Phytolith Assemblages in Grasses Native to Central Argentina

LUCRECIA GALLEGO and ROBERTO A. DISTEL*
Departamento de Agronomía, Universidad Nacional del Sur and CERZOS, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, San Andrés 800, 8000 - Bahía Blanca, Argentina

Received: 16 April 2004 Returned for revision: 11 June 2004 Accepted: 24 August 2004

Abstract

- Background and Aims Phytolith reference collections are a prerequisite for accurate interpretation of soil phytolith assemblages aimed at reconstructing past vegetation. In this study a phytolith reference collection has been developed for several grasses native to central Argentina: Poa ligularis, Piptochaetium napostaense, Stipa clarazii, Stipa tenuis, Stipa tenuissima, Stipa eriostachya, Stipa ambigua, Stipa brachychaeta, Pappophorum subbulbosum, Digitaria californica, Bothriochloa edwardsiana and Aristida subulata. - Methods For each species, phytoliths present in the leaf blades were classified into 47 morphotypes, and their relative frequency determined by observing 300-400 phytoliths per sample ($n=5$). Data were analyzed by complete linkage cluster analysis, using the Morisita Index as measure of association. - Key Results The results showed differentiation among phytolith assemblages at species level or at plant functional type level. Cluster analysis separated C_{3} from C_{4} species and palatable from non-palatable species. - Conclusions This study highlights the possibility of reconstructing past vegetation in central Argentina grasslands through the analysis of soil phytolith assemblages. © 2004 Annals of Botany Company

Key words: Poaceae, native grasses, Argentina, phytolith assemblages, grass phytoliths.

INTRODUCTION

Phytoliths are microscopic particles of hydrated silica deposited in intracellular and/or intercellular spaces of plant tissues, which can take on a considerable variety of forms (Rovner, 1983; Piperno, 1988). Because of their consistent shape within species, phytoliths provide significant taxonomic information (Jones and Handreck, 1965; Blackman, 1969; Raven, 1983; Piperno, 1988). Moreover, since these resistant siliceous structures can remain stable in the soil for hundreds and even millions of years after plant tissues decay (Rovner, 1983; Twiss, 1987; Piperno, 1988; Carter, 1999), they are important in palaeoecological studies.

Although the accumulation of silica occurs in various taxa of the plant kingdom, phytoliths are particularly abundant in the family Poaceae (Gramineae) (Rovner, 1971; Piperno, 1988; Mulholland, 1989; Twiss, 1992). In this family, individuals produce many types of phytolith forms (multiplicity), and a particular form may be produced by a number of different species (redundancy) (Rovner, 1983). For that reason, phytolith descriptions at species level include all morphotypes and their relative frequency, which together characterize specific phytolith assemblages. The diagnostic potential of grass phytoliths and their durability in the soil makes phytolith analysis an important microfossil technique for the reconstruction of past vegetation in grasslands (Sendulsky and Labouriau, 1966; Blackman, 1971; Bartolome et al., 1986; Twiss, 1987; Fisher et al., 1995; Alexandre et al., 1997; Barboni et al., 1999). To that end, phytolith reference collections are a prerequisite for accurate interpretation of soil phytolith assemblages.

[^0]In the grasslands of central Argentina a process of species replacement appears to have taken place since the introduction of domestic livestock at the beginning of the last century (Llorens, 1995; Distel and Bóo, 1996). However, this assumption is based on circumstantial evidence because of the lack of relict areas and historical data. The objective of this study was to examine phytolith assemblages in grasses native to central Argentina, in order to assist in the analysis of soil phytolith assemblages towards the reconstruction of past vegetation.

MATERIALS AND METHODS

Species were collected from a site located in the south-east of La Pampa Province, Argentina ($38^{\circ} 45^{\prime} \mathrm{S}, 63^{\circ} 45^{\prime} \mathrm{W}$, and 80 m a.s.l.). The climate of this region is temperate and semi-arid. Mean annual temperature is $15^{\circ} \mathrm{C}$, mean annual precipitation is 400 mm , and mean annual potential evapotranspiration is 800 mm (Instituto Nacional de Tecnología Agropecuaria, 1980). The dominant soils are coarsetextured Petrocalcic Calciustolls (Castelli et al., 1995). The site is located in the southern part of the Caldén Phytogeographical District (Cabrera, 1976). The physiognomy of the vegetation is grassland with isolated shrubs and trees. The more abundant herbaceous species are C_{3}, perennial, cool-season grasses; although some C_{4}, perennial, warmseason grasses are also present. Table 1 contains a list and description of the grass species examined in this study.

