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a b s t r a c t

A method to investigate systems showing Type-I intermittency phenomenon is presented.
This method is an extension of the procedure we have recently established to study the
Type-II and Type-III intermittencies. With this approach, new accurate analytical expres-
sions for the reinjection and the laminar phase length probability densities are obtained.
The new theoretical formulas are tested by numerical computation, showing an excellent
agreement between analytical models and numerical results. In addition, our method fully
generalizes the well-known classical characteristic relations, in such a way that it properly
characterizes those systems showing Type-I intermittency.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The intermittency phenomenon in chaotic dynamics theory is understood as a specific route to the deterministic chaos
when spontaneous transitions between laminar and chaotic dynamics occur. The concept of intermittency was firstly intro-
duced by Pomeau and Maneville in the context of the Lorenz system [1,2], but this way to chaos arises in a great variety of
systems, such as in periodically forced nonlinear oscillators, Rayleigh–Bénard convection, derivative nonlinear Schrödinger
equation and in the turbulent evolution in hydrodynamics and plasmas [3–7]. The intermittency phenomena are usually
classified into three categories, named Type- I, Type-II and Type-III intermittencies, following [8]. To clarify and properly
analyze each kind of intermittency, it is useful to employ a set of characteristic parameters which not only allow for the
assorting of the intermittency, but also permit to study those problems having partially unknown governing equations, as
usually happens in medicine and economics science, for instance [9,10].

The local laminar dynamic of Type-II and Type-III intermittencies evolves around a fixed point of its Poincare map,
whereas the laminar behavior of Type I intermittency rises in a narrow channel determined by the local Poincare map in
the form:

xnþ1 ¼ �þ xn þ axp
n ð1Þ

where a > 0 accounts for the weight of the nonlinear component and e is a controlling parameter (e� 1). In some pioneer
papers devoted to Type-I intermittency, the nonlinear component is quadratic, (i.e. p ¼ 2) but actually this restriction is not
necessary. We have consider for the present work even p. In any case, for e > 0, there is not a fixed point at x ¼ 0, and hence,
the trajectories slowly move along the narrow channel formed with the bisecting line.

Another characteristic property of the intermittency is the global reinjection mechanism that maps trajectories of the
system from the chaotic region back into the local laminar phase. This mechanism can be described by the corresponding
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reinjection probability density (RPD), which is specified by the chaotic dynamics of the system. The RPD function describes
the probability density of the reinjected points into the laminar zone coming from the chaotic one. For the map dealt in Sec-
tion 4, this mechanism is displayed by the green arrows in Fig. 3. Although the importance of the RPD function in describing
the intermittency, analytical expressions for the RPD are available for a very few problems. Therefore, in order to describe the
main statistical properties of the trajectories, different approximations for the RPD have been used. In this sense we mention
that the most common approach for this probability density is the so-called uniform RPD, which only works for some par-
ticular cases [11,12].

From the mathematical RPD shape for each case it is possible to analytically estimate the fundamental characteristic of
the intermittency, the probability density of the length of laminar phase wðlÞ, depending on l, that approximates the number
of iterations in the laminar region, i.e. the length of the laminar phase. Note that the function wðlÞ can be estimated from time
series, as it is usual to characterize the intermittency type. The characteristic exponent b, depending on wðlÞ, defined through
the relation �l / e�b, is also a good indicator of the intermittency type.

In [13], three functions for the RPD corresponding to several choices of the logistic maps were proposed: a uniform RPD,
the reinjection in a given point and a nonuniform RPD in the form /ðxÞ / ðx� x̂Þ1=2, where x̂ is the lower boundary reinjection
point (LBR). In [14] it was studied the dependence of the characteristic exponent on the RPD. In this approach the author took
as input for the local Poincare map Eq. (1) the more general RPD /ðxÞ / ðx� x̂Þa for �1 < a < 0 where for x̂ ¼ 0, the charac-
teristic exponent ranged as 0 � b � ðpþ a� 2Þ=p. For the case of p ¼ 2, only some particular values of the exponent a have
been reported for system based on a logistic map. As far as we know, all of the extensions and generalizations given up to
now for the RPD render a quantitative but not qualitative change in the shape of w. Nowadays, the classical equation for w is
still in use (see Eq. 3.15 of [15], for instance) to characterize the Type-I intermittency phenomenon, as can also be seen in
[16].

