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Abstract. Probabilistic transition system specifications (PTSS) provide struc-
tural operational semantics for reactive probabilistic labeled transition systems.
Bisimulation equivalences and bisimulation metrics are fundamental notions to
describe behavioral relations and distances of states, respectively. We provide a
method to generate from a PTSS a sound and ground-complete equational ax-
iomatization for strong and convex bisimilarity. The construction is based on the
method of Aceto, Bloom and Vaandrager developed for non-deterministic transi-
tion system specifications. The novelty in our approach is to employ many-sorted
algebras to axiomatize separately non-deterministic choice, probabilistic choice
and their interaction. Furthermore, we generalize this method to axiomatize the
strong and convex metric bisimulation distance of PTSS.

1 Introduction

Structural operational semantics (SOS for short) [20] is a powerful tool to provide se-
mantics to programming languages. In SOS, process behavior is described using transi-
tion systems and the behavior of a composite process is given in terms of the behavior
of its components. Based on this technique, different meta-properties have been stud-
ied. They state general properties on process operations by only inspecting the format
of the rules that define the semantics of this operator. Among them, congruence and
other compositionality properties stand out. (See [19] for an overview.)

However, there are properties that are better understood from an axiomatic point of
view, by regarding the language as a signature equipped with an equational theory (see
e.g. [18,3]). This is a different way to understand the language that brings new insights
on the behavior of its operators and processes. General properties, such as associativity,
distributivity, or reduction to basic operators, or specific ones, can be easily derived
with equational reasoning, which is also used for the verification of systems.

In [1], Aceto, Bloom and Vaandrager link these two approaches by providing an
algorithm to derive an equational theory for any language whose semantics is defined
in terms of SOS rules that meet the GSOS format [7]. This equational theory is sound
and ground-complete for bisimulation equivalence [18]. For recent work in the area,
see [2,11] and references therein.
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The above mentioned results are set in traditional non-deterministic semantics. How-
ever, in the modeling and programming of systems, the interaction of non-determinism
and probabilities arises naturally, for example, in the sampling of a random number or
in the occurrence of an externally induced fault. Therefore, modeling and programming
languages need to have operations whose semantics include probabilistic behavior.

For probabilistic languages, SOS theories have also been developed in which not
only congruence properties are considered, but also non-expansiveness, which is a con-
cept that arises naturally when measuring distances in the probabilistic behavior of two
processes (see, e.g., [9,12] and references therein). Moreover, equational theories for
probabilistic languages have been developed (see [5,15] and references therein).

In this work we lift the result of [1] to languages with probabilistic operations. The
input of our algorithm is an SOS system (more precisely, a PTSS) in PGSOS format
(actually, it is a generalization of the Segala-GSOS format [6]) and the output is a sound
and ground-complete equational theory for strong bisimulation equivalence. Having
this aim, we came across with additional contributions, more precisely:

1. In Sec. 3, we generalize the PGSOS format to two-sorted signatures in order to syn-
tactically denote states and distributions. By doing so, operations can be parameter-
ized on distributions, and moreover, we can neatly express open terms in the rules of
the PTSS. While the syntax somehow resembles the alternating model of probabilis-
tic processes, we continue the research line of [9,17,12] and let PTSS have models in
Segala’s probabilistic automata. We show that strong bisimulation equivalence [16]
and convex bisimulation equivalence (also called probabilistic bisimulation) [21] are
congruences for any operation whose semantics is defined in PGSOS format.

2. In Sec. 4, we provide an algorithm that takes a PGSOS system, and produces an equa-
tional theory that is sound and ground-complete for strong bisimulation equivalence.
We show ground-completeness for semantically well-founded PGSOS systems, and
we indicate how this result can be extended to arbitrary PGSOS. We show how our
algorithm easily extends to derive a sound and ground-complete equational theories
for convex bisimulation equivalence.

3. As a by-product we needed to define a two-sorted calculus for finite probabilistic
processes equipped with two sound and ground-complete equational theories, one
for each bisimulation equivalence. This calculus is adapted from [5]. (See Sec. 2.)

4. In Sec. 5, we provide an equational theory for the basic calculus that captures exactly
the notion of (strong) bisimilarity metric [10]. The equational theory is sound in
the sense that, whenever the equality between the distance of two processes and the
distance of two other processes (or a particular value) can be calculated with the
calculus, it can also be calculated semantically in the probabilistic transition system.
We show that it is also ground-complete (i.e. the inverse implication holds for closed
terms).

5. Also in Sec. 5, we modify the previous algorithm to derive a sound and ground-
complete equational theory for bisimilarity metric from a given PGSOS system.

2 Preliminaries

Let S = {s, d} be a set denoting two sorts. States of the transition system will be of
sort s ∈ S and distributions over states of sort d ∈ S . We let σ range over the sorts
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in S . We write S -sorted families X as pairs (Xs, Xd) with the first element Xs denoting
the member of sort s and the second element Xd denoting the member of sort d. An
S -sorted signature is a structure (F, ar), where (i) F is a set of function names, and
(ii) ar : F → (S ∗×S ) is the arity function. The rank of f ∈ F is the number of arguments
of f , defined by rk( f ) = n if ar( f ) = σ1 . . . σn → σ. (We write “σ1 . . . σn → σ” instead
of “(σ1 . . . σn, σ)”.) Function f is a constant if rk( f ) = 0. To simplify the presentation
we will write an S -sorted signature (F, ar) as a pair of disjoint signatures (Σ, Γ) where
Σ is the set of operations that map to s and Γ is the set of operations that map to d.