Leaf blade samples ($n=5$ individuals) from each of the examined species were collected at the end of their annual growing cycle, to better represent phytolith composition at the moment of incorporation into the soil (Parry and Smithson, 1964; Geis, 1978; Rovner, 1983). Cool and

Table 1. Grass species examined for phytoliths. Species descriptions conform to Cabrera (1970) and Lamberto et al. (1997)

		Photosynthetic pathway	Animal grazing preference
Species	Tribe	C_{3}	High
Piptochaetium napostaense (Speg.)	Stipeae		
Hackel		High	
Stipa clarazii Ball.	Stipeae	C_{3}	High
Stipa tenuis Phil. Poa ligularis Nees	Stipeae	C_{3}	High
Stipa tenuissima Trin. Stipa eriostachya H.B.K. Stipa ambigua Speg.	Stipeae Stipeae Stipeae	C_{3}	C_{3}

warm-season grasses were collected in December of 1998 and April of 1999, respectively.

Phytolith extraction from the leaf blades was accomplished through the calcination technique (Labouriau, 1983). The material was first washed with distilled water and dried at $100^{\circ} \mathrm{C}$. Immediately after this it was charred at $200^{\circ} \mathrm{C}$ for 2 h , boiled in 5 N HCl for 30 min , filtered through ashless filter paper and washed with distilled water until no more chloride ions were detected. Finally, the material was dried and charred at $200{ }^{\circ} \mathrm{C}$ for 20 min and subsequently ignited at $800^{\circ} \mathrm{C}$ for 2 h . The ashes were mounted on microscope slides in Canada balsam and observed in a Wild M11 microscope.

We observed 300-400 phytoliths per sample and calculated the percentage of each type present, following the morphological classification proposed by Twiss (1992) and Zucol (2001) (Table 2). Phytoliths were grouped into 47 morphotypes. Ten were present in associated forms (phytolith skeletons formed of more than one anatomic element), and 37 in isolated forms (phytolith formed of only one anatomic element) (Table 2 and Figs 1-4). Phytolith assemblages were subjected to complete linkage cluster analysis. The Morisita Index was used to measure the strength of the association among specific phytolith assemblages (Horn, 1966).

RESULTS

Table 3 contains the phytolith assemblages of the examined species. The dendrogram from the cluster analysis showed distinctive phytolith assemblages for Poa ligularis, Aristida subulata and Pappophorum subbulbosum (Fig. 5). Phytolith assemblages in these species were characterized by a high frequency of round, elliptical and oblong shapes in

Table 2. Morphological classification of phytoliths (according to Twiss, 1992, and as modified by Zucol, 2001)
Isolated forms
Pooide Class

1. Elliptical
2. Hat
3. Biconvex
4. Crescent moon
5. Oblong
6. Round
7. Rectangular
Chloridoide Class
8. Normal saddle
9. Thin saddle
Panicoide Class
10. Cross, thick shank
11. Cross, thin shank
12. Dumb-bell with short central portion and convex end
13. Dumb-bell with short central portion and straight end
14. Dumb-bell with long central portion and convex end
15. Dumb-bell with long central portion and straight end
16. Dumb-bell with nodular central portion and convex end
17. Dumb-bell with nodular central portion and straight end
18. Dumb-bell, spiny central portion, convex end
19. Dumb-bell, spiny central portion, straight end
20. Regular, complex dumb-bell, convex end
21. Regular, complex dumb-bell, straight end
22. Irregular, complex dumb-bell, convex end
23. Irregular, complex dumb-bell, straight end
24. Crenate dumb-bell, convex end
25. Crenate dumb-bell, straight end
Elongate Class
26. Elongate, smooth
27. Elongate, sinuous
28. Elongate, spiny
29. Elongate, concave ends
Fan-shaped and Polyhedrical Class
30. Fan
31. Polyhedrical
Point-shaped Class
32. Apex of sharp-pointed shapes (hairs, prickles or hooks)
33. Macro-hairs
34. Micro-hairs
35. Prickles hairs
36. Hooks hairs
37. Triangular shapes
Associated forms
38. Subepidermal elements
39. Bulliform elements
40. Stomatal complex
41. Large cells
42. Short cells
43. Papillae
44. Macro-hairs
45. Micro-hairs
46. Prickles hairs
47. Hooks hairs
1
1
P. ligularis, dumb-bell with a short central portion and straight end in A. subulata, and saddle and cross in P. subbulbosum. The rest of the species were arranged in the following subgroups:
(I) Stipa tenuis and Piptochaetium napostaense
(II) Digitaria californica and Bothriochloa springfieldii
(III) Stipa eriostachya and Stipa tenuissima associate with Stipa clarazii, Stipa ambigua and Stipa brachychaeta.

