measured from e+e− → π+π− (s > 0) and elastic e−π+ scattering (s < 0).
The analysis of Fπ

V (s) allows to increase our knowledge of the hadronization of
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QCD currents in the intermediate energy region, where the presence of meson
resonances plays a crucial role. On the other hand, the analysis of isospin
breaking corrections to the form factors in tau decays and e+e− scattering [22,
23, 24, 25, 26] is essential for the evaluation of the hadronic contribution to the
anomalous magnetic moment of the muon aµ, which provides a stringent test
of new physics [27].

The theoretical analysis of the pion vector form factor has been addressed
by several authors in the last years. At very low energies, Fπ

V (s) has been
computed in χPT up to O(p6) [28, 29, 30]. Then, to enlarge the domain of
applicability up to ∼ 1 GeV, unitarization techniques [31, 32] and dispersion
relations have been employed [33, 34, 35]. Moreover, in order to go beyond
this energy region, the inclusion of the ρ(1450) resonance [36] and even a tower
of resonances, inspired in the NC → ∞ limit [37, 38], have been proposed.
Our work is a sort of extension of those in Refs. [33, 34, 39, 40], in which the
authors analyze ππ and Kπ vector form factors considering O(p4) expressions
obtained from a chiral effective theory that includes the dominant resonance
exchange, followed by an Omnès-like resummation of final state interactions.
Our procedure is similar to that proposed in Ref. [40] for the Kπ vector form
factor: we consider an n-subtracted dispersion relation for Fπ

V (s) in which the
input elastic phase shift δ11(s) is taken from the effective theory, resumming the
chiral loops into the denominator of the O(p4) form factor. This ensures to
fulfill unitarity and analyticity constraints. It is seen that a phenomenologically
good result is obtained with three subtractions, hence our expression for Fπ

V (s)
depends on four parameters: Mρ, Fπ , and two subtraction constants α1 and α2

(the remaining subtraction constant is fixed by the normalization of the form
factor). These constants can be related to chiral low-energy observables [29, 30],
namely the squared charged pion radius

〈

r2
〉π

V
and the coefficients of O(s2) and

O(s3) terms in the chiral expansion, cπV and dπV , respectively.
The above described approach is able to provide a good description of the

τ− → π−π0ντ spectral function for a squared ππ invariant mass up to about
smax ≃ 1.5 GeV2. Beyond these energies, we propose a complementary expres-
sion for the form factor that includes the effects of the excited states ρ′ and
ρ′′, matching smoothly the previous one at s ∼ smax. Our result for the full
form factor can be useful to improve the new version of TAUOLA [41], which
presently includes the expressions obtained within a chiral Lagrangian frame-
work with resonances [42, 43, 44, 45, 46]. This is important [47] not only for
the proper simulation of backgrounds and subsequent signal extraction at the
more frequent tau decay modes but also for the analysis of rare processes and
the searches of new physics [48].

The article is organized as follows: in Section 2 we obtain a dispersive rep-
resentation of Fπ

V (s) and discuss the inclusion of isospin breaking corrections.
The model parameters are fitted to experimental data up to s ≃ 1.5 GeV2,
and our input for δ11(s) in the elastic region is confronted with present experi-
mental values. Then, in Section 3 we extend our parametrization of Fπ

V (s) to
higher energies, including the effective contribution of excited resonances. The
agreement with experimental data is shown. In Section 4 we present the results
for the low-energy observables related to our subtraction constants. Finally, in
Section 5 we state the conclusions of our analysis.
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2 Low energy description of F π
V (s)

As stated, at very low energies the pion vector form factor is well described by
χPT. Let us first consider the limit of exact isospin symmetry. At O(p4), one
has [49]

Fπ
V (s)

χPT = 1 +
2Lr

9(µ)

F 2
π

s − s

96π2F 2
π

[

Aπ(s, µ
2) +

1

2
AK(s, µ2)

]

, (2)

where Lr
9(µ) is one of the renormalized low-energy coupling constants in the

chiral Lagrangian. The functions AP (s, µ
2) are given by

AP (s, µ
2) = log

m2
P

µ2
+ 8

m2
P

s
− 5

3
+ σ3

P (s) log

(

σP (s) + 1

σP (s)− 1

)

, (3)

where the phase space function σP (s) reads

σP (s) =

√

1− 4
m2

P

s
. (4)

On the other hand, the computation of Fπ
V (s) from a chiral Lagrangian that in-

cludes the lowest-lying vector meson multiplet as active resonance fields yields [19]

Fπ
V (s) = 1 +

FV GV

F 2
π

s

M2
V − s

, (5)

where MV = Mρ, and FV and GV measure the strength of the ρVµ and ρππ
couplings, respectively, Vµ being the quark vector current. This tree level result
corresponds to the leading term in powers of 1/NC , and it is O(p4) in the chiral
expansion. If the form factor is required to vanish in the limit of large s, then
one gets the relation FV GV = F 2

π , which yields

Fπ
V (s) =

M2
ρ

M2
ρ − s

. (6)

Comparing with Eq. (2), the low energy χPT coupling L9 is predicted to be

L9 =
FV GV

2M2
ρ

=
F 2
π

2M2
ρ

≃ 7.2 · 10−3 , (7)

in very good agreement with the value obtained from phenomenology. This
shows explicitly that the ρ(770) contribution is the dominant physical effect in
the vector form factor of the pion. Now, as stated in Ref. [33], one can do better
and match Eq. (6) to the O(p4) χPT result in Eq. (2), including the final state
interactions encoded in the chiral loop functions AP (s, µ