Let (V,D) be an infinite set of S -sorted variables where V,D, F are all mutually
disjoint. We use x, y, z (with possible sub- or sup-indexes) to range overV, μ, ν to range
overD and ζ to range overV ∪D. The S -sorted set of Σ-terms over (V,D) ⊆ (V,D),
notation (T (Σ,V), T (Γ,D)), is the smallest set satisfying: (i) V ⊆ T (Σ,V), (ii) D ⊆
T (Γ,D), (iii) f (t1, · · · , trk( f )) ∈ T (Σ,V), if ar( f ) = σ1 . . . σn → σ, σ = s, ti ∈ T (Σ,V)
whenever σi = s, and ti ∈ T (Γ,D) whenever σi = d, and (iv) f (t1, · · · , trk( f )) ∈
T (Γ,D), if instead σ = d. (T (Σ,V), T (Γ,D)) is the set of all open terms and is de-
noted by (T(Σ),T(Γ)). (T (Σ, ∅), T (Γ, ∅)) is the set of all closed terms and is denoted by
(T (Σ), T (Γ)). Var(t) ⊆ (V,D) denotes the S -sorted set of variables in term t. We let ξ
range over terms of both sorts T (Σ) ∪ T (Γ).

Let Δ(T (Σ)) denote the set of all (discrete) probability distributions on T (Σ). We
let π range over Δ(T (Σ)) and ψ range over Δ(T (Σ)) ∪ T (Γ). For each t ∈ T (Σ), let δt

denote the Dirac distribution, i.e., δt(t) = 1 and δt(t′) = 0 if t and t′ are not syntactically
equal. For X ⊆ T (Σ) we define π(X) =

∑
t∈X π(t). The convex combination

∑
i∈I piπi of

a family {πi}i∈I of probability distributions with pi ∈ (0, 1] and
∑

i∈I pi = 1 is defined by
(
∑

i∈I piπi)(t) =
∑

i∈I(piπi(t)).
We fix the signature to describe probability distributions of finite support by ΓΔ =

(FΔ, arΔ) with FΔ = {δ,⊕p | p ∈ Q∩ (0, 1)}, and arΔ(δ) = s→ d and arΔ(⊕p) = dd → d.
Given an arbitrary S -sorted signature with Σs = (Fs, ars), the operations that map to sort
s and all function symbols in Fs and FΔ are disjoint. We define the probabilistic lifting of
Σs as an S -sorted signature (Σ, Γ) with Σ = Σs and Γ = (Fd, ard) extending ΓΔ such that
for each f ∈ Fs there is a new distinct function symbol f ∈ Fd with ar( f ) = d...d → d
and rk( f ) = rk( f ). (Operators in boldface are probabilistically lifted.)

The algebra associated with a probabilistically lifted signature (Σ, Γ) is defined as
follows. For sort s, it is the freely generated algebra T (Σ). For sort d, it is defined
by the carrier Δ(T (Σ)) and the following interpretation: �δ(t)� = δt for t ∈ T (Σ),
�θ1 ⊕p θ2� = p�θ1�+(1−p)�θ2� for θ1, θ2 ∈ T (Γ), � f (θ1, . . . , θrk( f ))�( f (ξ1, . . . , ξrk( f ))) =∏
σi=s�θi�(ξi) if for all σ j = d, θ j and ξ j are syntactically equal, and, in any other case,
� f (θ1, . . . , θrk( f ))�(t) = 0.

A substitution is an S -indexed family of maps (ρs, ρd) : (V,D) → (T(Σ),T(Γ)). A
substitution is closed if it maps each variable to a closed term. A substitution extends to
a mapping from terms to terms as usual.

3 Probabilistic Transition System Specifications

Probabilistic transition systems (PTSs) generalize labelled transition systems by allow-
ing for probabilistic choices in the transitions. We consider non-deterministic PTSs
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(Segala-type systems) [21] with countable state spaces. A probabilistic labeled transi-
tion system (PTS) is a triple (T (Σ), A,−→), where Σ is a signature specifying only func-
tions with target sort s, A is a countable set of actions, and −→ ⊆ T (Σ) × A × Δ(T (Σ))

is a transition relation. We write t
a−→ π for (t, a, π) ∈ −→. Satisfaction is defined by

−→ |= t
a−→ π if t

a−→ π ∈ −→, and −→ |= t
a−→� if t

a−→ π � −→ for all π ∈ Δ(T (Σ)).
We specify PTSs by means of transition system specifications [20,7,14]. We gener-

alize the probabilistic GSOS format of [6] with operators of sort s with arguments of
either sort s or d. From now on, (Σ, Γ) denotes a probabilistically lifted signature.

Definition 1 (PGSOS-rule). A PGSOS-rule has the form:

{xi

ai,m−−−→ μi,m | i ∈ I,m ∈ Mi} {xi

bi,n−−−→� | i ∈ I, n ∈ Ni}
f (ζ1, . . . , ζrk( f ))

a−→ θ
with f ∈ F a function symbol, I,Mi,Ni are finite index sets, ai,m, bi,n, a ∈ A are actions,
xi ∈ V, ζi ∈ V∪D, μi,m ∈ D are variables, θ ∈ T(Γ) a distribution term, and satisfying
the following constraints:
1. all μi,m and ζ j, for i ∈ I,m ∈ Mi and j ∈ {1, . . . , rk( f )}, are pairwise different;
2. {xi | i ∈ I} ⊆ {ζ1, . . . , ζrk( f )};
3. Var(θ) ⊆ {μi,m | i ∈ I,m ∈ Mi} ∪ {ζ1, . . . , ζrk( f )}.

A probabilistic transition system specification in PGSOS format (PTSS) is a struc-
ture P = (Σ, A,R) where Σ is a probabilistically lifted signature, A is a finite set of
labels and R is a finite set of PGSOS rules. For any rule r ∈ R, literals above the line
are called premises, notation prem(r); the literal below the line is called conclusion,

notation conc(r). Given a positive literal t
a−→ θ and a closed substitution ρ, �t

a−→ θ�ρ
denotes the transition ρ(t)

a−→ �ρ(θ)�. For negative literals, �t
a−→� �ρ denotes ρ(t)

a−→� . A

supported model of P is a PTS (T (Σ), A,−→) satisfying that t
a−→ π ∈ −→ iff there is a rule

r ∈ R with a substitution ρ such that all premises of r hold, i.e. −→ |= �prem(r)�ρ, and the

conclusion instantiates to t
a−→ π, i.e. �conc(r)�ρ = t

a−→ π. Each PTSS has a supported
model which is, moreover, unique.