Fig. 1. Light micrographs of isolated-form phytoliths. (A) Elliptical. (B) Hat. (C) Biconvex. (D) Crescent moon. (E) Oblong. (F) Round. (G) Rectangular. (H) Normal saddle. (I) Thin saddle. (J) Cross, thick shank. (K) Cross, thin shank. (L) Dumb-bell, short shank, convex end. (M) Dumb-bell, short shank, straight end. (N) Dumb-bell, long shank, convex end. (O) Dumb-bell, long shank, straight end. a, Poa ligularis; b, Stipa clarazii; c, Piptochaetium napostaense; d, Stipa tenuis; e, Stipa gynerioides; f, Stipa tenuissima; g, Stipa ambigua; h, Stipa brachychaeta; i, Aristida subulata; j, Bothriochloa edwardsiana; k, Digitaria californica; 1, Pappophorum subbulbosum. Scale bar $=10 \mu \mathrm{~m}$.

Phytolith assemblages in these subgroups were characterized by a high frequency of dumb-bells with a short central portion and convex ends, and isolated hooks in Subgroup I, dumb-bells with large central portion and straight end in Subgroup II, and dumb-bells with a short central
portion and straight ends, rectangular, smooth elongate, hooks and apex of sharp-pointed shapes in Subgroup III.

A detailed comparison of morphotype frequency and presence showed species differences within subgroups. In Subgroup I, S. tenuis was characterized by a high frequency of

Fig. 2. Light micrographs of isolated-form phytoliths. (A) Dumb-bell, nodular shank, convex end. (B) Dumb-bell, nodular shank, straight end. (C) Dumbbell, spiny central portion, convex end. (D) Dumb-bell, spiny shank, straight end. (E) Regular, complex dumb-bell, convex end. (F) Regular, complex dumbbell, straight end. (G) Irregular, complex dumb-bell, convex end. (H) Irregular, complex dumb-bell, straight end. (I) Crenate dumb-bell, convex end. (J) Crenate dumb-bell, straight end. b, Stipa clarazii; c, Piptochaetium napostaense; d, Stipa tenuis; e, Stipa gynerioides; f, Stipa tenuissima; g, Stipa ambigua; h, Stipa brachychaeta; i, Aristida subulata; j, Bothriochloa edwardsiana. Scale bar $=10 \mu \mathrm{~m}$.
smooth elongate and elliptical, round and crescent moon morphotypes, whereas P. napostaense was characterized by a high frequency of dumb-bells with a large and nodular central portion (both with convex ends), regular-complex dumb-bells with a convex end, and prickles. In Subgroup II, D. californica was distinguished by a high frequency of dumb-bells with a short central portion, isolated hooks and isolated prickles, whereas a high frequency of short cells and the presence of regular-complex dumb-bells with straight end, papillae and cross shapes characterized B. edwarsiana. In Subgroup III, a high frequency of
sharp-pointed apex shapes characterized S. eriostachya and S. tenuissima, whereas a high frequency of rectangular, smooth elongate, and the presence of hooks characterized S. clarazii, S. ambigua and S. brachychaeta. Furthermore, a high frequency of elliptical, hat and associated prickles distinguished S. eriostachya, whereas a high frequency of isolated macro-hairs distinguished S. tenuissima. On the other hand, a high frequency of elliptical, short cells, stomata complex and associated hooks, and the presence of round and oblong phytoliths characterized S. clarazii, whereas the presence of nodular dumb-bells with a straight

Fig. 3. Light micrographs of isolated-form phytoliths. (A) Elongate, smooth. (B) Elongate, sinuous. (C) Elongate, spiny. (D) Elongate, concave ends. (E) Fan. (F) Polyhedrical. (G) Apex of sharp-pointed shapes (hairs, prickles or hooks). (H) Macro-hairs. (I) Micro-hairs. (J) Prickles hairs. (K) Hooks hairs. (L) Triangular shapes. a, Poa ligularis; b, Stipa clarazii; c, Piptochaetium napostaense; d, Stipa tenuis; e, Stipa gynerioides; f, Stipa tenuissima; g, Stipa ambigua; h, Stipa brachychaeta; i, Aristida subulata; j, Bothriochloa edwardsiana; k, Digitaria californica; 1, Pappophorum subbulbosum. Scale bar $=20 \mu \mathrm{~m}$.

Fig. 4. Light micrographs of associated-form phytoliths. (A) Subepidermal elements. (B) Bulliform elements. (C) Stomatal complex. (D) Large cells. (E) Short cells. (F) Papillae. (G) Macro-hairs. (H) Micro-hairs. (I) Prickles hairs. (J) Hooks hairs. a, Poa ligularis; b, Stipa clarazii; c, Piptochaetium napostaense; d, Stipa tenuis; e, Stipa gynerioides; f, Stipa tenuissima; g, Stipa ambigua; h, Stipa brachychaeta; i, Aristida subulata; j, Bothriochloa edwardsiana; k, Digitaria californica; 1, Pappophorum subbulbosum. Scale bar $=20 \mu \mathrm{~m}$.
Table 3. Relative frequency of phytolith morphotypes. Morphotypes are as in Table 2

