Theoretical Computer Science 538 (2014) 84-102

Contents lists available at ScienceDirect & oorcteal

Theoretical Computer Science

www.elsevier.com/locate/tcs e

Distributed probabilistic input/output automata: @CmssMark
Expressiveness, (un)decidability and algorithms ™

Sergio Giro®*, Pedro R. D’Argeniob, Luis Maria Ferrer Fioriti ¢

a Fakultqt fiir Informatik, Technische Universitdt Miinchen, Germany
b Universidad Nacional de Cérdoba, FAMAF — CONICET, Cérdoba, Argentina
¢ Saarland University, Computer Science, Saarbriicken, Germany

ARTICLE INFO ABSTRACT
Keywords: Probabilistic model checking computes the probability values of a given property quanti-
Probabilistic systems fying over all possible schedulers. It turns out that maximum and minimum probabilities

Distributed systems
Nondeterminism
Interleaving

Markov decision processes
Partial observation

calculated in such a way are over-estimations on models of distributed systems in which
components are loosely coupled and share little information with each other (and hence
arbitrary schedulers may result too powerful). Therefore, we introduced definitions that
characterise which are the schedulers that properly capture the idea of distributed be-
haviour in probabilistic and nondeterministic systems modelled as a set of interacting
components.
In this paper, we provide an overview of the work we have done in the last years which
includes: (1) the definitions of distributed and strongly distributed schedulers, providing
motivation and intuition; (2) expressiveness results, comparing them to restricted versions
such as deterministic variants or finite-memory variants; (3) undecidability results—in
particular the model checking problem is not decidable in general when restricting to
distributed schedulers; (4) a counterexample-guided refinement technique that, using stan-
dard probabilistic model checking, allows to increase precision in the actual bounds in the
distributed setting; and (5) a revision of the partial order reduction technique for proba-
bilistic model checking. We conclude the paper with an extensive review of related work
dealing with similar approaches to ours.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Markov decision processes (MDPs) are widely used in diverse fields ranging from ecology to computer science. They
are useful to model and analyse systems in which both probabilistic and nondeterministic choices interact. MDPs can be
automatically analysed using quantitative model checkers such as PRISM [24] or LiQuor [10].

Since MDPs contain nondeterministic choices (in addition to probabilistic steps), the model checking problem is to find
out the largest or smallest probability of reaching a goal under any possible resolution of the nondeterministic choices,
a concrete instance being “the probability of arrival of a package is at least 0.95 no matter how the package is routed”. The
resolution of such nondeterminism is given by the so-called schedulers (called also adversaries or policies—see e.g. [4,28])
which choose an enabled transition after each finite execution path of the system.

* Supported by DFG Graduiertenkolleg 1480 (PUMA), ANPCYT Project PAE-PICT 02272, SeCyT-UNC Program 05/BP02 and Project 05/B497, EU 7FP grant
agreement 295261 (MEALS), DFG as part of SFB/TR 14 AVACS, and DFG/NWO Bilateral Research Programme ROCKS. This article was written while the first
author was on leave at the Department of Computer Science, FCEIA, Universidad Nacional de Rosario.

* Corresponding author.

E-mail addresses: sergio.giro.ar@gmail.com (S. Giro), dargenio@famaf.unc.edu.ar (P.R. D’Argenio), ferrer@depend.cs.uni-saarland.de (L.M. Ferrer Fioriti).

0304-3975/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.07.017

http://dx.doi.org/10.1016/j.tcs.2013.07.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:sergio.giro.ar@gmail.com
mailto:dargenio@famaf.unc.edu.ar
mailto:ferrer@depend.cs.uni-saarland.de
http://dx.doi.org/10.1016/j.tcs.2013.07.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2013.07.017&domain=pdf

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 85

initp initg
1/2 1/2 /\
headst tails headsg tailsg
T G

Fig. 1. T tosses a coin and G has to guess.

The available tools for model checking such as PRISM [24] or LiQuor [10] calculate the worst-case probability consid-
ering all possible schedulers. However, in distributed systems, some schedulers correspond to unrealistic resolutions of the
nondeterminism (as we illustrate below) thus resulting in overly pessimistic worst-case probabilities. A restricted class of
schedulers was proposed to cope with this problem in previous literature—see e.g. [13,9,8,12,16]. We call these schedulers
distributed schedulers, since in these settings there is a local scheduler for each component and so the resolution of the
nondeterminism is distributed among the different components.

In this paper, we investigate different subclasses of distributed schedulers in order to answer to which extent these
subclasses are able to attain the worst-case probability. The subclasses we consider are strongly related to the development
of techniques for MDP analysis. As an example, if the class of all schedulers is considered, worst-case probabilities of
reachability properties are attained by schedulers that are both Markovian—i.e. the decision is based on the current state
of the execution, disregarding the previous history—and deterministic—i.e. the schedulers themselves have no probabilistic
choices, see [4]. The existence of this subclass ensures that the worst-case probability can be found by exhaustive search
(notice that more efficient methods exist [4]). Hence, one may like to know to which extent these results hold in case the
schedulers are restricted to be distributed.

1.1. Unrealistic worst cases and distributed schedulers

A scheduler is a function mapping paths to transitions (or, in the more general case, paths to distributions on transitions).
Given that the execution up to some state s is known (namely, the history path), the scheduler “chooses” to perform one
transition out of all transitions enabled in state s.

The following example illustrates the problem that motivates the introduction of distributed schedulers: a man tosses a
coin and another one has to guess heads or tails. Fig. 1 depicts the models of these two men in terms of MDPs. Man T,
who tosses the coin, has only one transition which represents the toss of the coin: with probability % he moves to state

headst and with probability % he moves to state tailst. Instead, man G has two possible transitions, each one representing
his choice: heads¢ or tailsg. An all-knowing scheduler for this system may let G guess the correct answer with probability 1
according to the following sequence: first, it lets T toss the coin, and then it chooses for G the transition leading to heads if
T tossed a head or the transition leading to tails if T tossed a tail. Therefore, the supremum probability of guessing obtained
by quantifying over these all-knowing schedulers is 1, even if T is a smart player that always hides the outcome until G
reveals his choice. As a consequence, quantitative model checkers based on [4], though safe, yield an overestimation of the
correct value. In this example, in which T and G do not share all information, we would like that the supremum probability
of guessing (i.e., of reaching any of the states (headsr, headsc) or (tailst, tailsg)) is %

This observation is fundamental in distributed systems in which components share little information with each other, as
well as in security protocols, where the possibility of information hiding is a fundamental assumption [6]. Similar phenom-
ena to the one we illustrated have been observed in [28] from the point of view of compositionality and studied in [12,13,9]
in different settings. Distributed schedulers are also related to the partial-information policies of [12].

In order to avoid considering these unrealistic behaviours, distributed schedulers were proposed in previous literature.
Local schedulers for each component of the system are defined in the usual way (that is, the choices are based on the
complete history of the component) and distributed schedulers are defined to be the schedulers that can be obtained
by composing these local schedulers. We remark that the “all-knowing” scheduler of the example would not be a valid
scheduler in this new setting since the choice for G depends on information which is external to (and not observable by) G.
In contrast, a local scheduler for G takes the decision having no information about the actual state of T, and so the choice
cannot conveniently vary according to the outcome of T.

Previous work in the area either deals with nondeterminism in a unique manner (regardless whether it originates from
local choices or from the interleaving) or simply focuses on local choices avoiding the resolution of interleaving nondeter-
minism (either by assuming full synchronisation [13] or by model construction [9]; see Section 7 for a detailed comparison).
If we allow interleaving nondeterminism, the schedulers can also be restricted to handle this nondeterminism in a realistic
way. So, we motivate a restriction to distributed schedulers in this direction, and define the strongly distributed schedulers
as the schedulers complying with such restriction.

1.2. Overview of the paper

This article surveys the state of the art of model checking for distributed probabilistic systems modelled as a network of
interconnecting probabilistic I/O automata. It collects and summarises the work that we have done in the last years since

86 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

al al a? b?
12 b! b! 13 113 12
o~ o< 12 3N g o~ o~ 23 12\g g
A generative structure with two transitions A reactive structure with two transitions

Fig. 2. Reactive and generative structures.

we discovered the undecidability of the model checking problem in the general setting [16,20,17,21,18,15,22]. The article
spans from the basic motivations and definitions to expressiveness, undecidability issues and model checking algorithms.
More precisely:

(1) We introduce the concept of distributed scheduler which is constructed from two types of schedulers: local schedulers,
which randomly resolve the nondeterminism of a single component based only on the local knowledge of the execution,
and the interleaving scheduler, which randomly determines the next component to produce an output transition. We
impose restrictions on the interleaving scheduler to capture the exact notion of distributed behaviour. Formal definitions,
motivation and intuition are discussed.

(2) It is known that memoryless deterministic schedulers suffice to verify reachability properties in classical probabilistic
model checking. We show that this is not the case for (strongly) distributed schedulers and analyse comparatively the
expressiveness of restricted variants including deterministic and finite-memory schedulers.

(3) We discuss several undecidability issues. In particular the reachability problem under (strongly) distributed schedulers
is neither decidable nor approximable within a given error bound (and hence neither is the model checking problem
in general). Not even is decidable the problem to verify if a set of states is reachable with probability 1. Besides, the
problem of model checking under bounded memory schedulers (i.e. schedulers that decide based on the last n-th steps,
for a fix n) is shown to be NP-hard.

(4) We discuss a counterexample-guided refinement algorithm based on classical techniques that in each successive re-
finement increases the precision on the bounds of the actual probability bounds of LTL and PCTL* properties under
distributed schedulers. The algorithm verifies the property using classical probabilistic model checking techniques [4].
If the property is violated, the counterexample scheduler is analysed. If it is a distributed scheduler then the property
is indeed false. If it does not meet the conditions to be distributed, the counterexample is consider spurious and the
model is refined accordingly.