A set X ⊆ T (Σ) is closed with respect to a binary relation R ⊆ T (Σ) × T (Σ) if
R(X) ⊆ X where R(X) = {t′ ∈ T (Σ) | ∃t ∈ X . t R t′}. A relation R ⊆ T (Σ) × T (Σ) on
terms of sort s lifts to a relation R ⊆ Δ(T (Σ)) × Δ(T (Σ)) on distributions over terms of
sort s by πR π′ iff π(X) = π′(X) for all X ⊆ T (Σ) that are closed with respect to R.

Definition 2 ([16]). Let (T (Σ), A,−→) be a PTS. A symmetric relation R ⊆ T (Σ) × T (Σ)
is a strong bisimulation if whenever t R t′ and t

a−→ π, there exists a transition t′
a−→ π′

such that πR π′. Strong bisimilarity∼ is defined as the union of all strong bisimulations.

The convex closure cl(D) of a set of distributions D ⊆ Δ(T (Σ)) is the least subset
of Δ(T (Σ)) which contains D and is closed under convex combination. A combined
transition t

a−→c π is given whenever π ∈ cl({π′ | t a−→ π′}).
Definition 3 ([21]). Let (T (Σ), A,−→) be a PTS. A symmetric relation R ⊆ T (Σ)×T (Σ) is

a convex bisimulation if whenever t R t′ and t
a−→ π, there exists a combined transition
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t′
a−→c π

′ such that πR π′. Convex bisimilarity ∼c is defined as the union of all convex
bisimulations.

A crucial property of process description languages to ensure compositional mod-
eling is the compatibility of process operators with the chosen behavioral relation. In
algebraic terms the compatibility of an equivalence R with an operator f is expressed by
the congruence property which is defined as f (ξ1, . . . , ξrk( f )) R f (ξ′1, . . . , ξ

′
rk( f )) when-

ever ξi R ξ′i with ξi, ξ′i ∈ T (Σ) if σi = s and ξi R ξ′i with ξi, ξ′i ∈ T (Γ) if σi = d. The
PGSOS rule format ensures that both strong and convex bisimilarity are congruences.

Theorem 1. Let P = (Σ, A,R) be a PTSS in PGSOS format. Then, both strong and
convex bisimilarity are congruences for all operators defined by P.

4 Axiomatization of Bisimulation Equivalences

The technique to derive an axiomatization for PGSOS operators follows the same strat-
egy as in [1]. It starts with a given axiomatization of a basic calculus which is a proba-
bilistic extension of CCS similar to the one studied in [5]. Then, according to the rules,
axioms are provided for any other operator so that these operators can be eliminated,
in the sense that every closed term can be equated to another closed term in the basic
calculus. To introduce these new axioms, operators are split in three classes: distinc-
tive, smooth, and non-smooth. Distinctive operators are well-behaved operators that
distribute with summation and the probabilistic operators ⊕p and δ. The defining rules
for distinctive operators can be directly mapped into axioms. Smooth operators are a
generalization of distinctive operators in the sense that the set of rules defining the se-
mantics of a smooth operator can be split in disjoint sets, each one of them satisfying
the conditions of distinctive operators. Thus a smooth operator can be represented as
a non-deterministic sum of distinctive operators. For each non-smooth operator, a new
smooth operator is introduced that, when properly instantiated, shows the same behav-
ior as the original non-smooth operator. Precisely the equality between these terms is
introduced as a new axiom. This section presents these results and provides an algorithm
that, given a PTSS P in PGSOS format, generates an axiom system for all operators in
P that is sound and ground-complete for strong bisimilarity. We close the section with
an explanation on how the technique extends to convex bisimilarity.

Axiomatizing Finite Probabilistic Trees. Let ΣCCS be the signature of the (recursion
free) basic probabilistic CCS defined by constant 0 of sort s, binary operation + with
ar(+) = ss → s and prefix operators a with ar(a) = d → s for all a ∈ A. We write a.θ
for a(θ) with θ ∈ T(Γ). The PTSS PCCS = (ΣCCS, A,R) is given by the following rules R:

a.μ
a−→ μ

x
a−→ μ

x + y
a−→ μ

y
a−→ μ

x + y
a−→ μ

(1)

A closed term t ∈ T (Σ) is in normal form if either t = 0 or t =
∑

i∈I ai.θi with
θi ∈ T (Γ) in normal form. A closed term θ ∈ T (Γ) is in normal form if θ =

⊕

i∈I piδ(ti),
with ti ∈ T (Σ) in normal form and

∑
i∈I pi = 1. Here,

⊕

i∈{1..n} piθi is a shorthand for
θ1 ⊕ p1∑n

j=1 p j

(θ2 ⊕ p2∑n
j=2 p j

(···(θn−1 ⊕ pn−1∑n
j=n−1 p j

θn)···)), and
∑

i∈{1..n} ti is a shorthand for t1+ ···+ tn.
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Table 1. Axiomatization of strong and convex bisimilarity of CCS

x + y = y + x (N1)

(x + y) + z = x + (y + z) (N2)

x + 0 = x (N3)

x + x = x (N4)

μ ⊕p μ = μ (P1)

μ1 ⊕p μ2 = μ2 ⊕1−p μ1 (P2)

(μ1 ⊕p μ2) + μ3 = (μ1 + μ3) ⊕p (μ2 + μ3) (NP1)

μ1 + (μ2 ⊕p μ3) = (μ1 + μ2) ⊕p (μ1 + μ3) (NP2)

δ(x) + δ(y) = δ(x + y) (NP3)

a.μ1 + a.μ2 =a.μ1 + a.μ2 + a.(μ1 ⊕p μ2) (CC)

μ1 ⊕p1 (μ2 ⊕ p2
1−p1
μ3) = (μ1 ⊕ p1

p1+p2
μ2) ⊕p1+p2 μ3 (P3)

Let ECCS be the set of equations of Table 1 without equation CC. The axioms N1–N4
are standard for non-deterministic choice of reactive systems [18]. The axioms P1–
P3 are standard for probabilistic choice [5]. Moreover, axioms NP1–NP3 allow one
to normalize distribution terms in a similar way to the normalization of state terms
by axioms N1–N4. The axiomatization of [5] did not require those axioms because
distribution terms were assumed to be already in normal form.