Morphotypes	$\begin{gathered} \text { Poa } \\ \text { ligularis }^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \text { Stipa } \\ \text { claraziia } \end{gathered}$	Piptochaetium napostaense ${ }^{\text {a }}$	Stipa tenuis ${ }^{\text {a }}$	Stipa eriostachya ${ }^{\text {a }}$	$\begin{gathered} \text { Stipa } \\ \text { tenuissima } \end{gathered}$	Stipa ambigua	Stipa brachychaeta	Bothriochloa edwardsiana	Digitaria californica	Pappophorum subbulbosum	Aristida subulata
1	18.55 ± 3.03	4.84 ± 0.67	0.87 ± 0.21	12.27 ± 1.00	7.19 ± 2.16	3.65 ± 0.80	0.99 ± 0.09	2.30 ± 0.54	-	0.23 ± 0.10	0.05 ± 0.05	-
2	-	$1 \cdot 19 \pm 0.28$	-	0.66 ± 0.19	5.82 ± 1.98	1.70 ± 0.16	0.42 ± 0.15	0.39 ± 0.25	-			-
3	-	$0 \cdot 17 \pm 0.06$	-	0.04 ± 0.04	1.24 ± 0.37	-	0.44 ± 0.17	$0 \cdot 10 \pm 0 \cdot 10$				-
4	1.70 ± 0.39	2.08 ± 0.35	0.43 ± 0.17	4.16 ± 0.53	2.43 ± 0.64	1.23 ± 0.29	0.29 ± 0.19	0.05 ± 0.05	-		$0 \cdot 10 \pm 0 \cdot 10$	0.05 ± 0.05
5	6.32 ± 2.09	4.55 ± 0.37	-	2.67 ± 0.56	0.05 ± 0.05	1.02 ± 0.46	-	-		-	0.34 ± 0.21	0.05 ± 0.05
6	34.40 ± 2.93	3.27 ± 1.34	0.34 ± 0.17	4.63 ± 0.96	0.96 ± 0.30	0.27 ± 0.12	-	$0 \cdot 20 \pm 0 \cdot 10$	-	$0 \cdot 30 \pm 0 \cdot 18$	0.14 ± 0.10	0. 10 ± 0.06
7	4.09 ± 0.63	8.19 ± 1.07	0.82 ± 0.31	1.41 ± 0.25	1.31 ± 0.29	1.58 ± 0.22	5.64 ± 0.97	6.79 ± 1.66	0.29 ± 0.20	3.08 ± 0.69	1.46 ± 0.47	0.31 ± 0.15
8							-	-	-	-	30.59 ± 1.79	-
9								-	-		0.88 ± 0.59	-
10							-	-	1.37 ± 0.45		11.92 ± 1.77	
11								-	0.03 ± 0.03	-	0.04 ± 0.04	-
12	1. 14 ± 0.92	$6 \cdot 03 \pm 1.14$	15.13 ± 1.46	15.68 ± 2.01	1.76 ± 0.40	4.97 ± 0.84	3.87 ± 0.80	5.20 ± 1.33	$0 \cdot 17 \pm 0.08$	6.25 ± 0.50	9.54 ± 2.34	1.54 ± 0.48
13	$1 \cdot 10 \pm 0.76$	24.08 ± 1.48	11.68 ± 1.31	9.91 ± 1.32	35.59 ± 3.45	32.12 ± 1.98	29.77 ± 1.75	33.51 ± 3.42	32.19 ± 2.22	43.43 ± 1.28	10.90 ± 3.31	5.49 ± 1.72
14	-	0.06 ± 0.06	$6 \cdot 16 \pm 1 \cdot 10$	$0 \cdot 22 \pm 0.16$	0.56 ± 0.26	0.21 ± 0.07	1.28 ± 0.61		0.10 ± 0.10	3.00 ± 0.72	1.48 ± 0.48	5.75 ± 1.67
15	-	0.50 ± 0.19	1.30 ± 0.24	-	0.96 ± 0.16	0.40 ± 0.17	0.30 ± 0.09	3.64 ± 0.93	10.22 ± 0.43	12.04 ± 1.26	-	37.96 ± 3.22
16	0.05 ± 0.05	0.09 ± 0.06	8.13 ± 0.91	2.51 ± 0.55	0.24 ± 0.07	0.13 ± 0.09	1.22 ± 0.33	0.45 ± 0.19	0.04 ± 0.04	0.32 ± 0.19	-	0.36 ± 0.10
17	0.14 ± 0.14	1.96 ± 0.41	$1 \cdot 15 \pm 0.13$	1.02 ± 0.17	1.09 ± 0.26	1.87 ± 0.49	4.48 ± 0.91	3.29 ± 0.93	3.89 ± 0.84	0.11 ± 0.07	$0 \cdot 20 \pm 0.12$	0.91 ± 0.37
18	-	-	1.07 ± 0.33	0.13 ± 0.05	0.09 ± 0.06	0.25 ± 0.15	0.07 ± 0.07	$0 \cdot 10 \pm 0.06$	-	-		-
19	-	0.92 ± 0.30	0.26 ± 0.14	0.27 ± 0.09	1.08 ± 0.53	2.95 ± 1.32	0.93 ± 0.24	0.98 ± 0.17	0.20 ± 0.20	0.06 ± 0.06	-	-
20	-	0.03 ± 0.03	4.84 ± 0.40	$0 \cdot 21 \pm 0.11$	0.10 ± 0.06	0.17 ± 0.08	0.25 ± 0.11	$0 \cdot 10 \pm 0 \cdot 10$	-	-	0.05 ± 0.05	0.20 ± 0.09
21	-	0.37 ± 0.10	0.91 ± 0.33	0.04 ± 0.04	0.09 ± 0.06	0.63 ± 0.32	0.98 ± 0.52	0.83 ± 0.41	3.07 ± 0.70	-	-	$0 \cdot 20 \pm 0.14$
22	-	-	1.97 ± 0.21	0.09 ± 0.05	-	0.13 ± 0.09	0.07 ± 0.07	$0 \cdot 15 \pm 0 \cdot 10$	-		-	0.05 ± 0.05