(5) We present a revision of the partial order reduction technique for probabilistic model checking. This technique was
introduced in [2,11] where Peled’s original conditions were extended with an extra condition that guarantees that the
results of classical probabilistic model checking are preserved. We show that this new condition is specially tailored to
preserve the values of nondistributed schedulers and can be weakened for distributed schedulers, or even eliminated if
we want to preserve only strongly distributed schedulers.

To have a complete overview, we also discuss related work, surveying on other approaches to distributed schedulers or
to partial-information models, their use on security, and new algorithms for model checking restricted sets of properties
under (strongly) distributed schedulers.

2. Interleaved probabilistic input/output automata

We present a framework based on the Switched PIOA [9] (see Section 7 for a detailed comparison). It uses reactive and
generative structures (see [23,29]). For a finite set S, we denote by Dist(S) the set of all the probability distributions over
the set S. Given a set ActLab of action labels and a set St of states, the set of generative transitions T¢ on (St, ActLab)
is Dist(St x ActLab), and the set Ty of reactive transitions is Dist(St). A generative structure on (St, ActLab) is a function
G :St— P(T¢) and a reactive structure on (St, ActLab) is a function R : St x ActLab — Tg. Fig. 2 depicts an example of
these structures. Generative transitions model both communication and state change. The component executing a generative
transition chooses both a label a to output (the ! indicates that the label is output) and a new state s according to a given
distribution. Reactive transitions specify how a component reacts to a given input (the ? represents input). Since the input
is not chosen, reactive transitions are simply distributions on states.

In our framework, a system is obtained by composing several probabilistic I/O atoms. Each atom is a probabilistic automa-
ton having reactive and generative transitions.

Definition 1. A probabilistic I/O atom is a 5-tuple (St, ActLab, G, R, init), where St is a finite set of states, ActLab is a finite
set of actions labels, and G and R are a generative and a reactive structure on (St, ActLab), respectively. init € St is the initial
state. Since R : St x ActLab — Ty is a (total) function, an atom is input deterministic and input enabled.

An interleaved probabilistic 1/O system (IPIOA) P is a finite set Atoms(P) of probabilistic I/O atoms Aq,..., Ay. The set
of states of the system is]_[i St;, and the initial state of the system is init = (initq, ..., inity). We often write St; to denote the

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 87

set of states of an atom A; and similarly for the other elements of the 5-tuple. In addition, we write T, and Tg, for the set
of generative and reactive transitions on (St;, ActLab;), respectively.

In order to define how the system evolves, we define compound transitions, which are the transitions performed by
the system as a whole. In such compound transitions, all the atoms having the same action label in their alphabet must
synchronise and exactly one of them must participate with an output (generative) transition (thus modelling multicasting).
Formally, a compound transition is a tuple ¢ = (g;,a,rj,,...,rj,) (we require i # ji and ji # ji for all k # k') where g;
is a generative transition in the atom A; (the active atom), a € ActLab; is an action label, the r;, are reactive transitions in
the atoms Aj, (the reactive atoms) and {A;, Aj,, ..., Aj,} is equal to the set {A;j|a € ActLab;}. We denote this set by Inv(c)
and say that A;, Aj, ..., Aj, are the atoms involved in the compound transition. A compound transition (g, a,rj,,...,Tj,)
is enabled in a given state (s1,...,sn) if g € Gi(s;) and Rj, (s,,a) =r;,. The action label a of a compound transition c is
indicated by label(c). The probability c(s, s") of reaching a state s’ = (s, ..., sy) from a state (s1,...,sn) using a compound
transition ¢ = (g, a,7j;, ..., Tj,) is g (s}, a) - ITq T (s}k) if s = s; for every atom not involved in the transition. Otherwise,
c(s,s)=0.

To avoid technical complications, we assume that at every state in the system P there is some compound transition
enabled. Therefore, for every reachable state s of P, there is an atom A; such that G;(s;) # @.

A path o of P is a sequence s1.c1.52.C2 --- Ch—1.Sn Where each s; is a (compound) state and each ¢; is a compound
transition such that s; =init, ¢; is enabled in s; and c;(s;, Si+1) > 0. A path can be finite or infinite. For a finite path
o as before, the set of extensions (denoted by [o]) contains all the infinite paths starting with o. In addition, we define
last(c) = s, and len(o) =n.

In the remaining of the paper, we suppose that input-enabled atoms Aq,..., Ay are given, and we are considering the
system P comprising all the atoms A;. We call this system “the compound system”. The states of the compound system are
called global states and the states of each atom are called local states. Similarly, we use the notion of global and local paths
whenever we refer to paths of the compound system or path of an atom, respectively.

3. Schedulers

The probability of a set of executions depends on how the nondeterminism is resolved. A scheduler transforms a non-
deterministic choice into a probabilistic choice by assigning probabilities to the available transitions. Given a system and a
scheduler, the probability of a set of executions is completely determined.

In the usual MDP setting, schedulers assign probabilities to the enabled transitions taking into account the complete
history of the system, and hence history-dependent schedulers are defined as functions mapping paths to distributions on
transitions. As we have seen it may be unrealistic to assume that the schedulers are able to see the full history of all
the components in the system. In the following, we define a restricted class of schedulers in order to avoid considering
unrealistic behaviours.

3.1. Distributed schedulers

In a distributed setting as the one we are introducing, different kinds of nondeterministic choices need to be resolved.
We need to decide what is the next atom to execute a generative transition. And each atom needs a corresponding output
scheduler to choose among generative transitions enabled. Notice that, since atoms are input enabled and input determinis-
tic, there is no need to schedule reactive transitions. They will only take place if another atom produces the corresponding
output. An output scheduler is able to make its decisions based only on the local history of the atom. So, we need the
notion of projection.

Given a path o, the projection o[i] of the path o over an atom A; is defined inductively as follows: (1) (inity, ..., inity)[i]
=initj, (2) o.c.s[i] = o[i] if A; is not involved in ¢, and (3) o.c.s[i] = o[i].label(c).;(s), otherwise (where m; denotes the
i-th projection of a tuple). The set of all the projections of paths over an atom A; is denoted by Proj;(P). We say that these
projections are the local paths of A;.

An output scheduler for the atom A; is a function ©; : Proj;(P) — Dist(Tg,) such that, if G;(last(o[i])) # @ then
O;i(oli])(g) > 0 = g € Gij(last(o[i])). Note that, if the output scheduler @; fixes a generative transition for a given local
path o, then the actions in the generative transition can be executed in every global path whose projection to i is o, since
we require the atoms to be input enabled.

We still need to resolve the nondeterministic choice concerning the next atom to perform an output. An interleaving
scheduler is a map that probabilistically chooses an active atom for each (global) history. This atom will be the next to
execute a generative transition (this transition, in turn, is chosen according to the output scheduler). Formally, an inter-
leaving scheduler is a function Z : Paths(P) — Dist({1, ..., N}) such that Z(o)(i) > 0 = G;(last(c [i])) # @. Note that, even if
interleaving schedulers are unrestricted, compound schedulers for the compound system are still restricted, since the output
schedulers can only see the portion of the history corresponding to the component.

A scheduler for the compound system is obtained by the appropriate composition of the interleaving scheduler and the
output scheduler of each atom.

88 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

Definition 2. Given an interleaving scheduler Z and output schedulers ®; for each atom i, the distributed scheduler n
obtained by composing Z and ©); is defined as:

n()(g) =Z(0) () - Oi(alil)(g)-

Unless stated otherwise, when referring to schedulers for IPIOA we are considering these distributed schedulers.
The probability of the sets of the form [o] is inductively defined as follows:

Pr ([init]) =1,

Pr'([o.c.s]) =Pr'" (o) - n(o)(g) - c(last(o),s) ifc=(gia,rj.....1j,).
Note that, if c = (g;,a,rj;,...,7j,), then

N©)(©) - c(s,s') =Z(@)(D) - Oi(olil)(g) - &i(si.a) - []ri(s],),
k=1

which implies Zc,s’ n(o)(c) - c(last(o), s’) = 1. This probability can be extended to the least o-field containing all the sets
of extensions in the standard way (see e.g. [4]). We say that the sets in such o-field are measurable. Given a measurable
set S, we are interested in the value sup, Pr'(S). By calculating this amount it can be answered, for instance, whether or
not “the probability of a package loss is at most 0.05 no matter how the package is routed”. This property, in particular, is
what we call a reachability property: we are interested in the set of paths in which some states are reached (namely, the
states in which the package has been lost). Given a set U of states, we denote by Pr’(FU) the probability of reaching any
state in U.

Deterministic schedulers. We defined schedulers so that they map into distributions on transitions. We say that a scheduler
is deterministic if all the choices in the interleaving and output schedulers choose one atom and one generative transition
with probability 1, respectively. A scheduler that is not deterministic is said to be randomised. That is, for all finite path o
and atom A;, O;(o[i](gi) >0 — O;(olil)(gi) =1, and Z(0)(i) >0 — Z(o)(i) =1.

Given a deterministic output scheduler ® we write ® (o) = g to indicate that ®(0)(g) =1, and similarly for the inter-
leaving scheduler.

Compared to general schedulers, deterministic schedulers are easier to manipulate in proofs. Theorem 4 ensures that it
suffices to consider deterministic schedulers. The proof of the theorem uses limit schedulers, as defined below.

Limit schedulers. Several properties of schedulers can be proven using limit schedulers. Given a sequence Q@ =n',n?,... of
distributed schedulers, a limit for Q is a scheduler * such that for every N, there exist infinitely many k such that n* and
n* coincide for all paths o with length less than or equal to N, in symbols:

VN: 3k K2, ... Vit Vo: len(o) <N = ¥ (@)=n*0). (1)
Theorem 1. Every sequence Q =n', n?, ... of deterministic schedulers has a limit.

Proof. We start by constructing a sequence Q! = r;"1 , 77"2, ... such that there exists g such that nkx(init) = g for all k*. The
construction of Q! shows how to construct a sequence ON+1 from QN. Finally, these sequences are used to construct n*.