Equational reasoning over many-sorted algebras [13] requires non-empty carrier sets.
For ECCS and all its following extensions this holds since 0 ∈ T (Σ) and δ(0) ∈ T (Γ). A
set of S -sorted equations E over signature Σ is a sound and ground-complete axiomati-
zation of strong bisimilarity of P if for all t, t′ ∈ T (Σ), E � t = t′ iff t ∼ t′.

In order to show ground-completeness of ECCS we require that the axiomatization
is normalizing for both sort s and d, i.e. that for each closed term ξ ∈ T (Σ) ∪ T (Γ)
there is a closed term ξ′ ∈ T (Σ) ∪ T (Γ) in normal form such that ECCS � ξ = ξ′. The
proof of the next lemma follows as usual by transforming the axiom system into a term
rewriting system, showing that it is strongly normalizing modulo commutativity and
associativity, and that the normal form is indeed of the expected form.

Lemma 1. The axiom system ECCS is normalizing.

The proof of soundness for axioms involving state terms follows standard lines: for
each axiom we find a bisimulation relation that shows its instances are valid with respect
to bisimilarity. For axioms on distribution terms we prove that both sides of the equation
represent exactly the same distribution. Ground-completeness is proven by first reduc-
ing to normal form and then showing that, for two bisimilar state terms in normal form,
the transfer properties induce a proof using the axioms. Similarly, two distribution terms
in normal form that represent the same distribution up to bisimulation, can be reduced
to the same term using the axioms.

Theorem 2. ECCS is sound and ground-complete for strong bisimilarity.

In order to derive axioms for systems with rules including negative premises, fol-
lowing [1], we introduce the family of one-step restriction operators ∂1

H, where H ⊆ A,
ar(∂1

H) = s→ s, and whose semantics is given by

x
a−→ μ

∂1
H(x)

a−→ μ
a � H (2)
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Table 2. Axioms for ∂1
H

∂1
H(x + y) = ∂1

H(x) + ∂1
H(y) (H1)

∂1
H(a.μ) = a.μ if a � H (H2)

∂1
H(a.μ) = 0 if a ∈ H (H3)

∂1
H(0) = 0 (H4)

∂1
H(μ1 ⊕p μ2) = ∂1

H(μ1) ⊕p ∂
1
H(μ2) (H5)

∂1
H(δ(x)) = δ(∂1

H(x)) (H6)

∂1
H(t) represents the inability to perform any action a ∈ H in the next step, other-

wise behaving as t. The signature ΣCCS∂ extends ΣCCS with operators ∂1
H . PCCS∂ =

(ΣCCS∂ , A,RCCS∂ ) is the PTSS whose set of rules RCCS∂ extends RCCS with the family
of rules given in (2).

Let ECCS∂ extends ECCS with equations in Table 2. H1–H4 are standard for the one-
step restriction operator [1]. H5 and H6 propagate the one-step restriction operation
to each single term in the support of a distribution. Hence, restriction distributes over
probabilistic choices and Dirac embedding. Soundness of H1–H4 is proven in the same
way as for the non-probabilistic case [1]. Soundness of H5 and H6 is proven by show-
ing that both sides of each axiom represent exactly the same distribution. ∂1

H can be
eliminated in the sense that for each closed term ξ ∈ T (ΣCCS∂ ) ∪ T (ΓCCS∂ ) there is a
closed term ξ′ ∈ T (ΣCCS) ∪ T (ΓCCS) such that ECCS∂ � ξ = ξ′. This can be proven by
induction on the height of a term. (Notice that, when read from left to right, axioms
H1, H5, and H6 “push” operator ∂1

H inside the term, while axioms H2–H4, remove it.)
Using elimination and Thm. 2, ground-completeness follow immediately.

Theorem 3. ECCS∂ is sound and ground-complete for strong bisimilarity.

Probabilistically Lifted Operators. The semantics of all probabilistically lifted op-
erators is defined following the same scheme. Thus, the axioms for these operators are
defined similarly regardless of whether the original operator is distinctive, smooth or
non-smooth. There are actually two types of axioms that explain how a lifted operation
interacts with the probabilistic operations ⊕p and δ.

Definition 4. Let f be an operator with arity ar( f ) = σ1 . . . σrk( f ) → s. We associate
with f the axiom system E f consisting of the following equations:

1. Probabilistic distributivity laws: For each position i of f , such that σi = s, and for
each p ∈ Q ∩ (0, 1) we have the equations

f (μ1, .., μ
′
i ⊕p μ

′′
i , .., μrk( f )) = f (μ1, .., μ

′
i , .., μrk( f )) ⊕p f (μ1, .., μ

′′
i , .., μrk( f ))

2. Dirac distributivity laws: We have the equation

f (θ1, . . . , θrk( f )) = δ( f (ζ1, . . . , ζrk( f )))

with θi = δ(ζi), ζi ∈ V if σi = s and θi = ζi, ζi ∈ D if σi = d.

The soundness of these laws follows immediately from the semantics of ⊕p, δ and
the lifted operator, and using rational arithmetic. (Rational arithmetic be completely
axiomatized for ground terms, which are the only ones we use, see e.g. [8]).
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Smooth and Distinctive Operators. A smooth rule is a rule that, whenever a variable
is tested in a positive literal, then it is the only literal that tests that variable and the
tested variable does not occur in the target of the conclusion. A smooth operator is an
operator defined only by smooth rules. A distinctive operator is a smooth operator in
which the hypotheses of each pair of rules differ in at least one literal.

Definition 5. A PGSOS rule is smooth if it has the form

{xi
ai−−→ μi | i ∈ I} {xj

b j,n−−−→� | j ∈ J, n ∈ Nj}
f (ζ1, . . . , ζrk( f ))

a−→ θ
(3)

where I and J are disjoint sets s.t. I ∪ J = {i ∈ {1, .., rk( f )} | ζi ∈ V}, and xi � Var(θ) if
i ∈ I. An operator f is smooth if all its defining rules are smooth.