Recently, to describe the reinjection mechanisms of a wide class of 1D maps with intermittency of Types II and III, we
have addressed in [17,18] the corresponding RPD as generalizations of the cases with /ðxÞ / xa, when only the restriction
�1 < a is imposed, including the interesting case of positive a. It was shown that the shape of the RPD is ascertained by
the behavior of trajectories within chaotic regime in a neighborhood of a point where the Poincare map has infinite or zero
tangent. This tangent determines the sign of the exponent a in the power law assumed in the RPD expression. It has been
also shown that this mechanism is robust against the external noise [19].

In the present work, we look deeper into our mentioned approach in order to apply and extend it to the study of Type I
intermittency. As a consequence of this generalization for the RPD, we show that the classical shape for w associated to Type-
I intermittency (see Eq. 3.15 of [15]) can qualitatively change. This interesting fact will be important to characterize some
Type-I intermittency scenarios that can have been hidden until today. The new RPD we propose here for Type-I intermit-
tency also covers the well-known classical characteristic relation e�b where the characteristic exponent b lies in the interval
½0;1�.

The paper is structured as follows. In Section 2 we describe the theoretical framework, that accounts for a wide class of
dynamical systems with Type-II and Type-III intermittencies in order to arrange the extension of the method to the present
case. Section 3 is devoted to establish the new analytical probability density of the laminar length based on the RPD. As a
consequence, we propose in Section 4 the new characteristic relations for Type-I intermittency and the classical relations
that can be considered as particular cases of the new ones. All of the analytical results are confirmed by numerical simula-
tions, as explained in Section 5. The last section is devoted to summarize the conclusions.

2. Assessment of RPD function

To start with our discussion, we briefly describe in this section the theoretical framework we have established in previous
works for a wide class of dynamical systems presenting intermittency, with general 1-D map in the form

xnþ1 ¼ FðxnÞ; F : R! R ð2Þ

Our main task is to establish the RPD function, /ðxÞ, which determines the statistical behavior of system trajectories for each
particular shape of FðxÞ. The function /ðxÞ can be directly derived from Eq. (2) by meas of the Shaw relation [20]. However,
there is no direct and general procedure to obtain accurately its mathematical form from experimental or numerical data,
specially when very few data are available. Recently, we have shown that the key point to solve the problem of finding
/ðxÞ is to determine from time series the integral characteristics

MðxÞ ¼

R x

xs
s/ðsÞ dsR x

xs
/ðsÞ ds

if
R x

xs
/ðsÞds – 0

0 otherwise

8><
>: ð3Þ

where xs ¼ x0 � c, being c > 0 a constant that limits the laminar zone of the intermittency. For this function, we can define
the domain of M, i.e. M : ½x0 � c; c þ x0� ! R, where x0 is the fixed point in the laminar zone of the map (2) for e ¼ 0. Since
MðxÞ only involves integrals of /, it can be better estimated than / itself, because of the statistical fluctuations are reduced
for the cases of having a few data set or for system with high level of noise. To numerically approximate MðxÞ, we notice that
it is an average over all reinjection points lying on the interval ðx̂; c þ x0Þ, so, we can deal with the approximation
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MðxÞ � 1
n

Xn

j¼1

xj; xn�1 < x � xn: ð4Þ

Here the reinjection points fxjgN
j¼1 have been sorted as xj � xjþ1 and the lower boundary of reinjections (LBR) approaches

x̂ ¼ inffjxjjg because the LBR indicates the limit value for reinjected points. In the Fig. 3 are represented the two LBRs cor-
responding to the two reinjected mechanisms shown in this figure. In our previous works we found that for a wide class
of maps showing Type-II (and Type-III) intermittency, MðxÞ follows the linear law