To construct Q', fix an atom A, and consider the output schedulers @ﬁ corresponding to n¥. In particular, consider the
choices @ﬁ(initA). Since there are finitely many generative transitions enabled, there exists some g4 and infinitely many k*
such that @)ﬁx(init,q) = ga. We can take the subsequence comprising all such k*, and repeat the same reasoning for each
different atom thus yielding a subsequence such that, for all atoms A we have (~)/’§x(initA) = g4. We can repeat the reasoning
for the interleaving scheduler. As a result, we have a sequence Q' such that #¥ (init) = g4 for all x. Since init is the only
path of length 1, we can use the sequence Q' in Eq. (1) for N =1, if we define #*(init) = g4. Starting from Q' we can
construct Q%, which satisfies the condition for N =2 and in general, QN¥*! is obtained from QN.

We define n* as n* (o) = '@ (o) where, for all N, n'®"@) is some scheduler in QV. The condition for limits holds: for
all N, the sequence QN provides the k', k%, ... for Eq. (1). O

3.2. Strongly distributed schedulers

Distributed schedulers model the fact that components can only look at their local history to choose the next transition
to perform. However, under distributed schedulers, it is still possible that the hidden state of a component affects the
behaviour of an unrelated group of components.

We explain how this leak of information occurs using atoms depicted in Fig. 3. Consider the system P having atoms T,
Z, A, B. In this system, T is a process that tosses a coin. For the labels h! and t! corresponding to heads and tails, we have

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 89

a?,b?
initp init 5 initg initpp
1/2 1/2 . | |
h!/é\t! initz a!l lb!
headst tails
heads tails z :
T Z A B

Fig. 3. Motivating strongly distributed schedulers.

h!, t! ¢ ActLabz UActLabs U ActLabg. So, according to this model, T keeps the outcome as a secret (coins whose output are
assumed to be secrets can be found in probabilistic security protocols such as the solution to the dining cryptographers
problem, see [7]). Atom Z models an attacker trying to guess the outcome of the coin. Atoms A and B are two processes
that Z is able to observe.

Consider the maximum probability that attacker Z guesses the outcome (that is, the probability of reaching a state of
the form (headsr, headsy, ...) or (tailst, tailsz, ...)). Since the attacker is able to see only the actions of A and B (and these
atoms cannot, in turn, see the outcome of T) the attacker has no information about T, and so the maximum probabil-
ity should be 1/2. Unfortunately, there exists a distributed scheduler that yields probability 1: the interleaving scheduler
chooses T in the first place, and then it chooses either (A and then B) or (B and then A), according to the outcome of the
probabilistic transition. Finally, the interleaving scheduler chooses Z. The order in which a! and b! were output is part of
the local history of Z, so the output scheduler for Z can always choose the transition agreeing with the outcome of the
coin.

Note that the leak of information arises from the fact that the interleaving scheduler can look at the complete history
of the system. In the following we derive restrictions on interleaving schedulers that prevent the leak presented above.
Then, strongly distributed schedulers are defined as distributed schedulers whose interleaving scheduler complies with such
condition.

In the example above, the state of T affects the execution of atoms A and B. Distributed schedulers were defined in
such a way that the state of an atom cannot affect the execution of another atom. Note that, if we regard the parallel
composition between A and B as a single component AB (with the composition as in, for instance, [8, p. 99]), we end up
in a situation very similar to the one depicted in Fig. 1: in the case in which the coin lands heads AB chooses to perform
the transition a!, while in the other case it chooses to perform the transition b!. In fact, if we consider the system P’ such
that Atoms(P’") = {T, Z, AB}, no output scheduler for AB can be defined in such a way that the order of execution of a!
and b! depends on the outcome of T (since the outcome of T does not affect the state of AB). Then, there is no distributed
scheduler for P’ that can simulate the behaviour in P in which Z guesses all the time. Therefore, we would like that the
new scheduler works just like distributed schedulers would do when A and B are considered as a single atom.

Let P be a compound system containing atoms A and B. Let AB be a single atom representing the composition of A and
B and P’ another compound system such that Atoms(P’) = (Atoms(P) \ {A, B}) U {AB}. In general, we want to restrict to
interleaving schedulers such that, for every distributed scheduler on P complying to such restriction, there is a distributed
scheduler " on P’ that defines the same probabilistic behaviour.

To motivate the restriction, consider a scheduler for the system P with T, A and B in Fig. 3. Consider a distributed
scheduler whose interleaving scheduler complies Z(init) = (%T + %A + %B). We seek a restriction on Z s.t. it is possible
to find a distributed scheduler for P’ containing atoms T and AB in Fig. 3. When AB is in state (inita, initg), the output
scheduler ®4p chooses a distribution on {a!, b!}. To respect the choice of Z in P, it must hold that @4p(initap)(a!) =
2 - O4p(initag)(b!), since, according to Z, the probability of executing a! is twice the probability of executing b!. Then,

2 1
Oag(initap)(al) = 3 and Oap(initap)(b!) = 3 (2)

Consider the path o = (inity, init4, initg) LY (headst, inita, initg) in P. The corresponding path in P’ is ¢’ = (init, initag) 8
(headsr, initap).
Since o’[AB] = initag = (initr, initap)[AB], we have that

2
O ag((initr, initap)[AB])(a!) = ©ap(c'[AB])(a!) = Oap(initap)(a!) = 3

and similarly for b!. Therefore @4p(c’'[AB])(a!) = 2@ (c’[AB])(b!). This relation has to be maintained in P by Z(c). That
is, whichever is the probabilistic choice in Z(o) w.r.t. other atoms, the relation Z(o)(a!) =2-Z(o)(b!) has to be maintained.

This suggests that, in the general case, for two executions that cannot be distinguished by any of the two atoms A
and B, the relative probabilities of choosing A over B (or B over A) should be the same. Or better stated: conditioned to
the fact that the choice is between atoms A and B, the probability should be the same in two executions that cannot be
distinguished by any of the two atoms.

90 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

Formally, given any two atoms A, B of a system P, for all o, ¢’ s.t. 0[A] =0¢'[A] and o[B] = ¢/[B], it must hold that

Z(0)(A) _ Z(c")(A)
Z(0)(A) +Z(0)(B) ZI(0')(A)+ZL(c')(B)

provided that Z(0)(A) +Z(0)(B) #0 and Z(c”)(A) +Z(c’)(B) #0.

(3)

Definition 3. A scheduler 7 is strongly distributed iff n is distributed and Eq. (3) holds on the interleaving scheduler Z that
defines 7. The set of strongly distributed schedulers of P is denoted by SDist(P).

We emphasise that strongly distributed schedulers are useful depending on the particular model under consideration.
In case we are analysing an agreement protocol and each atom models an independent node in a network, then the order
in which nodes A and B execute cannot depend on information not available to none of them, and so strongly distributed
schedulers give more realistic worst-case probabilities. However, in case the interleaving scheduler represents an entity
that is able to look at the whole state of the atoms (for instance, if the atoms represent processes running on the same
computer, and the interleaving scheduler plays the role of the kernel scheduler), then the restriction above may rule out
valid behaviours, and so general distributed schedulers should be considered.

The following theorem is the generalisation of the fact that, for every strongly distributed scheduler n on P ={T, Z, A, B}
as in Fig. 3 there is a distributed scheduler n” on P’ ={T, Z, AB} that defines the same probabilistic behaviour.

Theorem 2. Let P be an IPIOA such that A, B € Atoms(P). Consider the system P’ such that Atoms(P’) = (Atoms(P)\ {A, B}) U{AB},
where AB is the usual parallel composition of A and B (as in, for instance, 8, p. 99]). Then, for every strongly distributed scheduler n
for P, there exists a strongly distributed scheduler n’ for P’ yielding the same probability distribution on paths as 7.

One may wonder what happens if, instead of considering two atoms A and B in (3), two disjoint sets A, B of atoms are
considered. The (apparently more general) condition on sets holds whenever condition (3) on atom holds.

Theorem 3. Let A = {A1, ..., Ap}, B={B1,..., B} be disjoint sets of atoms. Then, if T is the interleaving scheduler that defines a
strongly distributed scheduler n (i.e., it satisfies Eq. (3)), then

> Z(0)(Ai) _ 2_iZ(0")(A)
2iZ(©@)(A) + 3 Z(0)(Bj) > Z(0")(A) +) ;Z(0")(B))

holds whenever o [A] = o[A] for all A € AU B, and the denominators are different from 0.

The proof of the theorem uses a standard argument for conditional probabilities, see [20].
4. Subclasses of distributed schedulers

Next, we discuss the expressive power of several subclasses of distributed schedulers. While the results in this section
are not exactly about model checking, they are useful to prove undecidability and correctness of algorithms.

4.1. Power of deterministic schedulers

In the following, we investigate to which extent we can restrict to deterministic schedulers in order to get worst-case
probabilities. Fortunately, for every system P, the class of deterministic distributed schedulers (denoted by DetDist(P)) is
equally expressive as the class of all distributed schedulers (denoted by Dist(P)) if we aim to find the supremum (or infi-
mum) probability of a given measurable set of infinite paths. This result holds for total information schedulers and PCTL*
formulae [4], and so the result for partial-information schedulers. However, it holds because of the way in which distributed
schedulers restrict the use of the information. In fact, we will see that the restriction we impose on the interleaving sched-
uler for strongly distributed schedulers causes randomised schedulers to add extra power.