2):

Fπ
V (s) =

M2
ρ

M2
ρ − s

− s

96π2F 2

[

Aπ(s) +
1

2
AK(s)

]

. (8)

We omit from now on the explicit dependence on the µ scale, taking µ = Mρ.
The results do not depend significantly on changes in this scale. From Eq. (8),
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unitarity and analyticity constraints lead to the Omnès exponentiation of the
full loop function [33],

Fπ
V (s) =

M2
ρ

M2
ρ − s

exp

{

− s

96π2F 2

[

Aπ(s) +
1

2
AK(s)

]}

. (9)

In order to account for the resonance width, here one should not simply replace
M2 − s by M2 − s− iMΓ(s) in the effective propagator, since this would dou-
ble count ℑm[AP (s)] and analyticity would be violated at O(p6) in the chiral
expansion. One could avoid the double counting by shifting the imaginary part
of the loop functions from the exponential to the propagator [33], but still ana-
lyticity would be lost. We follow instead a procedure similar to that proposed
in Ref. [40] for the Kπ form factor, in which unitarity and analyticity are pre-
served. As a starting point we consider a form factor in which the loop functions
are resummed into the denominator,

F
π (0)
V (s) =

M2
ρ

M2
ρ

[

1 + s
96π2F 2

π

(

Aπ(s) +
1
2AK(s)

)

]

− s

=
M2

ρ

M2
ρ

[

1 + s
96π2F 2

π

ℜe
(

Aπ(s) +
1
2AK(s)

)

]

− s− iMρΓρ(s)
, (10)

where we have defined the imaginary part of the denominator as −MρΓρ(s).
The energy dependent width is thus given by

Γρ(s) = − Mρ s

96 π2 F 2
π

ℑm
[

Aπ(s) +
1

2
AK(s)

]

, (11)

and from Eq. (3) one has

Γρ(s) =
sMρ

96 π F 2
π

[

θ
(

s− 4m2
π

)

σ3
π(s) +

1

2
θ
(

s− 4m2
K

)

σ3
K(s)

]

, (12)

which is in agreement with the result obtained from a chiral theory with reso-
nances [50] if one assumes the relation GV = FV /2.

The form factor in Eq. (10) has the correct low-energy behaviour at O(p4)
[33] and leading O(p6) contributions in χPT [51], and vanishes at short distances
as expected from the asymptotic behaviour ruled by QCD. As stated, the loop
functions AP (s) contain the logarithmic corrections induced by final state in-
teractions. Now we take into account the fact that the two pion vector form
factor is an analytic function in the complex plane, except for a cut along the
positive real axis starting at the threshold for two pion production, sthr = 4m2

π,
where its imaginary part develops a discontinuity. From unitarity it can be
shown [33, 34] that the form factor satisfies an n-subtracted dispersion relation
that involves the scattering phase in the elastic region, for which experimental
data are available. In the case of n subtractions at s = 0, the dispersion relation
admits the well-known Omnès solution

Fπ
V (s) = Pn(s) exp

{

sn

π

∞
∫

sthr

ds′
δ11(s

′)

(s′)n(s′ − s− iǫ)

}

, (13)
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where

logPn(s) =

n−1
∑

k=0

αk
sk

k!
(14)

is the corresponding subtraction polynomial, and δ11(s) is the I = 1, J = 1 two-
pseudoscalar scattering phase shift. The subtraction constants αk are given
by

αk =
dk

dsk
logFπ

V (s)

∣

∣

∣

∣

s=0

. (15)

At least one subtraction is required in Eq. (13) to achieve convergence. Here
the first subtraction constant has been fixed from the normalization Fπ

V (0) = 1,
which holds with good approximation in view of the conservation of the vector
current in the isospin symmetry limit. On the other hand, in order to determine
the scattering phase shift δ11(s) [to be used as input in Eq. (13)] we follow the
approach in Ref. [40], taking

tan δ11(s) =
ℑmF

π(0)
V (s)

ℜeFπ(0)
V (s)

, (16)

where F
π(0)
V (s) is given by Eq. (10). In this way, the form factor in Eq. (10)

trivially satisfies the Omnés relation (13) for n = 1 and Fπ
V (0) = 1. This

form factor should be adequate to reproduce the experimental observations in
the low energy limit, since by construction it matches χPT results. However,
beyond this limit one would not expect a sufficiently accurate description of
the data. Fortunately, the analyticity properties of Fπ

V (s) allow to increase
accuracy by considering more subtractions in Eq. (13): for higher n, the weight
of the dispersive integral at large energies gets reduced, and the corresponding
information is translated to the subtraction constants [34], which can be taken
as unknown parameters. In addition, some approach has to be used to deal with
the phase shift beyond the inelastic two-kaon threshold, where the contribution
of the dispersive integral is in general still relevant and Eq. (13) is no longer valid
(in fact, this happens already at the four-pion threshold, but higher multiplicity
intermediate states are expected to be phase space suppressed). The goal is
to obtain a form factor that leads to a satisfactory description of the available
data, considering just a few subtractions and a phenomenologically adequate
elastic phase shift.