MðxÞ ¼
mðx� x̂Þ þ x̂ if x � x̂

0 otherwise

�
ð5Þ

where m 2 ð0;1Þ is a free parameter. By means of (3) the corresponding RPD becomes

/ðxÞ ¼ bðx� x̂Þa; with a ¼ 2m� 1
1�m

: ð6Þ

where b ¼ ðaþ 1Þ=ðc � x̂Þðaþ 1Þ and, since m 2 ð0;1Þ, we have a 2 ð�1;1Þ. Observe that for m ¼ 1=2, we recover the most
common approach of assuming the uniform RPD, /ðxÞ ¼ 1=ðc � x̂Þ. Furthermore, from (6), the two limit cases

/0ðxÞ ¼ lim
m!0

/ðxÞ ¼ dðx� x̂Þ ð7Þ

/1ðxÞ ¼ lim
m!1

/ðxÞ ¼ dðx� cÞ ð8Þ

can be also derived for the case of Eq. (7) corresponding to a! �1 and Eq. (8) means that all the points are reinjected on x̂.

3. Length of laminar phase

Another fundamental quantity to characterize the intermittency phenomenon is the probability density of the laminar
length wðlÞ, which depends on the particular form of the RPD and on the number of iterations l in the laminar region. We
estimate l by considering, as usual, the approximation of the particular map (1) for the local dynamics by the differential
equation [8]

dx
dl
¼ eþ axp; ð9Þ

from which we obtain l ¼ L as a function of x

Lðx; cÞ ¼ c
e 2F1

1
p
;1; 1þ 1

p
;� ac

e

� �
� x

e 2F1
1
p
;1; 1þ 1

p
;� ax

e

� �
ð10Þ

in terms of the Gauss hypergeometric function 2F1(a,b;c;z) [21]. The function Lðx; cÞ is referred to a local behavior, and is con-
trolled by the parameters a; p and e, of the local map in the neighborhood of the unstable point. The probability of finding a
laminar phase of a given length between l and lþ dl is wlðlÞdl, being the density wðlÞ

wðlÞ ¼ /ðXðl; cÞÞ dXðl; cÞ
dl

����
���� ¼ /ðXðl; cÞÞ aXðl; cÞp þ e

�� �� ð11Þ

where Xðl; cÞ is the inverse of Lðx; cÞ with respect to its first argument. We point out that the function Xðl; cÞ can be explicitly
written for a very few cases as, for instance, the corresponding for p ¼ 2. However, in all cases, w (depending on the param-
eters a p and a) can be plotted by using the parametrisation

ðLðx; cÞ;w0ðxÞÞ ¼ Lðx; cÞ;/ðxÞ eþ axpj jð Þ: ð12Þ

where instead of l we have taken the coordinate of the reinjected points x as the free parameter. According to Eq. (12), the
value of wðlÞ for l ¼ 0 coincides with w0ðxÞ for x ¼ c, that is, /ðcÞðeþ acpÞ, this gives for the limit for the maximum length
l ¼ lmax,

lim
l!lmax

wðlÞ ¼ lim
x!x̂

w0ðxÞ ¼
0 if a > 0
bðeþ ax̂pÞ if a ¼ 0
1 if a < 0

8><
>: ð13Þ

which depends on a. It is interesting to observe that if a > 0 we have wðlmaxÞ ¼ 0 and the graph for this function is very dif-
ferent from the obtained for the classical wðlÞ that can be seen in [8,15,16], for instance.