Theorem 4. For any set S of infinite traces, S being measurable, we have that

inf Pr'"(S)= inf Pr’(S)
neDetDist(P) neDist(P)

and

sup Pr’(S)= sup Pr'’(s).
neDetDist(P) neDist(P)

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 91

1! r!
1/21/2
ea! ep! ea?|l em?| ec?
ep! ec! a! b! c!
ec! w?
A B C
€A! @
b?
E
c?
© ®© © -
©
R
Fig. 4. Example showing that randomisation adds power to strongly distributed schedulers.
Proof. (Sketch. For details see [20].) The proof of this theorem proceeds by first proving that
inf Pr'’(S)= inf Pr’(s)
neDetDist(P) neDist(P)
whenever S is a finite-horizon set of the form:
n
[Hioil (4)
i=1

where {0;}}_; is a set of finite paths. The proof for these sets relies on the fact that the probability of a finite-horizon set
depends on a finite number of choices (the choices for the paths whose length is greater than max;len(o;) are irrelevant).
It is possible to show that each choice of @ (oj) and Z(o) can be transformed into a deterministic choice without increasing
the probabilities: an optimal scheduler for a finite-horizon set is then constructed by changing finitely many choices. Using
these optimal schedulers, the proof then resorts to a limit argument: given any scheduler 5, the probability of a measurable
set S under n can be approximated by the probabilities of finite-horizon sets under 7. Near-optimal schedulers for S are
obtained as limits of optimal schedulers for finite-horizon sets (the existence of limits being ensured by Theorem 1). O

Unfortunately, if in the statement of Theorem 4 we consider strongly distributed schedulers the same claim is false. Con-
sider the example in Fig. 4. Atoms A, B and C need to be “activated” by labels e, eg and ec, respectively. The atom E
tosses a coin and activates A, B and C if the output of the coin is [, or B and C if the output of the coin is r. The atom
R “remembers” the order in which the other atoms execute. The objective of the scheduler is to reach some state in R
marked with a smile. It is clear that any deterministic scheduler yields a probability of 0, 1/2 or 1. We verify that there
is no deterministic strongly distributed scheduler »n reaching a smile with probability 1. Towards a contradiction, suppose
71 reaches a smile both after I and r. In order to succeed in case the first output is [, n must choose the transitions whose
outputs are ey, e and ec. Then, n should choose either a, b and c (in this order) or b, a and c. In order to succeed when
r is chosen, n must choose the transitions whose outputs are eg and ec. Note that the projections of atoms A and B after
r, eg and ec are the same as the projections after [, e4, eg and ec. Since b must be chosen before c in case the first output
is I, and 7 is strongly distributed, then » must choose b before c in case the first output is r. After B, R should output w,
and E should output e4. At this point, both A and C are active, and the projections of these atoms are the same as in case
the first output is I. Since 7 is strongly distributed and a must be chosen before c in case the first output is [, a must be
chosen before c also when the first output is r. However, choosing a before ¢ does not lead to a state marked with a smile.
Hence, there is no deterministic strongly distributed scheduler yielding probability 1, and so the supremum quantifying over
deterministic strongly distributed schedulers is 1/2. Nevertheless, consider the scheduler in which:

1. If there is a transition enabled in E, then the transition in E is chosen (i.e. the interleaving scheduler chooses E with
probability 1).

2. If there is a transition enabled in R, then the transition in R is chosen (note that it cannot be the case that there are
transitions enabled in both E and R).

3. If there are neither transitions enabled in E nor in R, then the scheduler chooses uniformly among the transitions a, b
and c. That is, if a, b and c are enabled, choose each one with probability 1/3, and, if b and c are enabled, choose each
one with probability 1/2.

92 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

i

Fig. 5. Atoms used in our examples.

This scheduler is strongly distributed, and yields the probability 13/24, which is larger than the maximum probability over
deterministic strongly distributed scheduler (which we have before found to be 1/2). Therefore, this example shows that
randomised choices add power to strongly distributed schedulers.

The same example can be used to show that there are systems for which deterministic strongly distributed schedulers
cannot emulate rate schedulers. Such schedulers are introduced in [17], and resolve nondeterminism by assigning rates to
each local path. Given a rate scheduler, probabilities are then calculated as for continuous time Markov chains or the
probabilistic automata of [29]. For this same example, rate schedulers yielding probabilities arbitrarily close to 13/24 can
be obtained by replacing arbitrarily high rates for the Dirac distributions (in which an atom is chosen deterministically) and
equal rates for the uniform distributions.

4.2. On the (in)existence of a scheduler yielding the supremum probability

For traditional all-knowing schedulers, for every reachability property there exists a Markovian deterministic scheduler
attaining the supremum probability. Consider the system comprising atoms T and G in Fig. 5. For this system, we show
that there is no distributed scheduler maximising the probability of reaching s,,. The behaviour of this system can be seen
as a game: T tosses a coin without communicating the outcome to G, but communicating that the coin has been tossed
(this is represented by t!). Atom T moves to state s, once the coin lands tails. Atom G can stop the game. The aim of G is
to stop the game only if the coin has landed tails at least once. If G outputs n, then the coin is tossed again and the game
continues. If G believes that the coin has landed tails sometime before, then it outputs g. If T is in state s; and G outputs
g, then the objective state s,, is reached. Otherwise, if T receives g in state si, the undesirable state s; is reached. In the
following we calculate the supremum probability of reaching s,. If G waits for one occurrence of t before communicating
through g, then the probability of reaching s,, is 1/2. However, G may decide to wait for two occurrences of t, thus having
a probability of 3/4. In general, waiting for k occurrences of t yields a probability of 1 — (1/2)X. In addition, it is easy to
see that there is no randomised scheduler yielding probability 1. In conclusion, although the supremum is 1, there is no
scheduler yielding such probability.

4.3. Finite-memory (and Markovian) schedulers

A scheduler is Markovian if it chooses the next transition according to the last state, regardless of the past history. In case
traditional all-knowing schedulers are considered, Markovian schedulers attain the supremum probability for reachability
properties [4].

In our setting, one may think of two types of Markovian distributed schedulers: a globally Markovian (distributed) sched-
uler should comply n(o)(gi) = n(c’)(gi) whenever last(c) = last(c’), while a locally Markovian (distributed) scheduler
should choose the same local transitions whenever the local states coincide. In order to define locally Markovian schedulers,
we say that an output scheduler is Markovian iff, for all g, it holds that ®(0)(g) = @(c’)(g) whenever last(c) = last(c”).
Similarly, an interleaving scheduler is Markovian iff Z(o)(A) = Z(0’)(A) whenever last(c) = last(c’). We say that a sched-
uler is locally Markovian if it can be obtained by composing Markovian schedulers. Markovian schedulers are a particular
case of a more general class: the N-Markovian schedulers. A scheduler is globally N-Markovian if n(o ¢’) = n(c¢”’) for all
o’ of length N. Note that globally Markovian schedulers coincide with globally 1-Markovian schedulers. Similarly, locally
N-Markovian schedulers can be defined. A simple example shows that locally Markovian schedulers do not attain supre-
mum probabilities. Consider the system comprising atoms A and B in Fig. 5. First, we consider deterministic schedulers.
A deterministic locally Markovian scheduler must output the same label in every path. So, if we quantify over deterministic
locally Markovian schedulers, the supremum probability of reaching a smile is 0. The supremum quantifying over locally
Markovian schedulers is 0.25, and is obtained by the scheduler that chooses I! with probability 0.5 and r! with probability
0.5 for all o. This implies that given a fixed amount of memory N, randomisation adds power to N-Markovian schedulers.

For the same example, note that globally Markovian schedulers obtain probability 1. However, in the following we use
atoms A and B’ in Fig. 5 to show an unnatural aspect of globally Markovian schedulers. Again, the aim of the scheduler
is to reach a smile. Consider any deterministic globally Markovian scheduler 7. In the initial state (s,sp), atom A must
output [. The label | must also be output in the path (s, sg).l!.(s, o), since the scheduler is globally Markovian. Then, we have
Oa((s.l.s)) =1\. This implies that [is also output in the path (s, sg).l!.(s, s1). The same reasoning allows to conclude that

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 93

®a(o) =1! for every A-path o. So, the existence of the loop in sg implies that the choices of the scheduler should coincide
for every path. In conclusion, although the system comprising atoms A and B is very similar to the system comprising atoms
A, B, the power of globally Markovian schedulers is significantly different.

We say that a scheduler has local (global, resp.) finite memory if it is locally (globally, resp.) N-Markovian for some N.
We denote the set of local (global, resp.) finite-memory distributed schedulers of a system P by LFinMem(P) (GFinMem(P),
resp.) and the set of deterministic finite-memory schedulers by DetLFinMem(P) (DetGFinMem(P), resp.) It is easy to find
examples showing the limitations of finite-memory schedulers: for instance, consider atom A in Fig. 5. Suppose that we are
interested in the probability of the path having the sequence of labels Irlrrirrr-- -, that is, each I is followed by a sequence of
r's, and the amount of r’s is exactly the previous amount plus 1. There are no finite-memory schedulers yielding probabilities
arbitrarily close to 1 for this path. Intuitively, an optimal scheduler should remember how much r’s were in the previous
sequence, and the amount of r’s grows arbitrarily. (Note that, since we are considering a single atom, local finite-memory
schedulers and global finite-memory schedulers coincide.)

We have seen that locally Markovian schedulers cannot attain worst-case probabilities even for simple reachability prop-
erties, and we have seen that finite-memory schedulers do not attain optimal probabilities for every property. However, if
we consider only reachability properties, we obtain the following theorem.

Theorem 5. For any set of goal states U,

sup Pr'(FU) = sup Pr'(FU).
neDist(P) neDetLFinMem(P)

Proof. Given € > 0, let #° be a scheduler such that sup,cpis(p) Pr"(FU) — P’ (FU) < €/2. We denote the set of paths

reaching some element in U before the N-th step as FN(U). Let N* be such that Pr"S(FU) — Pr”S(FN*U) < €. The set FN”
can be written as a disjoint union of set of extensions [0}] where the length of the o} is at most N*. Then, by Theorem 4,
we know that there exists a deterministic scheduler n¢ yielding the supremum probability for FN". Let @id and Z¢ be the
schedulers that define 1. Then, we can consider the (uniquely defined) N*-Markovian schedulers O" and I™ that coincide
with the schedulers for n¢ up to the N*. The scheduler #™ obtained by composing O and Z™ is N*-Markovian, and it

holds sup,cpigi(p) Pr" (FU) —Pr'" (FU) <€. O

The statement of Theorem 5 is false in case strongly distributed schedulers are considered: the example in Fig. 4 is also a
counterexample for such a statement. Theorem 5 can also be contrasted with the fact that, given a fixed amount of memory,
nondeterministic schedulers are needed, as we have seen for atoms A and B in Fig. 5.