On the basis of the previous discussion, we have carried out fits of Fπ
V (s) to

Belle data from τ decays. We find that a good description of the data can be
obtained with n = 3 subtractions, i.e. taking

Fπ
V (s) = exp

[

α1 s +
α2

2
s2 +

s3

π

∫

∞

sthr

ds′
δ11(s

′)

(s′)3(s′ − s− iǫ)

]

. (17)

In this form factor we have four parameters, namely the subtraction constants
α1,2, and the parametersMρ and Fπ that determine the phase shift δ11 according
to Eqs. (10) and (16). In addition, in order to deal with the phase shift in the
large energy region, we have distinguished two intermediate (squared) energies
s1 and s2. The former is defined as the limit up to which we consider Eq. (16)
to be a reliable description of the phase shift. As stated, we expect this value to
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be of the order of the inelastic two-kaon threshold, s1 ≃ 4M2
K , or alternatively

we can consider the limit s1 ≃ (Mρ + Γρ)
2, where the effect of the ρ resonance

should dominate. In any case one expects s1 to be about 1 GeV2. As we show
below, this will be supported a posteriori by the good agreement between our
predictions and the experimental data for δ11 quoted some time ago in Refs. [52,
53, 54]. Beyond s1, the dispersive integral in Eq. (17) should be affected not
only by inelastic contributions but also by the presence of excited resonance
states. The other point, s2, indicates the energy at which we assume that the
phase shift saturates its asymptotic value δ11(s → ∞) = π, corresponding to the
existence of a single narrow resonance [55, 56, 57]1. Here we take s2 ≃ M2

τ . In
the intermediate region, s1 ≤ s ≤ s2, we assume for simplicity a linear behaviour
of δ11 with s. In order to take into account the uncertainties arising from these
assumptions, when performing our fits we have considered possible variations of
the values of s1 and s2, and of the upper integration limit s∞, which is usually
taken to be in the range [2.25,∞] GeV2 [34, 40, 58]. The corresponding effects
on our results have been taken as part of the systematic error of our theoretical
approach.

Another aspect to be taken into account is the effect of isospin violating
corrections to the pion vector form factor. In general one has to distinguish
between the neutral and charged pion vector form factors, the latter being de-
fined by Eq. (1). The corrections can be expanded in powers of the quark mass
difference and the electromagnetic coupling, in addition to the chiral counting.
At the leading order, the spectral function for the decay τ− → π−π0ντ can be
written as [59]

dΓ(τ− → π−π0ντ )

ds
=

G2
F m3

τ

384 π3
SEW |Vud|2

(

1− s

M2
τ

)2 (

1 +
2s

M2
τ

)

λ3/2

(

1,
m2

π0

s
,
m2

π+

s

)

|f+(s)|2 GEM (s) , (18)

where SEW = 1 + (α/π) log(M2
Z/M

2
τ ) includes the dominant short-distance

electroweak corrections, and the factor GEM (s) arises from the contribution
of electromagnetic loops. In the isospin limit one has SEW = GEM = 1,
λ1/2(1,m2

π/s,m
2
π/s) = σπ(s), and the form factor in Eq. (18) reduces to the

pion vector form factor, f+(s) = Fπ
V (s). The dominant isospin breaking effect

in Fπ
V (s) is that arising from phase space, i.e., from considering different masses

for the charged and neutral pions and kaons in the loop functions. Thus one
has to replace the functions Aπ(s) and AK(s) by Aπ−π0(s) and AK−K0(s), re-
spectively. Explicit expressions for these functions are given in Appendix A. In
this way, following the same steps that lead to Eq. (17) we can obtain a dis-
persion relation for the charged pion vector form factor, Fπ+

V (s). In addition,
in f+(s) one has to take into account a local electromagnetic correction f elm

local,
which contributes as an additional term in the decay amplitude [59]. One has
then

f+(s) = Fπ+
V (s) + f elm

local . (19)

1The asymptotic limit of the phase shift obtained from Eq. (16) slightly deviates from this
value, owing to the linear growth of Γρ with s.
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This local electromagnetic correction is given by [59]

f elm
local =

α

4π

(

−3

2
− 1

2
log

M2
τ

µ2
− log

m2
π

µ2
+ 2 log

M2
τ

M2
ρ

−X(µ)

)

, (20)

where the scale dependence in the last term cancels that in the logarithms.
At the scale µ = Mρ, X(µ) is estimated to be between −2.5 and 4.5 [59].
Finally, the loop correction GEM (s) has been computed (including resonance
contributions) in Refs. [60] and [61]. We notice that this correction has not been
taken into account in the extraction of the form factor carried out by the Belle
Collaboration in Refs. [2, 62] (it has been included for the analysis of the muon
anomalous magnetic moment, where isospin breaking effects represent a central
subject of interest).

In order to incorporate the effect of isospin corrections and evaluate its
significance, we have carried out our fits for the tau decay data considering
three different situations:

• I) The limit of exact isospin symmetry, in which f+(s) = Fπ
V (s), where

the form factor is given by Eq. (17).

• II) The inclusion of isospin breaking corrections at the level of kinematics,
i.e. considering different masses for the charged and neutral particles in
the loop functions and the kinematical factors in Eq. (18) (this would
correspond to Belle’s analysis [2] of the τ− → π−π0ντ decay width).

• III) The inclusion of all lowest order isospin breaking corrections, as in
Eqs. (18-20). For the factor GEM (s) we have considered here the analysis
in Ref. [61].