23	-	0.23 ± 0.12	$0 \cdot 10 \pm 0.10$	0.08 ± 0.08	0.28 ± 0.09	0.26 ± 0.08	0.63 ± 0.15	0.79 ± 0.23	0.27 ± 0.13	-	-	0.10 ± 0.06
24	-	-	2.11 ± 0.47	-	-	-	2.51 ± 0.88	0.64 ± 0.10	0.15 ± 0.07	$0 \cdot 11 \pm 0 \cdot 11$	-	$0 \cdot 16 \pm 0 \cdot 10$
25	-	-	-	-	0.05 ± 0.05	-	-	-	0.16 ± 0.12	-	-	-
26	5.71 ± 1.88	5.68 ± 1.35	4.25 ± 1.78	16.51 ± 2.57	0.64 ± 0.28	3.65 ± 1.04	10.48 ± 0.65	14.06 ± 2.90	1.76 ± 0.48	1.94 ± 0.25	0.59 ± 0.23	1.70 ± 0.12
27	0.55 ± 0.15	0.46 ± 0.13	1.43 ± 0.52	1.34 ± 0.33	0.33 ± 0.17	0.74 ± 0.16	1.88 ± 0.58	0.73 ± 0.22	0.46 ± 0.18	0.75 ± 0.15	0.69 ± 0.14	1.39 ± 0.12
28	1.49 ± 0.58	0.61 ± 0.22	3.36 ± 0.72	1.54 ± 0.31	0.77 ± 0.33	0.37 ± 0.12	2.29 ± 0.45	1.72 ± 0.63	$0 \cdot 16 \pm 0.07$	$1 \cdot 10 \pm 0.18$	$2 \cdot 12 \pm 0.32$	3.87 ± 0.72
29	0.09 ± 0.05	0.03 ± 0.03	0.05 ± 0.05	0.19 ± 0.09	0.09 ± 0.06	0.28 ± 0.14	0.69 ± 0.21	$0 \cdot 15 \pm 0.10$	0.26 ± 0.13	0.17 ± 0.11	0.29 ± 0.06	0.05 ± 0.05
30	0.04 ± 0.04	-	-	-	-	-	-	-	0.48 ± 0.19	-	0.91 ± 0.57	-
31	0.18 ± 0.13	0.06 ± 0.06	0.05 ± 0.05	0.09 ± 0.09	-	-	0.12 ± 0.07	0.30 ± 0.18	1.03 ± 0.31	0.67 ± 0.22	1.01 ± 0.21	0.31 ± 0.15
32	6.74 ± 1.17	2.82 ± 0.66	1.75 ± 0.53	0.94 ± 0.30	9.41 ± 1.26	9.47 ± 2.21	1.73 ± 0.54	4.85 ± 0.98	0.85 ± 0.33	3.35 ± 0.26	$6 \cdot 18 \pm 0.40$	6.35 ± 1.00
33	3.66 ± 0.67	0.37 ± 0.12	2.25 ± 0.26	0.44 ± 0.20	2.23 ± 0.45	$16 \cdot 13 \pm 1.60$	1.52 ± 0.55	-	-	0.05 ± 0.05	$0 \cdot 17 \pm 0.11$	-
34								-	0.69 ± 0.20	-	2.20 ± 1.47	-
35	1.50 ± 0.31	1.99 ± 0.07	4.87 ± 0.75	1.81 ± 0.18	1.99 ± 0.39	1.05 ± 0.07	8.41 ± 1.17	7.09 ± 0.81	0.66 ± 0.27	5.67 ± 1.06	$1 \cdot 12 \pm 0.40$	3.93 ± 0.80
36	-	2.88 ± 0.78	$10 \cdot 45 \pm 1.32$	7.93 ± 1.37	-		6.37 ± 1.98	3.70 ± 1.12	0.85 ± 0.21	4.71 ± 0.42	2.05 ± 0.34	4.49 ± 0.81
37		0.24 ± 0.14	$0 \cdot 10 \pm 0 \cdot 10$	-	-	0.76 ± 0.28	0.07 ± 0.07	-	0.08 ± 0.05	-	0.04 ± 0.04	- 081
38	0.13 ± 0.08	0.65 ± 0.15	0.22 ± 0.10	0.37 ± 0.12	0.57 ± 0.12	$0 \cdot 10 \pm 0 \cdot 10$	0.92 ± 0.08	$0 \cdot 10 \pm 0 \cdot 10$	0.85 ± 0.30	0.06 ± 0.06	0.73 ± 0.11	2.03 ± 0.69
39							1.11 ± 0.25	1.18 ± 0.36	0.65 ± 0.14	0.20 ± 0.09	$1 \cdot 11 \pm 0.12$	0.10 ± 0.06
40	4.22 ± 0.94	5.89 ± 0.65	0.82 ± 0.13	1.02 ± 0.19	2.13 ± 0.51	0.66 ± 0.26	3.14 ± 0.46	2.16 ± 0.75	0.42 ± 0.14	0.32 ± 0.10	3.16 ± 0.41	5.81 ± 0.73
41	3.27 ± 0.32	4.61 ± 0.48	3.22 ± 0.16	4.87 ± 0.41	3.05 ± 0.30	2.97 ± 0.77	3.07 ± 0.65	1.98 ± 0.60	4.52 ± 0.35	5.85 ± 0.60	2.12 ± 0.43	7.39 ± 1.23
42	2.46 ± 0.62	7.49 ± 0.73	2.85 ± 0.61	1.96 ± 0.46	6.17 ± 0.56	4.93 ± 1.27	1.28 ± 0.33	0.74 ± 0.30	10.36 ± 0.99	3.47 ± 0.71	4.53 ± 0.40	4.66 ± 0.99
43							-	-	19.00 ± 1.58	-	1.51 ± 0.35	-
44	1.11 ± 0.27	0.48 ± 0.26	0.05 ± 0.05	0.22 ± 0.07	4.00 ± 1.08	2.92 ± 0.54	-	-	- ${ }^{-}$	-	0.05 ± 0.05	- ${ }^{-}$
45							- ${ }^{-}$	-	0.86 ± 0.37	0.05 ± 0.05	1.07 ± 0.31	0.81 ± 0.28
46	1.37 ± 0.44	2.78 ± 0.29	3.63 ± 0.52	1.74 ± 0.25	7.74 ± 0.79	2.45 ± 0.62	1.67 ± 0.65	$1 \cdot 18 \pm 0.35$	2.85 ± 0.64	1.95 ± 0.19	0.46 ± 0.09	$2 \cdot 14 \pm 0.41$
47	-	4.40 ± 1.08	3.42 ± 0.70	3.03 ± 0.41	-	-	1.11 ± 0.25	0.54 ± 0.30	1.06 ± 0.31	0.73 ± 0.21	0.21 ± 0.13	1.71 ± 0.46