5. (Un)decidability and NP-hardness

In this section we consider the complexity of model checking under different subsets of distributed schedulers. Unfortu-
nately, the results are negative in the sense that we find the problems undecidable or NP-hard.

5.1. General distributed schedulers

The probabilistic model checking problem is undecidable in case the schedulers are restricted to be distributed, in the
sense that the supremum probability of a reachability probability cannot be approximated. This is stated in the following
theorem.

Theorem 6. Given 0 < € < 1, there is no algorithm such that, for all IPIOA P, for all sets U, the algorithm computes r such that

sup Pr''(FU) —r| <e.
neDist(P)

This theorem was proven in [16]. The proof just points out that Probabilistic Finite Automata (PFA, for which the
supremum probability is known to be undecidable [25]) are a special case of IPIOA under deterministic schedulers.
Since Theorem 4 establishes that the expressive power of deterministic schedulers is the same as of distributed sched-
ulers, undecidability for distributed schedulers follows. In a PFA A, for each symbol « in the alphabet X, for each state s,
there is exactly one transition labelled with « in s. PFA semantics define the probability of accepting a word o1 --- oy as
the probability of reaching an accepting state by successively taking the transitions labelled with a7 -- -« at each state.

Fig. 6 shows a simple PFA and its corresponding IPIOA atoms. The IPIOA we construct has two atoms A and B. The set
of labels of both atoms is X. The sets of states of atom A is the set of states of .A. Moreover, A encodes the transition
function of A using reactive transitions. Atom B is the one that outputs labels and introduces the nondeterminism. Notice
that A is deterministic in the sense that, at every state, each label uniquely determines the transition to execute. Hence,
a word w over X is equivalent to the deterministic scheduler for B that chooses the symbols in w. Let U = {(s,¢t) |

94 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

Probabilistic finite state automata IPIOA

Fig. 6. From PFA to IPIOA.

s is accepting in A and t is the only state of B}. The probability of reaching a state in U under a deterministic scheduler
is the probability of reaching an accepting state in A.

Theorem 6 concerns the quantitative problem of approximating the supremum. The qualitative problems of computing
whether the supremum is 1, and whether there exists a scheduler yielding probability 1 are also undecidable (these prob-
lems are not necessarily equivalent, as we have seen in Section 4.2).

Theorem 7. There is no algorithm that, for all IPIOA P, for all sets U, the algorithm decides whether or not

sup Pr’(FU)=1.
neDist(P)

There is no algorithm that, for the same input as above, decides whether or not there exists n € Dist(P) such that Pr'" (FU) = 1.

This theorem, and versions of Theorems 6 and 7 for strongly distributed schedulers are proven in [18].
5.2. Finite-memory distributed schedulers

Theorem 5 implies that the model checking problem is undecidable even if we restrict to finite-memory schedulers.
Moreover, if we want to restrict to deterministic schedulers having at most N memory, the amount of memory N needed
in order to get a bounded approximation of the probability cannot be calculated. Formally, let DetLFinMemp (P) be the set
of deterministic locally N-Markovian schedulers for P. Then:

Theorem 8. Given € > 0, there is no algorithm computing N such that
sup Pr'’(FU) — sup Pr'(FU) < €.

neDist(P) neDetLFinMemy (P)

Proof. Suppose, towards a contradiction, that the problem is decidable. Since DetLFinMempy (P) is finite, then there exists an
algorithm to find a value r such that sup, cpigyp) P (FU) — 1 < €. Such algorithm simply computes N and then performs an
exhaustive search on DetLFinMemy (P). However, the existence of such algorithm contradicts Theorem 6. O

Since Theorem 6 holds also if we restrict to systems in which only one atom has generative transitions, we cannot
compute N even under such restriction. Hence, the result holds also for strongly distribute schedulers.

Even if a reasonable bound for the memory of the schedulers can be calculated somehow, then the problem is still
complex, as stated in the following theorem.
Theorem 9. For all

Se {LFinMem1(P), DetLFinMem1(P), GFinMem1 (P), DetGFinMeml(P)},

the problem of computing sup,,cs Pr" (FU) is NP-hard.

In [20] we prove this theorem by presenting a reduction of the 3SAT problem to the supremum reachability problem.

For every 3SAT instance, the system we construct has no cycles, and so the reduction is valid regardless of the memory of
the schedulers considered.

6. Algorithms

The algorithms we introduce in this section are based on classic algorithms for MDPs. We present a simple MDP setting
and show how it can be linked to the IPIOA we were considering so far.

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 95

Given a system P comprised by atoms Ai,..., Ay, the induced MDP of P is Pj,g = (St, T, en), where St is the set of
global states and T is a set of probabilistic transitions defined as follows: for each s; € St; and g; € Gi(s;) there is a transition
as;.g; € T such that oy, g, (s,s") = ZaeActLabi g(s'[il,a)]‘[?’:0 i rsj1,a(8'LjD). Where rgj; o = R(s[j],a) if a € ActLab; and 14
otherwise. en : St— P(T) is the enabling function that satisfies as, g € en(s) iff s[i]=s;. A sequence o = Sg, &g, S1, ..., Sn
is a path in Pjq if for all i, s; € St, ; € en(s;) and a(s, s’) > 0. We say that a transition « is probabilistic if there exist s, s’
such that 0 < a(s,s’) < 1. A scheduler in Pj,q is a function 7 from finite paths to transitions such that (o) € en(last(o)).
The set of all schedulers in an MDP P is written as Sched(P).

For simplicity, we assume that in a generative transition the state reached determines the label uniquely (any atom in
which this does not hold can be transformed by adding the last label as part of the local state). Formally,

g(s,a) >0Ag(s,b)>0 = a=bh.

Given a scheduler n for P, it is easy to define a scheduler iy for Ping:

Mina(s' g, -+ ag ' s")(g) =Z(s".g1 - gn1.58")(A) - Oi(s'[il.ay - - an_1.5"[i)(g)). (5)
The particular labels ai, ..., a,—1 are irrelevant because of the previous assumption.
There is a natural correspondence between P and Pjnq:
Pr”‘"d([sl.a;] -~-ozg:l I Pr”(E—J [s'.(g1 a1, .0+ (81, Gn-1, .. .).s”]). (6)
ai,...ap—

In other words, in the MDP semantics all the paths that differ only with respect to labels are grouped together in a single
path. Therefore, under total information, the analysis of properties that only concern states can be carried out interchange-
ably on the IPIOA or on its induced MDP.

Given a transition og; € T the set of atoms that may be affected by the transition oy, is Inv(ag) = {Aj|a € ActLabj}.
Notice that if the corresponding transition of cg, is executed in P the only local histories that may change are the ones in
Inv(crg,). In addition, we denote with GenAtom(cg;) the only atom that produces the generative transition g; in ag;.

In the rest of this section we will use interchangeably « to denote a transition in the induced MDP Pj,q or its corre-
sponding generative transition. In addition, we assume that properties depend only on states, that is, we are interested on
the probabilities of sets S such that

s'.(gr,a1,...) - (gn-1,an-1,...).8".--- €S

= Vgi,....d, ... sl.(ga,a/l,...)-~-(g,’1_1,a;_1,...).s”.~-- €S. (7)
6.1. Counterexample-guided refinements

Given an IPIOA P and a property, one can obtain the probability under total information schedulers by constructing Ping
and using standard algorithms for MDPs such as [4].

The probabilities under total information can be seen as a safe (although overly pessimistic) bound on the mini-
mum/maximum probability. In this section, we present a technique to obtain tighter safe bounds. This technique works
through a series of refinements: it starts by verifying the system as if total information were available, using standard algo-
rithms for the total information case. If the system is deemed correct, then it is also correct under partial information, as
the set of schedulers under partial information is a subset of the ones under total information. If the system is deemed as
incorrect, it can be checked whether the counterexample obtained is valid under partial information: that is, if all choices
are resolved using only available information. If the scheduler is indeed valid, then we can conclude that the system under
consideration is incorrect, and we can use the counterexample obtained as witness. For the case in which the counterex-
ample is not valid under partial information (that is, the case in which there is a decision that is resolved according to
information not available) we present a transformation that produces a system in which the spurious counterexample is
less likely to occur in a new analysis under total information. We can analyse the resulting system by repeating this refine-
ment each time we get a spurious counterexample, in the hope that eventually we find the system correct or we get a real
counterexample. For infimum reachability probabilities, the refinements can be carried out in such a way that the results
converge to the actual value for all systems.

This technique has been introduced in [22]. Here, we adapt the notation to the one in this paper and omit proofs. The
reader is referred to [22] for details.

We illustrate the technique using the players A and B in Fig. 7. To simplify, we assume that they play a turn-based
game. When the game starts, player A tosses a coin whose sides are labelled with 0 and 1. Then, B tosses a similar coin
keeping the outcome hidden. In the next turn, A tries to guess if both outcomes agree: in the state a0, the guess of A is
that an agreement happened, and the outcome of A has been 0 (the meaning of the other states is similar). After the guess,
a synchronised transition (depicted with a dashed line) takes both A and B to the initial state, where another round starts.
Player B wins if A fails to guess at least once. The problem under consideration is to calculate the minimum probability
that B wins. Note that, since we are assuming that the game is turn based, except for the synchronised transition, there is

96 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

Fig. 9. Unrealistic counterexample in the parallel composition.

no interleaving nondeterminism and the only nondeterminism concerns the behaviour of A. Intuitively we can think that
player A wants to prevent the system from reaching one of the states in which B wins. It is easy to see that, for every
scheduler, B wins in the first round with probability 1/2, and the probability that B has won after round N is 1 — (1/2)N.
Hence, the probability that B wins the game in some round is 1. The minimum probability that B wins, quantifying over
all distributed schedulers, is then 1.