As a general result, it is found that we obtain a good fit to Belle data [2] for
s . 1.5 GeV2. Our fits have been carried out with the MINUIT package taking
the first 30 points (smax = 1.525 GeV2, with a bin width of 0.05 GeV2). The
results are shown in Table 1. First of all, it is worth to notice that —even with
just a few input parameters— the theoretical curve is able to fit the very precise
set of experimental data with a χ2/dof value close to unity. Hence, it is seen
that within this energy range the data can be described without the inclusion of
higher resonant states in the theoretical scheme. On the other hand, it is found
that the effect of isospin breaking corrections on the fitted parameters is below
the 2% level.

Regarding the errors in the fitted parameters, we have quoted separately
those arising from the fit and the systematic errors coming from the theoretical
approach. The latter are basically due to the uncertainties in the energy range
to be fitted, the number of subtractions considered, and the values of s1, s2
and s∞ in the dispersive integral. In order to have an estimation of the effect of
these uncertainties we have considered the fits for smax in the range [1.325, 1.525]
GeV2, 2 to 4 subtractions, and s1, s2, s∞ in the ranges [0.95, 1.1]2, [M2

τ ,∞] and
[2.25,∞] GeV2, respectively. The corresponding results have been quoted in the
second brackets in Table 1, while the numbers in the first brackets stand for the
statistical errors arising from the fit. It is found that Mρ and Fπ appear to be
anticorrelated, and the same happens with the parameters α1 and α2.

2Best fits are obtained in all cases for s1 ≃ 0.98 GeV2, in agreement with theoretical
expectations.
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Fit value (I) Fit value (II) Fit value (III)
Mρ [GeV] 0.8430(5)(17) 0.8427(5)(14) 0.8426(5)(20)
Fπ [GeV] 0.0901(2)(5) 0.0902(2)(4) 0.0906(2)(4)
α1 [GeV−2] 1.87(1)(3) 1.87(1)(3) 1.81(1)(2)

α2 [GeV−4] 4.29(1)(7) 4.31(1)(7) 4.40(1)(6)
χ2/dof 1.37 1.37 1.55

Γρ(M
2
ρ ) [GeV] 0.206(1)(3) 0.206(1)(3) 0.204(1)(3)

Table 1: Results of our fits. The first and second numbers in brackets correspond to
the statistic and theoretical systematic errors, respectively. Γρ(M

2
ρ ) is obtained using

the fitted values of Mρ and Fπ and is given only for reference.

From the table it is seen that the central values of Fπ obtained from the fit
are about two percent below the value of 92.2 MeV quoted by the PDG [63]. The
difference can be attributed to further theoretical uncertainties, mainly arising
from the effect of higher order terms in the large NC expansion. This includes
corrections to the relations GV = FV /2 and GV FV = F 2

π , which have been
used for the matching between the form factors obtained within the low energy
χPT theory and the chiral theory with resonances. In fact, as already pointed
out in Refs. [34, 40], the energy-dependent width given by the imaginary part
of the loop function with Fπ = 92.2 MeV is not adequately normalized so as
to reproduce both the experimental data on ππ and Kπ tau decay channels.
Concerning the properties of the ρ(770) resonance, in order to obtain the corre-
sponding physical mass and width one should compute the position of the pole
of the pion vector form factor in the complex s plane, say spole. One has

√
spole = Mpole

ρ − i

2
Γpole
ρ . (21)

Unfortunately, spole cannot be obtained directly from the expression for the
pion vector form factor in Eq. (17), since in general the complex variable s in
the dispersion relation is not in the same Riemann sheet in which the pole is
located. In order to deal with this difficulty, one possible procedure is to make
use of one-pole Padé approximants PN

1 (s; s0), defined by

PN
1 (s; s0) =

N−1
∑

k=0

aK(s− s0)
k +

aN (s− s0)
N

1− aN+1

aN
(s− s0)

. (22)

In general, if one assumes that a complex function F (s) is analytical in a disk
around some point s0 except at a point spole, where it has a single pole, then
the de Montessus de Ballore’s theorem [64] states that the sequence of one-pole
Padé approximants PN

1 (s; s0) converges to F (s) in any compact subset of the
disk excluding the pole. Hence, the Padé pole zp = s0 + aN/aN+1 of PN

1 (s; s0)
converges to spole for N → ∞. The application of this method for the analysis
of resonance poles has been previously considered in Refs. [65], where details
can be found. In our case we have approximated the form factor Fπ

V (s) with
a function of the type of that in Eq. (22), taking s0 = (M0 − iΓ0/2)

2, with
M0 = 0.77 GeV, Γ0 = 0.15 GeV. The coefficients aK , K = 1, . . . , N +1 (a0 = 1
owing to vector current conservation) have been determined from a fit to a
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set of values of |Fπ
V (s)| and δ11(s) obtained from our dispersive representation,

Eq. (17), between the first and second production thresholds. From the results
of this fit, taking Padé approximants with N = 5 and N = 6 coefficients, we
find

Mpole
ρ = (759± 2)MeV , Γpole

ρ = (146± 6)MeV (Fit I) ;

Mpole
ρ = (760± 2)MeV , Γpole

ρ = (147± 6)MeV (Fit III) . (23)

This turns out to be our best determination of spole. One can still increaseN and
get a better fit of the data set, but given the larger number of parameters, the
errors of aN and aN+1 become also larger. As expected, the values in Eq. (23)
are not modified either if we take a different input for s0 or if we increase the
number of values of |Fπ