A smooth operator f is distinctive if (i) each f -defining rule tests the same set of
arguments I positively, and (ii) for every two different f -defining rules there is some
argument ζi ∈ V tested positively by both rules, but with a different action.

Notice that + is smooth, but it is not distinctive since, e.g., x is tested positively in the
first rule (actually, a set of rules), but not in the second one. Instead, ∂1

H is distinctive.
We introduce a new operator that we will use in our examples. Assume that each

action a may fail with probability pa ∈ [0, 1). In case of failure, the occurrence of a
is ignored and the system remains in the same state, otherwise, it proceeds normally.
The new operator sc(t) is a safe controller that minimizes the probability of failure of
process t. Its semantics is given by the rules

x
a−→ μ {x b−→� | pb < pa, pa � 0}

sc(x)
a−→ δ(x) ⊕pa sc(μ)

, if pa > 0
x

a−→ μ
sc(x)

a−→ sc(μ)
, if pa = 0

sc is a variant of the ACP-style priority operator and it is not smooth since the rule on
the left tests x in the positive literal but also in the negative literal, and, moreover, x
appears in the target of the conclusion.

Let pos(r) = I (resp. neg(r) = J) be those positions which are positively (resp.
negatively) tested by rule r (considering r as in (3)). Let pact(r, i) = {ai | i ∈ I} (resp.
nact(r, i) = {bi,n | n ∈ Ni}) be those actions for which xi is positively (resp. negatively)
tested by rule r. Note that if Ni = ∅ then nact(r, i) = ∅. A position i of operator f is
positive if i ∈ pos(r) for all rules r defining f .

Definition 6. Let f be a distinctive operator with arity ar( f ) = σ1 . . . σrk( f ) → s. Let
ζi ∈ V if σi = s and ζi ∈ D if σi = d for 1 ≤ i ≤ rk( f ). We associate with f the axiom
system E f consisting of the following equations:

1. Non-deterministic distributivity laws: For each positive position i of f , we have

f (ζ1, .., ζ
′
i + ζ

′′
i , .., ζrk( f )) = f (ζ1, .., ζ

′
i , .., ζrk( f )) + f (ζ1, .., ζ

′′
i , .., ζrk( f ))

2. Action laws: For each f -defining rule r (as in (3)), we have the equation

ρ( f (ζ1, . . . , ζrk( f ))) = a.ρ(θ)
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with θ = trgt(r) the target of r and substitution ρ defined by

ρ(ζ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai.μi if ζ = xi with i ∈ pos(r)

∂1
H(xi) if ζ = xi with i ∈ neg(r) and H = nact(r, i) � ∅
ζ otherwise.

3. Inaction laws: We have the equations

ρ( f (ζ1, . . . , ζrk( f ))) = 0

for all sort-respecting substitutions ρ mapping into terms of the form 0, x, a.μ,
b.μ + x, or μ, such that for every f -defining rule r there is some position i with
sort σi = s satisfying one of the following conditions: (i) if i ∈ pos(r), then either
ρ(ζi) = 0 or ρ(ζi) = a.μi with a � pact(r, i), or (ii) if i ∈ neg(r), then ρ(ζi) = b.μi + x
with b ∈ nact(r, i).

The fact that all rules of a distinctive operator f test positively the same positions
guarantees the soundness of the non-deterministic distributivity law. There is one action
law for each rule of f . The action law describes the execution of an action by pushing
the executing action to the “head” of the term. The conditions of its associated rule are
properly encoded in each operand of f . Contrarily to the action law, an inaction law
traverses every f -defining rule ensuring through the operands that at least one of the
conditions of each rule does not hold.

Soundness of the axioms in E f can be proven regardless of the PTSS containing
operator f as long as the set of rules defining the semantics of f is the same for any
PTSS. That is, if f is defined in a PTSS P, E f is sound for any disjoint extension of P.

Definition 7. Let P = (Σ, A,R) and P′ = (Σ′, A,R′) be two PTSSs in PGSOS format.
P′ is a disjoint extension of P, notation P′ � P, iff Σ ⊆ Σ′, R ⊆ R′ and R′ introduces no
new rule for any operation in Σ.

Then, we have the following theorem.

Theorem 4. Let P = (Σ, A,R) be a PTSS in PGSOS format, s.t. P � PCCS∂ and Σsd =

Σ − Σ∂CCS is a collection of distinctive operators. Let EP be the axiom system consisting
of ECCS∂ and E f ∪ E f , for each f ∈ Σsd. Then, for every disjoint extension P′ � P in
PGSOS format, the axiom system EP is sound for strong bisimilarity on P′.

Notice that the set of rules R defining a smooth operator f in a PTSS P can always
be partitioned into sets R1, . . . ,Rm, such that f is distinctive when considering only the
rules in Ri. Let fi be fresh operators with arity ar( fi) = ar( f ) and let R′i be the same set
of rule as Ri only that the operator in the source of each rules is renamed to fi. Consider
the disjoint extension P′ � P with all fresh operators fi and rules in R′1 ∪ . . . ∪ R′m
added to the signature and set of rules of P, respectively. Then, it should be clear that
the distinctive law

f (ζ1, . . . , ζrk( f )) = f1(ζ1, . . . , ζrk( f )) + · · · + fm(ζ1, . . . , ζrk( f )) (4)

is sound for bisimilarity. Thus, a smooth operator f is axiomatized by the non-deter-
ministic choice over the distinctive variants of f .
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Table 3. Axiomatization of sc (redundant laws, such as sc(0, a.μ) = 0, are omitted)

sc(x1 + x2, y) = sc(x1, y) + sc(x2, y)

sc(a.μ, ∂1
H(x)) = a.(δ(∂1

H(x)) ⊕pa sc(μ))

if pa > 0, with H = {b | pb < pa}
sc(μ1 ⊕p μ2, ν) = sc(μ1, ν) ⊕p sc(μ2, ν)

sc(μ, ν1 ⊕p ν2) = sc(μ, ν1) ⊕p sc(μ, ν2)

sc(a.μ, y) = a.sc(μ) if pa = 0

sc(0, y) = 0

sc(a.μ, b.ν + y) = 0 if pb < pa

sc(δ(x), δ(y)) = δ(sc(x, y))

Theorem 5. Let P = ((Σ, Γ), A,R) be a PTSS in PGSOS format, s.t. P � PCCS∂ and
f ∈ Σ be a smooth operator. There is a disjoint extension P′ = ((Σ′, Γ′), A,R′) of P with
m distinctive smooth operations f1, . . . , fm such that ar( fi) = ar( f ) for 1 ≤ i ≤ m and
(4) is sound for strong bisimulation in any disjoint extension of P′.