[^1]

FIG.5. Dendrogram showing the relationships among phytolith assemblages of the examined species. The Morisita Index was used to measure the strength of the association among specific phytolith assemblages (Horn, 1966).

Fig.6. Light micrographs of phytoliths forms in three-dimensional view. (A) Simple-type dumb-bell, with large and narrow central portion, rounded end in planar view (pv), and lateral plane of symmetry well developed (sv). (B) Panicoid type dumb-bell, with indented end, a double outline in planar view (pv), and a tabular side view (sv). (C) Stipa type dumb-bell, with two opposite broad faces of different size (ad: adaxial face, ab: abaxial face) in planar view (pv), and a trapezoidal side view (sv). c, Piptochaetium napostaense; d, Stipa tenuis; f, Stipa tenuissima; g, Stipa ambigua; h, Stipa brachychaeta; i, Aristida subulata; j, Bothriochloa edwardsiana; k, Digitaria californica; 1, Pappophorum subbulbosum. Scale bar $=10 \mu \mathrm{~m}$.
end, smooth elongate, isolated hooks, and isolated prickles characterized S. ambigua and S. brachychaeta. The latter phytolith assemblages differed from each other by a high frequency of dumb-bells with a large central portion and straight end, and apex sharp-pointed shapes in S. brachychaeta, whereas isolated hooks and large cells characterized S. ambigua.