V (s)| and δ11(s) to be fitted.
For comparison, we have also analyzed the results for the pole mass and

width of the ρmeson corresponding to the parametrization proposed time ago by
Gounaris and Sakurai (GS) [6], which has been used in the fits carried out by the
Belle Collaboration [66]3. The results obtained by Belle using the normalization

Fπ
V (0) = 1 yield the parameter values M

(GS)
ρ = (774.6 ± 0.5) MeV, Γ

(GS)
ρ =

(148.1 ± 1.7) MeV. Taking into account the prescriptions in Refs. [67, 68, 69]
to deal with the cuts in the complex functions entering the GS form factor [see
Eqs. (31, 32) below] these parameters correspond to

Mpole
ρ = (760.9± 0.6)MeV , Γpole

ρ = (142.2± 1.6)MeV . (24)

The results in Eqs. (23) and (24) are consistent with each other and somewhat
different from the average values for the ρ mass and width quoted by the PDG,
namely Mρ = 775.49 ± 0.34 MeV and Γρ = 149.1 ± 0.8 MeV [63]. In fact,
the PDG values correspond to the parameters appearing in phenomenological
amplitudes where the resonances are introduced through BW functions (as e.g.

M
(GS)
ρ and Γ

(GS)
ρ ), hence they are strongly model dependent4. Alternatively,

one can take the pole mass and width as the relevant resonance properties. We
consider the agreement between the results in Eqs. (23) and (24) as a check of
consistency, in the sense that one expects the pole parameters to be essentially
model independent. For comparison, in Table 2 we show other determinations
of the pole mass and width quoted in the literature. The results for Mpole

ρ

and Γpole
ρ obtained either from our dispersive approach or from the simple GS

parametrization are found to be in good agreement with the average value of
these determinations. It is seen that the errors in Eqs. (24) are smaller than
those in our results, since the former were obtained from a direct fit to ex-
perimental data, while in our determination one has an additional uncertainty
introduced by the Padé approximants. However, the GS parametrization rep-
resents just a simple ad-hoc description of the underlying dynamics, thus it
implicitly includes a theoretical systematic error which is hardly estimable.

As a further check of consistency, we can compare the phase of the form
factor obtained from our fit with present experimental data on δ11(s) from Ochs
et al. [52], Estabrooks and Martin [53] and Protopopescu et al. [54]. The results
are shown in Fig. 1. We quote the data from threshold up to s1 ≃ 1 GeV2, i.e. the

3Details of this parametrization are given in the next section, see Eq. (31) and below.
4This has been pointed out in Refs. [40, 58] for the case of the K⋆(892) resonance, analyzed

in the context of τ− → (Kπ)−ντ decays.
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Reference Mpole
ρ Γpole

ρ Data Analysis

Sanz-Cillero et al. [36] 764.1+4.8
−3.7 148.2+2.5

−6.2 τ & e+e− DSE

Ananthanarayan et al. [70] 762.5 ± 2 142± 7 ππ → ππ RE

Feuillat et al. [71] 758.3 ± 5.4 145.1 ± 6.3 τ & e+e− SMA

Peláez [72] 754 ± 18 148± 20 ππ → ππ UχPT

Zhou et al. [73] 763.0 ± 0.2 139.0 ± 0.5 ππ → ππ χU

Masjuan et al. [65] 763.7 ± 1.2 144± 3 τ RA

Results from our fit I 759 ± 2 146± 6 τ DR

Results from our fit III 760 ± 2 147± 6 τ DR

Results from GS model 760.9 ± 0.6 142.2 ± 1.6 τ GS

Table 2: Comparison between different results for the pole mass and width of the
ρ(770) meson (values are in MeV). Abbreviations for the type of analysis carried out
are DSE: Dyson-Schwinger equations; RE: Roy equations; SMA: S matrix approach;
UχPT: Unitarized Chiral Perturbation Theory; χU: Chiral unitarization; RA: Rational
approximants; DR: Dispersive representation; GS: Gounaris-Sakurai parametrization.

region in which the phase of F
π (0)
V (s) has been used as input for the dispersive

integral. In general it is seen that the agreement is very good. It is remarkable,
however, that our predictions are somewhat below the data in the region of
very low energies. On the other hand, as shown in the figure, our results in that
region are in very good agreement with those recently obtained in Ref. [74] using
once-subtracted Roy-like equations [75]. Within errors, we also find agreement
with the values obtained supplementing Roy equations with chiral symmetry
constraints [76, 77]. This discrepancy between theory and experiment in the
very low energy region would deserve further tests, taking into account that the
experimental information corresponds to rather old measurements.

Another result that can be derived from our analysis is the value of the point
sπ/2, satisfying δ11(sπ/2) = π/2. This point is often used for the definition of
the so-called peak mass or visible mass (since it can be directly extracted from
experimental data). According to our fits, this value is rather stable with respect
to changes in the above mentioned systematic sources of theoretical errors. We
find √

sπ/2 = (775.0± 0.2)MeV . (25)

This is in agreement with the result of Ref. [70],
√
sπ/2 = (774 ± 3) MeV,

within a Roy equation analysis of the different partial waves in ππ scattering.
The peak mass has to coincide with the pole mass [69] when the corresponding
resonance is sufficiently narrow, it lies far from other resonances, and there is a
negligible background (non-resonant) contribution.