Non-smooth Operators. An operator that is not smooth has a rule in which a variable
that is tested in a positive literal either is tested in a second literal or it appears in the
target of a conclusion. In this case we proceed by constructing a smooth version of the
operator with one argument for each kind of use of the variable that breaks smoothness
(actually, one argument for each positive test plus an additional one if the variable is
tested negatively or it appears on the target of the conclusion of a rule). Thus, for the
unary operator sc, we introduce a binary operator sc, the first argument related to the
positive literal and the other related to the negative test and the occurrence in the target
of the rule. So sc is defined by the rules

x
a−→ μ {y b−→� | pb < pa}

sc(x, y)
a−→ δ(y) ⊕pa sc(μ)

, if pa > 0
x

a−→ μ
sc(x, y)

a−→ sc(μ)
, if pa = 0

It should be clear that sc(x) = sc(x, x). Moreover, notice that sc is smooth. (In fact, it
is also distinctive.) The premise on the second rule could have alternatively tested on y
rather than x, in which case, sc would have also been smooth but not distinctive.

In general, given a non-smooth operator f , we define a new smooth operator f ′ by
extending its arity as explained above, and proceeding as following: for each rule r of
f we introduce a new rule r′ for f ′ such that, if we intend to equate f (�ζ) = f ′(�ζ′), and
f (�ς) and f ′(�ς′) are the sources of r and r′, respectively, r[�ζ/�ς] and r′[�ζ′/�ς′] have to be
identical with the exception of their sources. (Here, [�ζ/�ς] denotes the usual substitution
of variables.) Notice that this results in a one to one correspondence between the rules
of f and those of f ′. Then, we have the following theorem.

Theorem 6. Let P be a PTSS in PGSOS format, s.t. P � PCCS∂ . Let f ∈ ΣP be a non-
smooth operator. Then there is a disjoint extension P′ � P with a smooth operator f ′
s.t. the equation f (ζ1, . . . , ζrk( f )) = f ′(ζ′1, . . . , ζ

′
rk( f ′)), where ζi, 1 ≤ i ≤ rk( f ) are all

different variables and {ζ′1, . . . , ζ′rk( f ′)} ⊆ {ζ1, . . . , ζrk( f )}, is sound for strong bisimulation
in every disjoint extension of P′.

As an example, we complete the axiomatization of sc with the axioms for sc which
can be derived using Definitions 4 and 5. They are given in Table 3.

As a result of the previous theorems, we obtain the algorithm of Fig. 1 that, given a
PTSS Pi in PGSOS format, generates an equational theory Eo that captures the behavior
of all operations in Pi and is sound for strong bisimilarity.
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Input: a PTSS Pi in PGSOS format
Output: a PTSS Po in PGSOS format, with Po � Pi, and an equational theory Eo that is sound

for strong bisimilarity in all disjoint extensions of Po.
1. If necessary, complete Pi so that it disjointly extends CCS∂.
2. For each non-smooth operator of Pi, extend the system with a smooth version according to

Thm. 6 and add all the corresponding equations to CCS∂.
3. For each smooth non-distinctive operator f � ΣCCS∂ in the resulting PTSS, apply the con-

struction of Thm. 5 and extend the PTSS with the distinctive operators f1, . . . , fm and the
respective rules. Add also the resulting instances of axiom (4).

4. Add all equations associated to the distinctive operators in the resulting system (but not in
ΣCCS∂ ) according to Def. 6.

5. Finally, for every operator not in ΣCCS∂ add the equation for their respective lifted version
according to Def. 4.

Fig. 1. Algorithm to generate an axiomatization for Pi

The fact that the set of rules of Pi (and hence also Po) is finite guarantees that the
equational theory Eo is head-normalizing for all operations of Po, that is, every closed
term of Po can be proven equal to a term of the form 0,

∑
i∈I ai.θi or

⊕

j∈J p jδ(t j), with
θi ∈ T (ΓPo ) and t j ∈ T (ΣPo ), within the equational theory Eo. The construction of head-
normal forms is the key towards proving ground-completeness. In fact, notice that if
the semantics of a term t ∈ T (ΣPo ) is a finite tree, then all operators can be eliminated
in Eo (i.e., there is a term t′ ∈ T (ΣCCS), s.t., Eo � t = t′). However this is not the case
in general. Consider the constant operator nwf whose semantics is defined by the rule

nwf
a−→ δ(nwf)⊕ 1

2
δ(0). Using the action law, axiom nwf = a.(δ(nwf)⊕ 1

2
δ(0)) is derived,

in which the elimination process will never terminate.
In order to guarantee ground-completeness, we adapt the notion of semantic well-

foundedness of [1] to our setting. A term t ∈ T (ΣP) is semantically well founded in P
if there is no infinite sequence t0 a0 θ0 t1 a1 θ1. . . of terms ti ∈ T (ΣP) and θi ∈ T (ΓP)

and actions ai ∈ A, such that ti
ai−−→ θi is derivable in P and �θi�(ti+1) > 0, for all

i ≥ 0. P is semantically well founded if all its terms are. Now, if Po is semantically well
founded (which is the case if Pi is semantically well-founded and Pi � PCCS), Eo has
an elimination theorem. As a consequence, we have the following theorem.

Theorem 7. Let Pi be the input and Po and Eo be the outputs of the algorithm in Fig. 1.
If Pi is semantically well-founded with Pi � PCCS, then the equational theory Eo is
ground-complete for strong bisimulation in Po.

Ground completeness can be extended to semantically non well-founded PTSS in
PGSOS format by also using the approximation induction principle (AIP) [4]. We omit
the details here. The proof follows closely the lines of [1].