DISCUSSION

The phytolith morphotypes present in the species studied are characteristic of the Poaceae, as defined by Twiss (1992). Although phytolith multiplicity and redundancy can limit the differentiation between species (Rovner, 1971), our cluster analysis results show the possibility of distinguishing at the species level or between plant functional types (i.e. C_{3} from C_{4} grasses, preferred from avoided grasses) in the native grasslands of central Argentina.

The dominant phytolith forms described for P. ligularis, P. subbulbosum and A. subulata were consistent with previous descriptions for the same species obtained through microhistological analysis (Lindström et al., 1998). The phytolith assemblages of these species corresponded to the subfamilies Pooideae, Chloridoideae and Arundinoideae, respectively, as defined by Twiss (1992). The subfamily Pooideae is characterized by the presence of round, rectangular, oblong, elliptical and crescent-moon shapes, and by the absence of saddle, dumb-bells and cross shapes. The subfamily Chloridoideae is characterized by the presence of cross, dumb-bell and, particularly, saddle shapes. The subfamily Arundinoideae represents a highly heterogeneous group, in which the dominant forms are rectangular, oblong, crenate and dumb-bell.

In A. subulata the dominant form was the dumb-bell type, with a large and narrow central portion, rounded end and lateral plane of symmetry well developed (Fig. 6A). This form corresponds to the simple bilobate type described by Mulholland (1989), Fredlund and Tieszen (1994) and Kerns (2001). These authors distinguished this type from other types of dumb-bell, denominating them Stipa and Panicoid types. The Stipa-type dumb-bell (observed in Subgroups I and III) has two opposite broad faces of different size (top or planar view showing the outline, with two lobes connected by a shaft), and a trapezoidal side view (lateral faces connecting the two opposite broad faces) (Fig. 6C). The Panicoid-type dumb-bell (observed in P. subbulbosum) has indented ends, a double outline in planar view, and a tabular side view (Fig. 6B).

The phytolith characterization of D. californica and B. edwardsiana corresponded to the subfamily Panicoideae, as defined by Twiss (1992). This subfamily is characterized by the presence of smooth and sinuous elongate, dumb-bell (Panicoid-type) and cross shapes. Forms representative of the subfamily Arundinoideae, with a high frequency of Stipa-type dumb-bells forms (Fig. ??), characterized the rest of the species. Zucol (1996) reported similar results for species of the genus Stipa inhabiting the Entre Ríos province, Argentina.

Our examination of phytolith assemblages in several grasses native to the central Argentina also highlights the possibility to differentiate between C_{3} and C_{4} species (Table 1 and Fig. 5). The C_{4} grasses were dominated by the dumb-bell (simple bilobate and Panicoid-types), cross and saddle forms, whereas the C_{3} grasses were dominated by the Pooide Class forms (mainly in P. ligularis) and Stipa-type dumb-bells. The distinction between $\mathrm{C}_{3} / \mathrm{C}_{4}$ grasses based upon phytolith forms was first suggested by Twiss et al. (1969). Later studies have improved the differentiation between $\mathrm{C}_{3} / \mathrm{C}_{4}$ grasses by adding a three-dimensional examination of phytoliths, to minimize problems associated with multiplicity and redundancy of phytolith forms (Brown, 1984; Fredlund and Tiezen, 1994). Our results also show that differences in phytolith assemblages allow differentiation between preferred (palatable, high forage value) and avoided (non-palatable, low forage value) grasses within photosynthetic pathway groups (Table 1 and Fig. 5). However, the distinction between preferred and avoided grasses based on phytolith analysis need to be examined further to know its generality. In summary, we conclude that the present phytolith reference collection can assist in the interpretation of soil phytolith assemblages aimed at reconstructing past vegetation in the central Argentina grasslands.

ACKNOWLEDGEMENTS

This research was supported by Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de la República Argentina, and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) de la República Argentina. A fellowship from CONICET to L. Gallego is acknowledged.