Finally, we point out that our results for the subtraction constants α1 and
α2 are compatible with previous determinations, although the errors are smaller
owing to the high quality of present Belle data. We come back to this issue in
Section 4.

3 Intermediate energy description of F π
V (s)

The approach presented in Sect. 2 has been used to obtain a theoretical de-
scription of the τ → ππντ spectral function for ππ invariant masses up to
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Figure 1: Two-pion phase shift δ11 as function of the ππ invariant mass squared. Our
theoretical expression (red curve) is shown to be in good agreement with experimental
data (from Ochs et al. [52], Estabrooks and Martin [53] in the s and t channels and
Protopopescu et al. [54]) up to the opening of the two-kaon threshold, s1 ≃ 1 GeV2.
At very low energies, where no data are available, our prediction agrees with the results
of Garćıa-Mart́ın et al. [74].

smax ≃ 1.5 GeV2. Above these energies this description is not adequate, in
fact, the experimental data are compatible with the presence of excited reso-
nances. In order to complement the dispersive representation for the pion vector
form factor proposed in the previous Section, we propose for the energy region
smax . s ≤ M2

τ an effective form factor that includes two excited states, namely
the ρ′(1465) and ρ′′(1700) resonances. We stress that the dispersive represen-
tation is insensitive to the modelling of this “intermediate” energy region. The
dynamics related with the excited resonance multiplets is poorly known, there-
fore there are no grounds to go beyond a phenomenological parametrization that
includes several unknown parameters. We extend the form factor in Eq. (10)
as [78]

Fπ
V (s) =

M2
ρ + (α′eiφ

′

+ α′′eiφ
′′

) s

M2
ρ

[

1 + s
96π2F 2

π

(

Aπ(s) +
1
2AK(s)

)

]

− s

− α′eiφ
′

s

M2
ρ′ [1 + sCρ′Aπ(s)]− s

− α′′eiφ
′′

s

M2
ρ′′ [1 + sCρ′′Aπ(s)]− s

, (26)
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where the constants Cρ′ and Cρ′′ are given by

CR =
ΓR

πM3
R σ3

π(M
2
R)

. (27)

The resonance masses Mρ′,ρ′′ and on-shell widths Γρ′,ρ′′ are free parameters of
this effective form factor. By construction, the off-shell widths of the excited
resonances behave in a similar way as the ρ width [45], considering the two-pion
states as the dominant absorptive parts of the corresponding self-energies:

ΓR(s) = ΓR
s

M2
R

σ3
π(s)

σ3
π(M

2
R)

θ(s− 4m2
π) . (28)

In addition, the form factor includes the coefficients α′ and α′′, which measure
the relative weight between the contributions of different resonances, and the
phases φ′ and φ′′, which account for the corresponding interference.

Now the unknown parameters can be fitted to Belle data on the τ → ππντ
spectral function. The quality of the matching between the phenomenological
form factor in Eq. (26) and the dispersive representation in Eq. (10) can serve as
a test of the consistency of our approach. The results of our fit for the resonance
parameters can be translated to the corresponding pole values, leading to

Mpole
ρ′ = (1.44± 0.08) GeV , Γpole

ρ′ = (0.32± 0.08) GeV ,

Mpole
ρ′′ = (1.72± 0.09) GeV , Γpole

ρ′′ = (0.18± 0.09) GeV , (29)

in good agreement with the values quoted by the PDG [63]. For the coefficients
and phases we obtain

α′ = 0.08+0.03
−0.01 φ′ = 0.14+0.10

−0.08

α′′ = 0.03± 0.01 φ′′ = 3.14+0.50
−0.06 .

(30)

Here, besides the statistical errors, we have included a systematic error arising
from the election of the initial value of the considered energy range, say s0. We
have taken s0 ∈ [1.3, 1.55] GeV2, and considered fit results with χ2/dof ≤ 1.
Within this range we obtain a good matching to the form factor in Eq. (10) at
s ≃ 1.35 GeV2. The fits are not significantly sensitive to the ρ meson parame-
ters, which have been taken from the results in Table 1. Our final curve for the
pion vector form factor covering the full range of values from threshold to M2

τ

is shown in Fig. 2 (solid line). The quality of the fits is reflected in the good
agreement between our results and the experimental data obtained by Belle,
in particular in the low energy region, where the latter are very precise. In
addition, it can be seen that the matching at s ≃ 1.35 GeV2 is smooth, which
supports the consistency of the phenomenological description proposed for the
intermediate energy region. In order to appreciate the agreement with data
with more detail, two close-ups of Fig. 2, corresponding to the low energy and
the peak regions, are shown in Fig. 3.

It is worth to point out that the phenomenological form factor in Eq. (26)
is qualitatively similar to the GS parametrization [6] mentioned in the previ-
ous section. Indeed, the GS form factor is built as a sum of Breit-Wigner-like
functions that keep a nontrivial real contribution in the corresponding denomi-
nators:

F
π(GS)
V (s) =

1

1 + β + γ

[

BWGS
ρ (s) + β BWGS

ρ′ (s) + γ BWGS
ρ′′ (s)

]

, (31)
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Figure 2: Pion vector form factor F π
V (s) compared to Belle data [2] (black dots).