If we construct Pjnq and analyse it under total information, a scheduler can simply guess an agreement in case an
agreement happened, and a disagreement otherwise. (Which is unrealistic, since we assume that A is unable to see the
outcome of B.) Pjnq and the unrealistic scheduler are depicted in Figs. 8 and 9, respectively. The probability under such
scheduler is 0.

We can explain our counterexample-based transformation of P by following our previous example: we first detect that,
in the counterexample in Fig. 9, the player A performs a choice using unavailable information while in state 0, by noticing
that its choices differ for the state (0,0) and the state (0, 1) (the player also cheats in state 1, but can tackle one state at a
time). The transformation forces (the refined model of) A to choose beforehand what the move will be in state 0, this choice
being resolved during the coin toss. If the state reached is 0, player A must adhere to its previous decision. The refined
model of A (called A’) is shown in Fig. 10(a). Roughly speaking, the nondeterminism at state 0 has been “pulled backwards”.
If we now consider P, (the MDP induced by {A’, B}), we still have some unrealistic counterexamples, as A can still cheat
in state 1. One of such unrealistic counterexamples is shown in Fig. 10(b). However, the minimum probability that B wins
is now 1 for all schedulers (as eventually A passes through state 0, in which A cannot cheat). Since our transformation
ensures that 1 is a lower bound for the minimum probability, we know that the result is 1 and the verification finishes.

This verification, calculating the exact result after one refinement, can be contrasted with the naive approach of com-
puting the minimum probability py that B wins before round N, increasing N successively. These probabilities can be
computed by considering each of the schedulers for A up to round N. The value of py is 1 — (1/2)", and so this approxi-
mation never reaches the actual value 1. In addition, as general schedulers depend on the local history of A, computing py

involves computations for 22" different schedulers.

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 97

[
|
[

doloflaof1] | [1[o] [1]1]
i [

[a0 0] [a0 T T]| i [d1]0][al|1]

N
(a) Refined model of A (b) A counterexample after the first re-

finement

Fig. 10. Refined system and counterexample.

6.1.1. Detection of partial-information counterexamples

Under total information, for minimum/maximum reachability it suffices to consider only globally Markovian schedulers.
Moreover, the verification of general LTL and PCTL* formulae is carried out by reducing the original problem to problems
for which globally Markovian schedulers are sufficient [4].

We address the problem of checking whether a globally Markovian scheduler 7 for Pi,q corresponds to a scheduler n’
in P, that is, whether n{ 4, = 7. If such an n’ exists, then 7 corresponds to a valid partial-information scheduler for P. Oth-
erwise, the scheduler under total information cannot be produced under partial information, and we apply the refinement
described in Section 6.1.2.

The method for checking whether a scheduler complies with the partial-information restrictions resembles the well-
known technique of self-composition [3]. We denote by 7>°(s) the value of 5(o) for all o such that last(c) = s. Note that a
scheduler 7 € GMarkovian is completely determined by the value of >°(s) in the states s reachable in 7, in the sense that
if two schedulers 7, ¢ reach the same states and 1>%(s) = >9(s), then they yield the same probabilities for all paths.

We reduce the problem to that of checking whether n has conflicting paths. Given an 1 € GMarkovian, we say that two
states s, t with s[i] = t[i] are n-conflicting for the atom A; iff n>0(s) = org; and =0t =0y for some g; # g|.

We say that two paths are n-conflicting for A; if o[i] = o”[i], last(c) =s, last(c’) =t and the states s, t are n-conflicting.
From the definition of n-conflicting we can prove:

I:n=nly <= nhasno conflicting paths. (8)
Now we show how to check the (in)existence of conflicting paths for A;. For all s, t € St, r; € St;, we define the relation
s@t, that holds iff there exist paths o, ¢’ such that first(o) = init, last(c) = s = first(o”), last(c’) =t and o'[i] = r;. This

relation can be extended naturally to the local paths o; = rl.1 ...t%, so we can write st By the definition of ~-, if soht

i
then there exists a path o from s to t in 1 such that o[i] = 0;. Consider the nondeterministic finite automaton Nfa;(n) that

represents the relation L. In this automaton, each word starting in s and ending in t corresponds to a o; such that st

The problem of checking whether 1 has conflicting paths is now that of checking whether init:s and init">¢ and for
some n-conflicting s, t. This can be done by constructing the synchronous product automaton

Nfa? (17) = Nfa; (17) x Nfa; () .

and checking whether it has a path from (init, init) to some n-conflicting (s, t).

6.1.2. Refining a system for a conflict

According to Eq. (8), if a counterexample 1 does not comply with the partial-information constraints, there exist two
n-conflicting states s and t for a module A;. Since these states are conflicting, we have that s[i] = t[i] and n>0(s) = Og;,
7o) = oy for some g; # g{. In words, two different transitions g;, g are chosen in A; while, because of the partial-
information constraints the choices must coincide. Next, we show how to refine the atom A;. The refinement is modular, in
the sense that only A; is affected.

As illustrated in the example in the introduction, the idea is to split s[i] in such a way that g; and g; are not enabled in
the same state. We assume that no input transition reaches s[i] (we can always insert an intermediate state after an input
transition and a generative transition after such state). This assumption is not needed in the original presentation of this
technique: in the setting of [22], atoms (or modules) are allowed to have input nondeterminism; for simplicity, we avoided
such nondeterminism in this paper, at the expense of introducing additional states.

Let s; = s[i]. We call the new states 51‘1 and siz. Given a generative transition h;, we define two new transitions hl.l, h%, in
such a way that, if hi(s;,a) > 0, then h} reaches s! and h? reaches s?. We define h!(t;,a) = h;(t;,a) if t; #s} and t; #s?,
hl(s!,a) =hi(s;,a) and h!(s?,a) = 0. The transition h? is defined similarly, but we have h?(s?, a) = hi(s;, a) and h?(s!,a) =0.
Note that if h; does not reach s;, then h! and h? coincide.

98 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

Definition 4. Given an atom A;, a local state s;, and two generative transitions g;, g; the refined atom A; is defined as:

St} =St \{si} U{s], s?}.

Gi(tj) = {h},h? | hj € Gi(t;)} if t; #s] and t; #s7.
Gi(s))={h}.h2 | hi € Gi(si). g # hi}.

Gj(s?) = {h}.hZ | hi € Gi(si). g} # hi}.

Ri(ti,a) = Ri(t;, a).

Let P be the IPIOA comprising atoms Atoms(P) \ {A} U {A’}. Given a set of paths S in P, we can construct the corre-
sponding set of paths &’ in P’ (S’ has the same paths but with 31'1 or 51‘2 instead of s;).
We have then the following theorem:

Theorem 10. For all IPIOA P, and set of path S:

sup Pr'(S)= sup Pr'(S).
neDist(P) neDist(P’)

The theorem ensures that the probabilities under distributed schedulers do not change. However, as shown in the intro-
duction, we might have that the total information probabilities in P/ , are more realistic than in Pjng. If in P’ we find an
optimal scheduler that complies with the partial-information restrictions (as checked by the method in the previous sub-
subsection), then the verification is finished. If the scheduler found in P’ is still unrealistic, the refinement can be carried
out on P’ and so on.

6.1.3. Convergence
A scheduler might have several conflicts, and the choice of the conflicts can affect the probabilities in Pj .
In [22] we show that the conflicts can be chosen in such a way that, if the refined systems are P!, P2, ... we have:
lim inf Pr'"(FU)= inf Pr'(FU).
n— 00 neSched(P™) neDist(P)
That is, the infimum probability values in the refined systems under total information converge to the probability values
under partial information in the original system.

The criterion for conflicts that ensures convergence does not perform well in the systems we analysed. Another criterion
(namely, to choose any conflict in one of the shortest local paths having a conflict) offers better performance in the three
systems we analysed, but examples can be constructed in which the probabilities do not converge to the infimum.

There is no similar convergence for upper bounds of supremum probabilities: together with the computable lower
bounds limy_ oo SUPyepist(P) Pr(FN) (which converge to sup,episy(p) P (FU)), such upper bounds would turn the approxi-
mation problem for the supremum decidable, thus contradicting Theorem 6.

As explained in [22], the convergence of our technique does not imply decidability for the case of the minimum, as in
each step there is no way to know how close is the approximation to the actual value. The decidability of the approximation
problem for the minimum is thus open. In the particular case of Probabilistic Finite Automata the problem is decidable [19],
but we could not find an extension of the proof for IPIOA, where information is hidden more selectively.

6.2. Partial order reduction for LTL, {next)

Given a system and a property, the technique of partial order reduction yields another system with less transitions.
The reduced system is constructed by traversing the state space. When expanding a given state, not all the transitions
enabled are considered. An ample set ample(s) must be calculated for each state s, and only transitions in the ample set are
considered during the search. POR techniques impose restrictions on the ample sets to ensure that, for each property, the
reduced system complies with the property iff the original system does.

In this section, we show how the POR technique for probabilistic systems [11,2] can be improved under the assumption
that the schedulers are (strongly) distributed.

The reduction technique we discuss in the following guarantees the preservation of probability bounds for LTL properties
not containing the next operator. Given a set AP of atomic propositions and a labelling function L : St — P(AP), the set of
LTL\ {nexty formulae are generated by the following grammar.

¢ :=True [I|=¢ |1 A d2 |1 U2,

where True is a constant and | € AP. Intuitively, an infinite path p satisfies ¢1 U ¢» (denoted by p = ¢1 U ¢,) iff there is
position in p in which ¢, holds, and ¢ holds in all intermediate positions of p from the beginning until the position in
which ¢, holds. As usual, we write F¢ for True U ¢, and Pr"7(¢) for Pr'7({p | p = ¢}).

Restrictions to the ample sets are based on the notion of independence. We say that two transitions «, g are independent
iff their generative transitions affect different atoms. Formally, Inv(c) N Inv(B8) = @.

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 99

Note that the order of execution is irrelevant and that neither of them can disable or enable the other. Notice also that
this definition is of a more structural nature than those in [2,11]. This is no surprise, since our improvements profit from
the structure of the model.

We need some additional definitions before presenting the restrictions for POR. A transition « is stutter iff for all s such
that a € en(s) and s’ such that «(s,s”) > 0 implies that L(s) = L(s').