LITERATURE CITED

Alexandre AJ, Meunier D, Lézine AM, Vincens A, Schwartz D. 1997. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136: 213-229.
Barboni D, Bonnefille R, Alexandre A, Meunier JD. 1999. Phytoliths as paleoenvironmental indicators, west side middle Awash valley, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology 152: 87-100.
Bartolome J, Klukkert SE, Barry WJ. 1986. Opal phytoliths as evidence for displacement of native Californian grassland. Madroño 33: 217-222.
Blackman E. 1969. Observation on the development of the silica cells of the leaf sheath of wheat. Canadian Journal of Botany 47: 827-838.
Blackman E. 1971. Opaline silica in the range grasses of southern Alberta. Canadian Journal of Botany 49: 769-781.
Brown DA. 1984. Prospects and limits of a phytolith key for grasses in the Central United States. Journal of Archaeological Science 11:345-368.
Cabrera AL. 1970. Flora de la provincia de Buenos Aires. Gramíneas, $2^{\text {nd }}$ edn. Buenos Aires: Acmé.
Cabrera AL. 1976. Regiones fitogeográficas Argentinas. Buenos Aires: Acmé.
Carter JA. 1999. Late Devonian, Permian and Triassic phytoliths from Antarctica. Micropaleontology 45: 56-61.
Castelli LM, Lázzari A, Landriscini MR, Miglierina AM. 1995. Características químicas de un suelo superficial del sur del Caldenal (Provincia de La Pampa, Argentina). Ciencia del suelo 13: 44-46.
Distel RA, Bóo RM. 1996. Vegetation states and transitions in temperate semiarid rangelands of Argentina. In: West NE, ed. Rangelands in
a sustainable biosphere. Denver: Society for Range Management, 117-118.
Fisher RF, Bourn CN, Fisher WF. 1995. Opal phytolith as an indicator of floristics of prehistoric grasslands. Geoderma 68: 243-255.
Fredlund GG, Tiezen LT. 1994. Modern phytolith assemblages from the North American great plains. Journal of Biogeography 21: 321-335.
Geis JW. 1978. Biogenic opal in three species of Gramineae. Annals of Botany 42: 1119-1129.
Horn HS. 1966. Measurement of 'overlap' in comparative ecological studies. The American Naturalist 100: 419-424.
Instituto Nacional de Tecnología Agropecuaria, Provincia de La Pampa, Universidad Nacional de La Pampa. 1980. Inventario integrado de los recursos naturales de la provincia de La Pampa. Buenos Aires: INTA.
Jones LH, Handreck KA. 1965. Studies of silica in the oat plant. II. Uptake of silica from soils by the plant. Plant and Soil 23: 79-96.
Kerns BK. 2001. Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. The Southwestern Naturalist 46: 282-294.
Labouriau LG. 1983. Phytolith work in Brazil. A mini-review. The Phytolitharien Newsletter 2: 6-11.
Lamberto SA, Valle AF, Aramayo EM, Andrada AC. 1997. Manual ilustrado de las plantas silvestres de la región de Bahía Blanca. Bahía Blanca: Universidad Nacional del Sur.
Lindström LI, Mújica MB, Boó RM. 1998. A key to identify perennial grasses in central Argentina based on microhistological characteristics. Canadian Journal of Botany 76: 1467-1475.
Llorens EM. 1995. Viewpoint: the state and transition model applied to the herbaceous layer of Argentina's calden forest. Journal of Range Management 48: 442-447.

Mulholland SC. 1989. Phytolith shape frequencies in north Dakota grasses: a comparison to general patterns. Journal of Archeological Science 16 489-511.
Parry DW, Smithson F. 1964. Opaline silica in the inflorescences of some British grasses and cereals. Annals of Botany 28:169-185.
Piperno DR. 1988. Phytolith analysis: an archeological and geological perspective. San Diego: Academic Press.
Raven JA. 1983. The transport and function of silica in plants. Biological Reviews of the Cambridge Philosophical Society 58: 179-207.
Rovner I. 1971. Potential of opal phytolith for use in paleoecological reconstruction. Quaternary Research 1: 343-359.
Rovner I. 1983. Plant opal phytolith analysis: major advances in archaeobotanical research. In: Schiffer M, ed. Advances in archaeological method and theory. New York: Academic Press, 225-260.
Sendulsky T, Labouriau LG. 1966. Corpos silicosos da gramíneas dos Cerrados. Anais da Academia Brasileira de Ciências 38: 159-170.
Twiss PC. 1987. Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. In: Johnson WC, ed. Quaternary environments of Kansas. Lawrence: Kansas Geological Survey, 179-188.
Twiss PC. 1992. Predicted world distribution of C_{3} and C_{4} grass phytoliths. In: Rapp G, Mulholland S, eds. Phytolith systematics. New York: Plenum Press, 113-128.
Zucol AF. 1996. Microfitolitos de las poaceas Argentinas. I. Microfitolitos foliares de algunas especies del género Stipa (Stipeae: Arundinoideae), de la provincia de Entre Ríos. Darwiniana 34: 151-172.
Zucol AF. 2001. Fitolitos. III. Asociaciones fitolíticas de Piptochaetium montevidense (Stipeae: Arundinoideae: Poaceae). Una nueva metodología descriptiva. Boletín de la Sociedad Argentina de Botánica 36: 69-85.

[^0]: * For correspondence. E-mail cedistel@criba.edu.ar

[^1]: Values are mean \pm s.e. $(n=5)$.
 ${ }^{\mathrm{a}}$ Morphotypes $8-11,34,39,43$ and 45 were absent for these species.