The extreme points of the function wðlÞ can be obtained, taking into account Eqs. (9) and (11), from

dwðlÞ
dl
¼ ðeþ axpÞd/ðxÞ

dx
þ ap/ðxÞxp�1

� �
dXðlÞ

dl

����
���� ¼ 0 ð14Þ
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which can be cast into

dwðlÞ
dl
¼ bðx� x̂Þða�1Þ ðaþ pÞaxp � apx̂xp�1 þ ae

� � dXðlÞ
dl

����
���� ¼ 0: ð15Þ

by means of Eq. (6). Since Eq. (9) imposes dXðlÞ=dl – 0 for e – 0, the expression between the square brackets in Eq. (15) must
be zero for x 2 ðx̂; cÞ and e � 0, the roots can be finally approximated as

xr1 � 0 and xr2 �
p x̂

aþ p
: ð16Þ

These estimated values show that the density wðlÞ extrema can occur at two points, Lðxr1Þ and Lðxr2Þ, provided that xr1 and xr2

lie in ðx̂; cÞ. The Table 1 shows all possibilities matching this restriction for both roots. Some laminar length density function
shapes are plotted in Fig. 1 showing the dependence on the extreme points, according to the cases referred in Table 1. As said
before, the functions depicted in Fig. 1(a), (b) and (f) notably differ from the typical well-known behavior obtained in the
classical cases (e.g. see the table of [8]). For the case Fig. 1(b) we also have wðlmaxÞ ¼ 0, but now wðlÞ has a local maximum,
what is a remarkable characteristic, as far as we know, never reported for the probability density of the laminar length.

The slope of wðlÞ at the final interval point is determined by the factor ðx� x̂Þða�1Þ, thus, for a > 0 we have

lim
l�!lmax

dwðlÞ
dl
¼

1 if a < 1
ðeþ ax̂pÞ2 if a ¼ 1
0 if a > 1

8><
>: ð17Þ

what justifies the rising steeply graphs in the Fig. 1(a) and (b), both built with finite values 0 < a < 1 to visualize the un-
bounded slopes analytically provided by Eq. (17). For the particular case a ¼ 0 the uniform reinjection expression
/ðxÞ ¼ 1=jx̂� cj is recovered and from Eq. (15) the exact roots xr1 ¼ 0 and xr2 ¼ x̂ hold for any value of e. Observe that xr2 lies
on the lower limit of the laminar interval whereas xr1 yields to a minimum only if x̂ < 0.

Table 1
Classification of the wðlÞ local extrema types, minimum (min) or maximum (MAX), at Lðxr1Þ and Lðxr2Þ, according to a and x̂ values in the RPD. The limits
liml!lmax wðlÞ, depending on a, are also given. Typical shapes for each case are plotted in subfigures in Fig. 1 as it is specified in the last column.

Lðxr1Þ Lðxr2Þ liml!lmax
wðlÞ Subfigure

a > 0 x̂ > 0 9= 9= 0 a
a > 0 x̂ < 0 min MAX 0 b
a < 0 x̂ > 0 9= min 1 c
a < 0 x̂ < 0 min 9= 1 d
a ¼ 0 x̂ < 0 min 9= eþax̂p

jx̂�cj
e

a ¼ 0 x̂ > 0 9= 9= eþax̂p

jx̂�cj
f

Fig. 1. Different wðlÞ profiles from Eq. (12) as a function of x̂ and a. The figures correspond to the parameters of Table 1. The numerical values selected to
display the figures are: (a) x̂ ¼ 0:1;a ¼ 0:2, (b) x̂ ¼ �0:4;a ¼ 0:3, (c) x̂ ¼ 0:1;a ¼ �0:6, (d) x̂ ¼ �0:4;a ¼ �0:3, (e) x̂ ¼ �0:3;a ¼ 0 and (f) x̂ ¼ 0:1;a ¼ 0. In all
cases p ¼ 2; a ¼ 1; e ¼ 0:001 and c ¼ 0:5.
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4. Characteristic relations

Once w has been obtained, we are in position to derive the characteristic relations for the Type-I intermittency. First of all,
we must analyze the mean value of l given by

�l ¼
Z 1

0
lwðlÞdl: ð18Þ

This average �l is directly related to the characteristic exponent b, commonly used to characterize any type of intermittency,
by means of the characteristic relation �l / e�b, which describes, for small values of e, how the length of the laminar phase
increases as e decreases. Therefore, from Eq. (11), the mean laminar length �l can be computed by