An end component (EC) is a pair (§,T) where T: 8 — P(T) and § is a set of states such that: (1) ¢ # T(s) c en(s) for all
seS$, (2) o(s, s') > 0 implies s’ € § for all s € §, a € T(s), (3) for every s,s’ € § there exists a path from s to s’ using only
actions in T. Intuitively, an end component induces a scheduler that stays in S with probability 1 and moreover visits all
its states infinitely often.

The restrictions for the ample sets of [2] to preserve LTL\(next; properties under unrestricted full-history-dependent

schedulers are listed below. St denotes the set of reachable states in the reduced system P, which is constructed by taking
ample(s) to be the set of enabled transitions in s € St.

(A1) For all states s € St,) # ample(s) < en(s),

(A2) If s € St and ample(s) #en(s), then each transition o € ample(s) is stutter,

(A3) For each path 0 =s.a1.51.002.-+-.0p.Sp.y in P where s € St and y is dependent on ample(s) there exists an index
1 <i < n such that «; € ample(s),

(A4) If (§,T) isan ECin P and & € Nsei €n(s), then a e [J s ample(s),

(A5) If s.v1.51.002.52. -+ - .0p.Sp.Y -Sp+1 1S @ path in P where s € St, o1,...,0,, ¥ ¢ ample(s) and y is probabilistic then
lample(s)| = 1.

Conditions A1-A3 are original for POR on nonprobabilistic systems [26]. A1 ensures that the reduced model is a sub-
model of the original one, and that it does not introduce terminal states (since the original model does not have either).
A3 enforces that any finite sequence of transitions leaving a state s that does not contain a transition in ample(s) can be
extended with a transition from ample(s). Together with A2, they ensure that any execution in the original system can be
mimicked by an observational equivalent trace in the reduced system. Besides, notice that A3 is the only condition that is
concretely related to the notion of (in)dependence. Condition A4 is a probabilistic variant of Peled’s cycle condition. Peled’s
condition ensure that if an action is enabled continuously along a path in the original system, then that action is eventually
enabled in the reduced system. Condition A4 is weaker that Peled’s condition and guarantees that the set of paths that
disable actions forever has measure zero. Therefore, condition A4 ensures that all fair paths are also represented in the
reduced system. Condition A5 is particular for probabilistic models. Contrarily to the other conditions, A5 is technical and
nonintuitive and has been introduced precisely to not eliminate the behaviour introduced by (nondistributed!) schedulers
like the one of the example in Fig. 13. A probabilistic action can only be delayed only if the ample action in all the branches
is the same. In case of the total information schedulers, it is only possible if the ample is a singleton. We remark that
the fully expanded ample set ample(s) = en(s) trivially satisfies conditions A1-A5. We also remark that if the model P is
nonprobabilistic, condition A5 has no effect and condition A4 reduces to Peled’s original cycle condition. As a consequence,
conditions A1-A5 behave exactly in the same way as Peled’s original conditions for POR on nonprobabilistic models.

In case we assume that the schedulers are distributed, we can replace A5 by

(A5') If 5.0¢1.51.0¢2.52 - - - 0t.Sp. Y -Sp+1 is @ path in P where s € St a1, ..., 0n, y ¢ ample(s) and y is a probabilistic transition,
then GenAtom(B) = GenAtom(B'), for all B, B’ € ample(s).

Condition A5’ relaxes condition A5. Contrarily to A5, A5’ does not requires ample(s) to be a singleton; instead, ample(s) may
contain several transitions as long as they are generated by the same atom. The execution of probabilistic but independent
transitions does not modify the local history of the atom in the ample, thus the output scheduler always chose the same
transition regardless of the probabilistic behaviour.

The result is formalised in the following theorem.

Theorem 11. Let ¢ be an LTL\ (next) formula and P be an interleaved probabilistic I/0 automata. Let P be a reduction of P complying
with conditions A1-A4, A5'. Then, sup,cpist(py Pr' (¢) < SUD, s ched(P) P (¢).

In case we assume strongly distributed schedulers, A5 can be disregarded. The execution of independent transitions does
not modify the history of any generative and/or reactive atom in the ample. Thus, the local histories coincide and it forces
the interleaving scheduler to maintain the same relative distributions for the atoms in the ample.

Theorem 12. Let ¢, P be as in Theorem 11. Let P be a reduction of P complying with conditions A1-A4. Then, SUP;esDist(P) Pr'(¢) <
SupneSched(f’) Pr'l (¢)

As an example, recall atoms T and G in Fig. 11 and the nondistributed scheduler n* in Fig. 13. According to Theorem 11
the reduction in Fig. 14 is correct in case distributed schedulers are assumed. However, in the original system P we have

100 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

initg

cp! ce!

gn! gt!

G

Fig. 11. T tosses a coin, G guesses heads or tails.

gp? InitT gt ? nitG g nitg.p,
Ch! Ct? Ct! Ch?
gn! g¢!
T Gy Gr

Fig. 13. A dubious scheduling.

—

initH

Fig. 14. A POR based reduction.

Pr"" (F®) = 1, while in P we have Pr'"(F®) < % for all n. This is due to the fact that n" is not distributed. In fact, the
supremum over all distributed schedulers in P is % which coincides with SUP, csched(P) Pr'’(F®). Recall now the example

in Fig. 12 with atoms T, Gy and Gr. Notice that the scheduler of Fig. 13 is distributed in this setting. Call this scheduler n9.
If we assume strongly distributed schedulers, the reduction in Fig. 14 is allowed, and there is no scheduler yielding prob-
ability 1 in the reduced system. This is correct, since the scheduler n? is not strongly distributed. However, if we want to
preserve all distributed schedulers (even those that are not strongly distributed) then condition A5’ prevents the reduction
in Fig. 14, since cp! and c;! are generated by atoms Gy and Gr, resp. This is exactly what we want, since the scheduler nd
is a valid distributed scheduler for T, Gy and Gr, and so a corresponding scheduler yielding probability 1 must exist in the
reduced system.

Experimental results [21] show that the reduction profits from the fact that the conditions are weakened, saving up to
40% of verification time in a system with 4 x 10° states. A summary of the proof of Theorems 11 and 12 can be found
in [21]. A full proof can be found in [15].

7. Related work

Our definition of strongly distributed schedulers is an important contribution, since it exactly captures the restrictions
that the lack of information imposes to schedulers in asynchronous settings. In previous frameworks, there are no non-

S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102 101

deterministic choices concerning the interleaving. In [12], the components are not specified explicitly (then, there are no
interleaving issues) and the schedulers are restricted by imposing the condition that they must observe only a portion
of every state in the history. In [13] a step of the whole system is obtained by taking a step in every component (thus,
no interleaving is needed). The main difference between our framework and the PIOA framework in [9] is the concept of
interleaving scheduler. In contrast, in the framework presented in [9] the different components have only input and out-
put local schedulers, and a token is used in order to decide the next component to perform an output. The interleaving
among different components is not resolved by the schedulers, since the way in which the token is passed is specified
by the components. Note that, because of the internal nondeterminism, the choice of the next component to execute is
still nondeterministic, since there may be different transitions passing the token to different components. However, since
internal nondeterminism is resolved according to the local history, the choice of the next component to execute is based
on the history of the component that passes the token. In [8] it is suggested that a fictitious arbiter component can be
added in order to specify interleaving policies. The components pass the token to the arbiter and the arbiter selects one
of the components to which the token is passed. Using this schema, the information used to choose the next component
can be restricted simply by restricting the information available to the arbiter. Although this approach is useful in order to
keep some information hidden, such approach cannot be used to represent the restriction we impose to strongly distributed
schedulers since, in our restriction, the lack of information depends on each pair of components and there is no information
completely hidden. In [17], a mechanism is devised in such a way that the interleaving is determined using rates for each
component, and these rates depend solely on the information available to the component.

In [1] a deterministic variant of our distributed scheduler is used, taking also into account that secret information needs
to be hidden. The framework they present is simpler since components are required to be deterministic, and therefore there
is no need for something like our output schedulers. Hence, the global scheduler can only choose components which are
properly tagged in the transition. Thus, their global scheduler is quite similar to our interleaving scheduler.

Though similar in nature, a somewhat different approach to distributed scheduler is developed in [14]. The authors
introduce a testing theory a la De Nicola-Hennessy that considers the distributed nature of the components. Their technique
is based on labelling each nondeterministic transition considering only the local information of the component that produces
it. This labelling is what lately drives the choices of the scheduler.

The example used to show that Markovian schedulers cannot attain worst-case probabilities resembles the well-known
partially observable Markov decision processes (POMDPs). POMDPs are MDPs in which the scheduler cannot distinguish the
states: for each state, a distribution on the possible observations is defined, and the scheduler chooses according to these
observations. The way in which the information is hidden is a crucial difference with respect to PIOA, since the lack of
information in PIOA is not “state based” but “transition based”: in the PIOA framework, an atom is not aware of a state
change unless the atom has synchronised in the transition leading to this state change. This difference suggests that care
must be taken to translate results from the POMDP setting to the PIOA setting. Similarly, the hardness result in [12] is proved
in a setting in which the lack of information is not necessarily a consequence of the existence of several components.

Finally, we notice that [5] shows that the verification of bounded time reachability properties under distributed sched-
ulers and strongly distributed schedulers are actually decidable. The paper provides two algorithms that reduce the bounded
reachability problem to a polynomial optimisation problem. This was expected for distributed schedulers since there are
finitely many deterministic distributed schedulers on finite systems not containing loops (which are sufficient by Theo-
rem 4). However, this was not obvious for strongly distributed schedulers since they are strictly more expressive than its
corresponding deterministic variant. (See Fig. 4 and its explanatory text. Notice that the reachability property in this exam-
ple is actually bounded by the number of transitions in the longest path of component R.) This work was later extended
to deal with information hiding in [27] aiming to analyse security protocols. This paper also provides optimisations to the
original algorithms, making the derived polynomial optimisation problem significantly more compact.