Axiomatization of Convex Bisimulation. Equation CC of Table 1 was introduced
in [5] which proved it sound for convex bisimilarity. The equational theory resulting
from extending ECCS with CC is ground-complete for CCS modulo convex bisimilarity.
The proof of this result proceeds very much like the one in [5].
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Since all the axioms generated by the algorithm in Fig. 1 are sound for strong bisim-
ilarity, they are also sound for convex bisimilarity. Since they also provide elimination
for semantically well founded terms, we have the following result:

Theorem 8. Let Pi be a semantically well-founded PTSS in PGSOS format with Pi �
PCCS. Let the PTSS Po and the equational theory Eo be the outputs of the algorithm in
Fig. 1. Then, (i) Eo ∪ {CC} is sound for convex bisimulation in any disjoint extension of
Po, and (ii) it is ground-complete in Po.

5 Axiomatization of Bisimilarity Metric

In the previous section we developed an equational theory for bisimulation equivalence.
Now we shift our focus to bisimilarity pseudometrics and develop an equational theory
that characterizes the bisimulation distance.

Axiomatization of Finite Probabilistic Trees. A 1-bounded pseudometric on T (Σ)
is a function d : T (Σ) × T (Σ) → [0, 1] such that (i) d(t, t) = 0; (ii) d(t, t′) = d(t′, t);
and (iii) d(t, t′′) ≤ d(t, t′) + d(t′, t′′) for all t, t′, t′′ ∈ T (Σ). Pseudometrics are used to
formalize the notion of behavioral distance between terms.

A matching ω ∈ Δ(T (Σ) × T (Σ)) for (π, π′) ∈ Δ(T (Σ)) × Δ(T (Σ)) is a distribution
satisfying

∑
t′∈T (Σ) ω(t, t′) = π(t) and

∑
t∈T (Σ) ω(t, t′) = π′(t′) for all t, t′ ∈ T (Σ). We

denote by Ω(π, π′) the set of all matchings for (π, π′). The Kantorovich pseudometric
K(d) : Δ(T (Σ)) × Δ(T (Σ)) → [0, 1] lifts a pseudometric d : T (Σ) × T (Σ) → [0, 1] on
state terms to distributions:

K(d)(π, π′) = minω∈Ω(π,π′)
∑

t,t′∈T (Σ) d(t, t′) · ω(t, t′) (5)

for π, π′ ∈ Δ(T (Σ)). Note that K(d)(δt, δt′) = d(t, t′) for all t, t′ ∈ T (Σ). The Hausdorff
pseudometric H(d̂) : P(Δ(T (Σ)))×P(Δ(T (Σ)))→ [0, 1] lifts a pseudometric d̂ : Δ(T (Σ))×
Δ(T (Σ))→ [0, 1] on distributions to sets of distributions:

H(d̂)(Π1, Π2) = max
{
supπ1∈Π1

infπ2∈Π2 d̂(π1, π2), supπ2∈Π2
infπ1∈Π1 d̂(π2, π1)

}
(6)

for Π1, Π2 ⊆ Δ(T (Σ)) whereby inf ∅ = 1 and sup ∅ = 0.

Definition 8 ([10]). Let (T (Σ), A,−→) be a PTS. A 1-bounded pseudometric d on T (Σ)
is a bisimulation metric if for all t, t′ ∈ T (Σ) with d(t, t′) < 1, whenever there is a

transition t
a−→ π then there exists a transition t′

a−→ π′ such that K(d)(π, π′) ≤ d(t, t′)

We order bisimulation metrics d1 � d2 iff d1(t, t′) ≤ d2(t, t′) for all t, t′ ∈ T (Σ). The
smallest bisimulation metric, notation d, is called bisimilarity metric and assigns to
each pair of processes their least possible distance. Strong bisimilarity is the kernel of
the bisimilarity metric [10], i.e. d(t, t′) = 0 iff t ∼ t′.

Let Em
CCS be the system of equations in Table 4. The equations consider two kind

of symbols for metrics: one on state terms (d) and the other on distribution terms (d).
Axioms D1–D4 correspond to conditions (i) and (ii) of the definition of a pseudometric.
Axioms MN and MP lift the axioms for bisimulation to metrics. In a way, they state that
two bisimilar terms should have the same distance to a third term. From Def. 8, it can be
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Table 4. Axiomatization of bisimilarity metric of CCS. (We assume min∅ = 1.)

d(x, x) = 0 (D1)

d(x, y) = d(y, x) (D2)

d(μ, μ) = 0 (D3)

d(μ, ν) = d(ν, μ) (D4)

d(t, x) = d(t′, x) where t = t′ is one of axioms N1–N4 (MN)

d(θ, μ) = d(θ′, μ) where θ = θ′ is one of axioms NP1–NP3 or P1–P3 (MP)

d(0, a.μ + x) = 1 (H1)

d
(∑

i∈I ai.μi,
∑

j∈J b j.ν j

)
= max

{
max

i∈I
min

j∈J,ai=b j
d(μi, ν j), max

j∈J
min

i∈I,ai=b j
d(μi, ν j)

}
(H2)

d
(⊕

i∈I piδ(xi),
⊕

j∈J q jδ(yj)
)
= min
ω∈Ω(I,J)

∑
i∈I, j∈J d(xi, yj) · ω(i, j) (K)

where Ω(I, J) = {ω : I × J → [0, 1] | ∀i ∈ I : ω(i, J) = pi,∀ j ∈ J : ω(I, j) = qj}

easily seen that d is a bisimulation metric whenever maxa∈A H(K(d))({π | t a−→ π}, {π′ |
t′

a−→ π′}) ≤ d(t, t′). This is captured by H1 and H2. The equality in the axioms is due
to the fact that we aim to characterize only the bisimilarity metric d. Finally, axiom
K corresponds to the definition of the Kantorovich pseudometric. We also need the
following general rules that should be considered together with the usual inference rules
of equational logic. For all f : σ1 . . . σrk( f ) → s and g : σ1 . . . σrk(g) → d, we have