Solid and dashed lines correspond to our description and the GS parametrization,
respectively. The dashed-dotted curve stands for the result from Ref. [33] (for Mρ =
775 MeV), while the dotted line corresponds to the dispersive representation in Ref. [34]
(for α1 = 1.83 GeV−2, α2 = 4.32 GeV−4 and Mρ = 774.2 MeV).

where

BWGS
R (s) =

M2
R (1 + dR ΓR(s)/

√
s)

(M2
R − s) + fR(s)− iMR ΓR(s)

, (32)

and the coefficients β and γ are complex numbers. The energy-dependent widths
ΓR(s) are given, as in our approach, by Eq. (28), while the expression for the
(real) functions fR(s) can be found in Ref. [6]. The constants dR are chosen
so that BWGS

R (0) = 1. As stated, this phenomenological parametrization has
been used in the fits carried out by the Belle Collaboration [66], allowing a
quite successful description of the data throughout the full spectrum. It is
represented by the dashed curve in Fig. 2 (in the close-ups in Fig. 3 our curve
and the GS curve overlap, and little differences can only be appreciated in the
peak region, where our curve shows a slightly better agreement with the data).
For comparison we also include in Figs. 2 and 3 the result obtained in Refs. [33]
and [34]. The latter corresponds to a dispersive representation of the form factor
in the isospin limit, without the inclusion of excited resonant states (we have
refitted the parameters according to present Belle data).

4 Low-energy observables

On the basis of the theoretical approach presented in Sect. 2 we can obtain the
values of chiral low energy observables. If the expansion of the pion vector form
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Figure 3: Two close-ups of Fig. 2 are displayed, corresponding to the low-energy
region (left panel) and the peak region (right panel).

factor in powers of s is parametrized as

Fπ
V (s) = 1 +

1

6

〈

r2
〉π

V
s + cπV s2 + dπV s3 + . . . , (33)

from Eq. (17) one has

〈

r2
〉π

V
= 6α1 , cπV =

1

2

(

α2 + α2
1

)

. (34)

Taking into account the results of our fit (case III, i.e. including isospin-breaking
corrections), we obtain

〈

r2
〉π

V
= 10.86± 0.14 GeV−2 , cπV = 3.84± 0.03 GeV−4 . (35)

These values are indeed in good agreement with almost all previous determina-
tions made by several authors within various chiral models, see Refs. [29, 30, 34,
79, 80, 81, 82, 83, 84, 85]. In order to go beyond the s2 term in the expansion,
one can make use of the general relation

αk =
k!

π

∫

∞

4m2
π

ds′
δ11(s

′)

s′k+1
, (36)

which allows to determine the subsequent subtraction constants in the Omnès
expression (13). In this way we obtain α3 = 29.2± 0.2 GeV−6, which leads to

dπV =
1

6
(α3 + 3α1α2 + α3

1) = 9.84± 0.05 GeV−6 . (37)

Previous evaluations for this observable have been carried out in Refs. [79] and
[84], leading to 9.70 ± 0.40 GeV−6 and 10.18 ± 0.27 GeV−6, respectively. In
order to check the consistency of our procedure we have also calculated the
constant α2 from the general relation (36), obtaining α2 = (3.7 ± 0.2) GeV−4,
in reasonable agreement with the result of the fit. Notice that, even if Eq. (36)
is exact, one can expect some deviation from the fitted value of α2 owing to the
ad-hoc treatment of the phase shift above the inelastic threshold in our analysis
of the form factor. In the case of α1 we cannot trust the result from Eq. (36)
since the slow convergence of the integral provides a large weight to this high
energy contribution.
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Reference rVV1
(Mρ)× 103 rVV2

(Mρ)× 104

VMD [29] −0.25 2.6
O(p6) χPT [29] −0.68(26) 1.50(44)

Pich and Portolés [34] −0.79(19) 1.46(3)
Our result −0.91(16) 1.49(1)

Table 3: Counterterm combinations extracted from
〈

r2
〉π

V
and cπV in O(p6) χPT.

In addition, the observables
〈

r2
〉π

V
and cπV can be related to two counterterm

combinations in the O(p6) chiral Lagrangian, namely rrV1
(Mρ) and rrV2

(Mρ) [29],

which are dominated by the vector resonance contributions rVV1
(Mρ) and rVV2

(Mρ).
Our results for these quantities are quoted in Table 3, showing a good agree-
ment with the values previously obtained in Ref. [34] and in the O(p6) χPT
fit in Ref. [29]. Within VMD these counterterms can be determined by inte-
grating out vector resonances in the framework of a chiral effective theory [19].
Considering just the contribution of the ρ meson resonance, within the Proca
formalism one gets [29]

rVV1
= 2

√
2
F 2
π

M2
V

fχfV , rVV2
=

F 2
π

M2
V

gV fV , (38)

where fV , gV and fχ are effective couplings in the chiral Lagrangian with res-
onances. Our results for rVV1

and rVV2
would lead then to the ratio fχ/gV =

−2.1± 0.5, far from the phenomenological value fχ/gV ≃ −0.33 [29]. This indi-
cates that the role of heavier resonances is crucial in order to describe the O(p6)
vector driven contributions in χPT, in agreement with Ref. [34].