Acknowledgements
We kindly thank the recommendations and suggestions of the anonymous reviewers.

References

[1] Miguel E. Andrés, Catuscia Palamidessi, Peter van Rossum, Ana Sokolova, Information hiding in probabilistic concurrent systems, Theor. Comput. Sci.
412 (28) (2011) 3072-3089.

[2] C. Baier, M. GroRer, F. Ciesinski, Partial order reduction for probabilistic systems, in: QEST '04, IEEE Comput. Soc., Washington, DC, USA, 2004,
pp. 230-239.

[3] Gilles Barthe, Pedro R. D’Argenio, Tamara Rezk, Secure information flow by self-composition, in: CSFW, IEEE Comput. Soc., 2004, pp. 100-114.

[4] A. Bianco, L. de Alfaro, Model checking of probabilistic and nondeterministic systems, in: Proc. of FSTTCS 95, in: LNCS, vol. 1026, Springer, 1995,
pp. 288-299.

[5] Georgel Calin, Pepijn Crouzen, Pedro R. D’Argenio, E. Hahn, Lijun Zhang, Time-bounded reachability in distributed input/output interactive probabilistic
chains, in: Jaco van de Pol, Michael Weber (Eds.), Model Checking Software, in: LNCS, vol. 6349, Springer, 2010, pp. 193-211.

[6] Konstantinos Chatzikokolakis, Catuscia Palamidessi, A framework for analyzing probabilistic protocols and its application to the partial secrets exchange,
Theor. Comput. Sci. 389 (3) (2007) 512-527.

[7] D. Chaum, The dining cryptographers problem: Unconditional sender and recipient untraceability, J. Cryptol. 1 (1) (1988) 65-75.

[8] L. Cheung, Reconciling nondeterministic and probabilistic choices, PhD thesis, Radboud Universiteit Nijmegen, 2006.

http://refhub.elsevier.com/S0304-3975(13)00520-3/bib416E647265734574416C32303131s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib416E647265734574416C32303131s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib71657374323030343A62616965722D67726F6573736572s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib71657374323030343A62616965722D67726F6573736572s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F637366772F42617274686544523034s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib6269616E636F6465416C6661726Fs1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib6269616E636F6465416C6661726Fs1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib43616C696E4574416C32303130s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib43616C696E4574416C32303130s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib70726F626162696C69737469632D7061727469616C2D73656372657473s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib70726F626162696C69737469632D7061727469616C2D73656372657473s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A6A6F75726E616C732F6A6F632F436861756D3838s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib7468657369733A636865756E67s1

102 S. Giro et al. / Theoretical Computer Science 538 (2014) 84-102

[9] L. Cheung, N. Lynch, R. Segala, F. Vaandrager, Switched probabilistic PIOA: Parallel composition via distributed scheduling, Theor. Comput. Sci. 365 (1-2)

(2006) 83-108.

[10] F. Ciesinski, C. Baier, LiQuor: A tool for qualitative and quantitative linear time analysis of reactive systems, in: Proc. of QEST '06, IEEE Comput. Soc.,
2006, pp. 131-132.

[11] PR. D'Argenio, P. Niebert, Partial order reduction on concurrent probabilistic programs, in: QEST '04, IEEE Comput. Soc., Washington, DC, USA, 2004,
pp. 240-249.

[12] L. de Alfaro, The verification of probabilistic systems under memoryless partial-information policies is hard, in: Proc. of PROBMIV 99, 1999, pp. 19-32.

[13] L. de Alfaro, T.A. Henzinger, R. Jhala, Compositional methods for probabilistic systems, in: Proc. of CONCUR 01, in: LNCS, vol. 2154, Springer, 2001,
pp. 351-365.

[14] Sonja Georgievska, Suzana Andova, Retaining the probabilities in probabilistic testing theory, in: FOSSACS, in: LNCS, vol. 6014, Springer, 2010, pp. 79-93.

[15] S. Giro, On the automatic verification of distributed probabilistic automata with partial information, PhD thesis, FAMAF, University of Cordoba, 2010.
Available at http://cs.famaf.unc.edu.ar/~sgiro/thesis.pdf.

[16] S. Giro, PR. D’'Argenio, Quantitative model checking revisited: neither decidable nor approximable, in: Proc. of FORMATS '07, in: LNCS, vol. 4763,
Springer, 2007, pp. 179-194.

[17] S. Giro, PR. D'Argenio, On the verification of probabilistic I/O automata with unspecified rates, in: SAC '09: Proceedings of the 2009 ACM Symposium
on Applied Computing, ACM, New York, NY, USA, 2009, pp. 582-586.

[18] Sergio Giro, Undecidability results for distributed probabilistic systems, in: Marcel Vinicius Medeiros Oliveira, Jim Woodcock (Eds.), SBMF, in: LNCS,
vol. 5902, Springer, 2009, pp. 220-235.

[19] Sergio Giro, An algorithmic approximation of the infimum reachability probability for probabilistic finite automata, arXiv:1009.3822, 2010.

[20] Sergio Giro, Pedro R. D’Argenio, On the expressive power of schedulers in distributed probabilistic systems, Electron. Notes Theor. Comput. Sci. 253 (3)
(2009) 45-71.

[21] Sergio Giro, Pedro R. D’Argenio, Luis Marfa Ferrer Fioriti, Partial order reduction for probabilistic systems: A revision for distributed schedulers, in:
Mario Bravetti, Gianluigi Zavattaro (Eds.), CONCUR, in: LNCS, vol. 5710, Springer, 2009, pp. 338-353.

[22] Sergio Giro, Markus N. Rabe, Verification of partial-information probabilistic systems using counterexample-guided refinements, in: Supratik
Chakraborty, Madhavan Mukund (Eds.), ATVA, in: LNCS, vol. 7561, Springer, 2012, pp. 333-348.

[23] RJ. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative, and stratified models of probabilistic processes, Inf. Comput. 121 (1995) 59-80.

[24] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: A tool for automatic verification of probabilistic systems, in: Proc. of TACAS '06, in: LNCS,
vol. 3920, Springer, 2006, pp. 441-444.

[25] Omid Madani, Steve Hanks, Anne Condon, On the undecidability of probabilistic planning and related stochastic optimization problems, Artif. Intell.
147 (1-2) (2003) 5-34.

[26] D. Peled, All from one, one for all: On model checking using representatives, in: Proc. of 5th CAV, in: LNCS, vol. 697, Springer, 1993, pp. 409-423.

[27] Silvia Pelozo, Pedro R. D’Argenio, Security analysis in probabilistic distributed protocols via bounded reachability, in: Proceedings of the 7th Interna-
tional Symposium on Trustworthy Global Computing, in: LNCS, vol. 8191, Springer, 2013.

[28] R. Segala, Modeling and verification of randomized distributed real-time systems, PhD thesis, Laboratory for Computer Science, MIT, 1995.

[29] S.-H. Wu, S.A. Smolka, E.W. Stark, Composition and behaviors of probabilistic I/O automata, Theor. Comput. Sci. 176 (1-2) (1997) 1-38.

http://refhub.elsevier.com/S0304-3975(13)00520-3/bib7463733A70696F61s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib7463733A70696F61s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib6C6971756F72s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib6C6971756F72s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib71657374323030343A64617267656E696F2D6E696562657274s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib71657374323030343A64617267656E696F2D6E696562657274s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib70726F626D69763A686172642D6C6F63616C2D7363686564756C657273s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib636F6E662F636F6E6375722F416C6661726F484A3031s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib636F6E662F636F6E6375722F416C6661726F484A3031s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F666F73736163732F47656F7267696576736B61413130s1
http://cs.famaf.unc.edu.ar/~sgiro/thesis.pdf
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib4769726F2D44417267656E696F2D466F726D61747332303037s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib4769726F2D44417267656E696F2D466F726D61747332303037s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib6769726F2D64617267656E696F2D736163s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib6769726F2D64617267656E696F2D736163s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F73626D662F4769726F3039s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F73626D662F4769726F3039s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A6A6F75726E616C732F636F72722F6162732D313030392D33383232s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A6A6F75726E616C732F656E7463732F4769726F443039s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A6A6F75726E616C732F656E7463732F4769726F443039s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F636F6E6375722F4769726F44463039s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F636F6E6375722F4769726F44463039s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F617476612F4769726F523132s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib44424C503A636F6E662F617476612F4769726F523132s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib476C61626265656B4574416C3A69616E64633A31393935s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib707269736Ds1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib707269736Ds1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib636F6E646F6E3A756E6465632D70722D706C616E6E696E67s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib636F6E646F6E3A756E6465632D70722D706C616E6E696E67s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib636176313939333A70656C6564s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib50656C6F7A6F44417267656E696F32303132s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib50656C6F7A6F44417267656E696F32303132s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib7468657369733A736567616C61s1
http://refhub.elsevier.com/S0304-3975(13)00520-3/bib74637339373A77752D736D6F6C6B612D737461726Bs1

	Distributed probabilistic input/output automata: Expressiveness, (un)decidability and algorithms
	1 Introduction
	1.1 Unrealistic worst cases and distributed schedulers
	1.2 Overview of the paper

	2 Interleaved probabilistic input/output automata
	3 Schedulers
	3.1 Distributed schedulers
	3.2 Strongly distributed schedulers

	4 Subclasses of distributed schedulers
	4.1 Power of deterministic schedulers
	4.2 On the (in)existence of a scheduler yielding the supremum probability
	4.3 Finite-memory (and Markovian) schedulers

	5 (Un)decidability and NP-hardness
	5.1 General distributed schedulers
	5.2 Finite-memory distributed schedulers

	6 Algorithms
	6.1 Counterexample-guided reﬁnements
	6.1.1 Detection of partial-information counterexamples
	6.1.2 Reﬁning a system for a conﬂict
	6.1.3 Convergence

	6.2 Partial order reduction for LTL\{ next}

	7 Related work
	Acknowledgements
	References