{d(ζi, ζ
′
i ) = 0, d(ζ j, ζ

′
j) = 0 | 1 ≤ i, j ≤ rk( f ), σi = s, σ j = d}

d( f (ζ1, .., ζrk( f )), z) = d( f (ζ′1, .., ζ
′
rk( f )), z)

(S1)

{d(ζi, ζ
′
i ) = 0, d(ζ j, ζ

′
j) = 0 | 1 ≤ i, j ≤ rk( f ), σi = s, σ j = d}

d(g(ζ1, .., ζrk(g)), z) = d(g(ζ′1, .., ζ
′
rk(g)), z)

(S2)

These rules ensure that Em
CCS � d(t, t′′) = d(t′, t′′) whenever ECCS � t = t′ and similarly

for distribution terms.
Let d be the bisimilarity metric and K(d) its Kantorovich lifting. Let ρ be a closed

substitution. We define �d(t, t′)�ρ = d(ρ(t), ρ(t′)) and �d(θ, θ′)�ρ = K(d)(�ρ(θ)�, �ρ(θ′)�)
for t, t′ ∈ T(ΣCCS) and θ, θ′ ∈ T(ΓCCS). We lift � �ρ to arithmetic terms containing
expressions of the form d(t, t′) or d(θ, θ′) in the obvious way (e.g. �mini∈I expri�ρ =
mini∈I�expri�ρ). Em

CCS is sound for d in the sense that, whenever Em
CCS � expr = expr′

(meaning that expr = expr′ can be proved using axioms in Em
CCS and arithmetic ), then

�expr�ρ = �expr′�ρ for every closed substitution ρ. Soundness should be clear for all the
axioms except maybe for H2. By definition of bisimulation metric, the right-hand side is
smaller than or equal to the left-hand side interpreting them on any closed substitution.
Equality follows from the fact that d is the smallest bisimulation metric.

Besides, Em
CCS is also ground-complete for d, in the sense that, for any (closed)

arithmetic expressions expr and expr′ possibly containing closed terms of the form
d(t, t′) or d(θ, θ′) with t, t′ ∈ T (ΣCCS) and θ, θ′ ∈ T (ΓCCS), �expr� = �expr′� implies
Em

CCS � expr = expr′. Notice that by arithmetic, this is a direct consequence of the fol-
lowing claims: (i) for all closed state terms t, t′ ∈ T (ΣCCS) and p ∈ [0, 1], if d(t, t′) = p
then Em

CCS � d(t, t′) = p, and (ii) for all closed distribution terms θ, θ′ ∈ T (ΓCCS),
if K(d)(�θ�, �θ′�) = p, Em

CCS � d(θ, θ′) = p. The proof of these claims follows by
reducing closed terms involved in d(t, t′) and d(θ, θ′) to normal form using
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axioms D1–D4, MN, and MP (and rules S1 and S2), and then inductively applying
H1, H2, K and arithmetic calculations to reach the expected value.

Theorem 9. Em
CCS is sound and ground-complete for the bisimilarity metric d.

Axiomatization of Bisimilarity Metric of PGSOS. The algorithm of Fig. 1 can be
modified to provide axioms for bisimilarity metric to any operator defined in PGSOS
as follows. Instead of adding the axioms in ECCS, add the axioms in Em

CCS, and for
each equation t1 = t2 (resp. θ = θ′) added by the algorithm in Fig. 1, add instead
d(t1, x) = d(t2, x) (resp. d(θ, μ) = d(θ′, μ)).

Soundness of the axioms introduced by the algorithm is straightforward: we know
that t1 ∼ t2 implies d(t1, t2) = 0 and hence d(t1, t) = d(t2, t) can be calculated from prop-
erties (ii) and (iii) in the definition of pseudometric (similarly for distribution terms).

We already observed that Em
CCS is normalizing. Besides, it can be shown that the

axiom system generated by the new algorithm is head-normalizing. Then, for every
semantically well founded closed term t there is a t′ in normal form such that d(t, t′′) =
d(t′, t′′) for every t′′. Using this elimination result ground-completeness follows.

Theorem 10. Let Pi be a PTSS in PGSOS format and let the PTSS Po and the equa-
tional theory Eo be the outputs of the algorithm in Fig. 1 modified as before. Then,
(i) Eo is sound for the bisimilarity metric d in any disjoint extension of Po, and (ii) it is
ground-complete in Po, provided Po is semantically well founded.

6 Concluding Remarks

As we pointed out in [9], the use of literals as a triple t
a−→ θ in PTSS rules (rather than

the old fashion quadruple t
a,p−−−→ t′ that partially specifies a probabilistic jump) paves

the way for generalizing the theory transition system specification to the probabilistic
setting. We went further in this paper and defined a two-sorted signature that leads to
a rigorous and clear definition of the distribution term in the target of positive literals.
Moreover, this also fits nicely with the introduction of the equational theory.

This setting allows us to borrow the strategies of [1] to obtain the algorithm of Fig. 1
and prove its correctness (Thm. 7). This is particularly facilitated by the introduction of
the operators mapping into sort d, and particularly by the fact that all probabilistically
lifted operators distribute with respect to ⊕p and δ. The generalization of the algorithm
to behavioral equivalences weaker than strong bisimilarity and whose equational theo-
ries contain ECCS, is simple as demonstrated with convex bisimilarity (Thm. 8).

The result that convex bisimilarity is a congruence for all operators defined with
PGSOS rules (Thm. 1) is new in this paper and, to our knowledge, it is actually the first
time that a general congruence theorem is proved for convex bisimilarity. Here, we insist
on the advantages of a good definition: this result is a direct consequence of the fact that
strong bisimilarity is a congruence and this is so because the definition of combined
transition can be encoded with a set of PGSOS rules (then a strong bisimulation in the
extended PTSS is also a convex bisimulation).

We remark that the axiomatization Em
CCS of bisimilarity metric is new in this paper.

Axiom scheme H2 can be translated into a set of axioms that only include binary sum
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by introducing an auxiliary operator. However we have been unable so far to find a set
of axioms that only use binary ⊕p operators in order to replace the axiom scheme K.
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