5 Conclusions

The high quality data on the pion vector form factor obtained at flavour factories
demands a correspondingly improved analysis from the theoretical side. In
order to describe these data keeping the connection with the underlying strong
interaction dynamics, one can take profit of QCD symmetries to reproduce the
data in the very low energy domain, and make use of general properties of
quantum field theory to extend the analysis to higher energies. In this spirit,
we have presented a dispersive representation of the charged pion vector form
factor that fulfills the constraints imposed by analyticity and unitarity, and
reduces to the result obtained within χPT at low energies.

Our construction is based on the dispersion relation between the form factor
and the δ11(s) phase shift of elastic ππ scattering. The phase shift is obtained
from the leading contribution arising in the large-NC expansion including ρ(770)
exchange up the onset of inelasticities, with the further assumption of a smooth
growth up to the asymptotic value. In this way we obtain a theoretical expres-
sion for the form factor in terms of four parameters, namely Mρ, Fπ , and two
subtraction constants α1 and α2. The values of these parameters have been de-
termined by performing a fit to the very precise Belle data on the τ− → π−π0ντ
spectral function up to a squared ππ invariant mass smax ≃ 1.5 GeV2, leading
to the results quoted in Table 1. It is seen that the effect of isospin corrections
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on the parameters lies below the two percent level. From these results we have
determined the pole values of the ρ mass and width and the so-called visible or
peak ρ mass. We have also obtained the values of low energy observables and
compared the results with those arising from chiral effective theories.

In addition, we have addressed the energy region s ≥ smax ≃ 1.5 GeV2, in
which the inclusion of excited states is necessary to get a proper description
of τ− → π−π0ντ data. For this region we have proposed a phenomenological
expression for the form factor that takes into account the presence of the res-
onances ρ′ and ρ′′, assuming that the effective propagators behave in a similar
way as that of the ρ meson. This allows a good fit to the data, leading to values
for the ρ′ and ρ′′ masses and widths similar to those quoted in previous works.
It is seen that the curves for the form factor obtained for both energy regions
match smoothly at s ∼ smax.

As a conclusion, we have seen that the χPT results at low energies supple-
mented with the leading contributions in the large-NC expansion are able to
provide the input to a dispersive representation of the pion vector form factor
which fulfills analyticity and unitarity. On this basis, complemented with a phe-
nomenological description in the high energy region, we have shown that it is
possible to reproduce the very precise data on τ− → π−π0ντ decays throughout
all the phase space. This can be used as input to the new hadronic currents of
the TAUOLA Monte Carlo generator. On the other hand, our fits lead to the
parametrization of the charged pion vector form factor, thus the comparison
with a precise determination of the neutral form factor would provide robust
information on the ππ contribution to the muon anomalous magnetic moment.
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Appendix

The explicit form of the loop functions APQ(s) can be obtained from Ref. [49].
One has

APQ(s) = −192 π2 [sMPQ(s)− LPQ(s)]

s
, (39)

where MPQ(s) and LPQ(s) can be written in terms of new functions ΣPQ, ∆PQ,

kPQ, J̄PQ and J̃PQ as

MPQ(s) =
1

12 s
(s− 2ΣPQ) J̄PQ(s) +

∆2
PQ

3 s2
J̃PQ(s)−

1

6
kPQ +

1

288 π2
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LPQ(s) =
∆2

PQ

4 s
J̄PQ(s) . (40)

The new functions ΣPQ and ∆PQ are defined by ΣPQ = m2
P + m2

Q, ∆PQ =

m2
P −m2

Q, while kPQ includes the renormalization scale µ:

kPQ =
F 2
π

∆PQ
(µP − µQ) , (41)

where

µP =
m2

P

32 π2 F 2
π

log

(

m2
P

µ2

)

(42)

(we have taken µ = Mρ, as in the isospin symmetric case). Finally, the functions

J̄PQ and J̃PQ are given by

J̃PQ(s) = J̄PQ(s)− sJ̄ ′

PQ(0)

J̄PQ(s) =
1

32 π2

[

2 +

(

∆PQ

s
− ΣPQ

∆PQ

)

log

(

m2
Q

m2
P

)

−

ν

s
log

(

(s+ ν)2 −∆2
PQ

(s− ν)2 −∆2
PQ

)]

, (43)

where ν = λ1/2(s,m2
P ,m

2
Q). We note finally that

s J̄ ′

PQ(0) =
s

32π2

(

ΣPQ

∆2
PQ

+ 2
M2

PM
2
Q

∆3
PQ

log
M2

Q

M2
P

)

. (44)
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[72] J. R. Peláez, Mod. Phys. Lett. A 19 (2004) 2879.

[73] Z. Y. Zhou, G. Y. Qin, P. Zhang, Z. Xiao, H. Q. Zheng and N. Wu, JHEP
0502 (2005) 043.
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F. J. Ynduráin, Phys. Rev. D 83 (2011) 074004.

20

http://arxiv.org/abs/hep-ph/0212324
http://arxiv.org/abs/1012.2806
http://arxiv.org/abs/1002.3512
http://arxiv.org/abs/1306.6308


[75] S. M. Roy, Phys. Lett. B 36 (1971) 353.

[76] G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B 603 (2001) 125.

[77] I. Caprini, G. Colangelo and H. Leutwyler, Eur. Phys. J. C 72 (2012) 1860.

[78] P. Roig, Nucl. Phys. Proc. Suppl. 225-227 (2012) 161.

[79] T. N. Truong, hep-ph/9809476.

[80] J. F. de Trocóniz and F. J. Ynduráin, Phys. Rev. D 71 (2005) 073008.
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