�l ¼
Z c

x̂
Lðx; cÞ/ðxÞdx: ð19Þ

which, for the case x̂ � 0, and by means of Eqs. (6) and (9), gives

�l ¼ lim
x!0

b
aþ 1

Lðx; cÞxaþ1

����
c

x

þ b
aþ 1

Z c

0

xaþ1

�þ axp dx ð20Þ

where, for �1 < a, the limit in Eq. (20) is zero since 2F1ð1p ;1; 1þ 1
p ; 0Þ ¼ 0. On the other hand, by replacing in Eq. (20) the

parameters a and p by a� 1 and p� 1 respectively, we recover the integral of the Eq. (12) of our previous work [17]. This
fact allows us to directly follow the arguments given in [17] to ensure that the integral of Eq. (20) converges for all a such
that �2 < a < p� 2. Assuming that a does not depend on e we obtain

b ¼ p� a� 2
p

¼ 1� 1
ð1�mÞp : ð21Þ

where b here plays the role of �b in [17]. Thus, we point out that, in this case, the convergence interval for the integral in-
volved in Eq. (20) is limited by the corresponding values of a for the RPD (i.e. �1 < a) what ensures that (21) is a well be-
haved function for �1 < a < p� 2 only, as can be seen in Fig. 2. It is important to stress the fact that Eq. (21) holds not only
for a � 0 but also for a > 0. In the classical case, p ¼ 2, the expression (21) can be applied only for a < 0, that is, only for the
decreasing RPD case. However, if the general case is considered, it is possible to get a given characteristic exponent b by com-
bining either RPDs (increasing and decreasing) determined by the parameter a, by suitable elections of p. A numerical ver-
ification of this possibility is shown in the following section for b ¼ 1=3, corresponding to the dashed horizontal line in Fig. 2.

With regard to other values for x̂, we should distinguish between two cases, x̂ > 0 and x̂ < 0. By virtue of the behavior of
the laminar phase length, it can be seen that it increases drastically for those trajectories approaching x ¼ 0, a fact that does
not happen for x̂ > 0 where no such kind of trajectories exists. Therefore, in the case of x̂ > 0, the average laminar length
becomes almost independent of e, so that, we have b ¼ 0.

The case x̂ < 0 depends on a as we explain as follows. At this point, having in mind that for x̂ < 0;a can be non-zero but
the RPD given by Eq. (6) can be locally approximated by the uniform reinjection in the neighborhood of x ¼ 0, as in the case
of a ¼ 0 in [18]. Hence, to derive the characteristic exponent for Type-II and Type-III intermittencies with x̂ < 0, we can fix
a ¼ 0 in the corresponding expression for b. However, for this case, there is a substantial difference with respect to the other

α

Non−decreasing

p=2 p=4
p=6Decr.

Concave Convex

0.5

1
β

β=1/3

2 3 41−1

Fig. 2. Characteristic exponent b as a function of a for three particular p according to Eq. (21), valid only for b > 0 (black and red lines). The RPD decreasing
or non-decreasing domains are also indicated. In the last case the two possibilities for the RPD, concave or convex are separated by a vertical line. For p ¼ 6
(p ¼ 2) the dashed arrow indicates how b given by Eq. (21) approaches the value given by Eqs. (22) and (23) as x̂ varies from x̂ ¼ 0 to negative values. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cases. Whereas in Type-II and Type-III intermittencies the points reinjected far from x ¼ 0 do not have a crucial contribution
to �l, in Type-I intermittency the reinjected points with x < 0 exhibit trajectories passing across the narrow gap along the
whole laminar phase. In view of this feature, if the RPD remains very small for x < 0, as it is in fact the case of a > 1, we still
can neglect the contribution on �l of all those points reinjected with x < 0. In other words, we are able to estimate the char-
acteristic exponent by simply setting a ¼ 0 in Eq. (21), this leads to

b ¼ p� 2
p

; ð22Þ

expression that has been verified by the numerical calculations we present in the following section.
It must be emphasized that Eq. (22) differs from the relation proposed in Ref. [14] because in this approach the authors

only considered the case a < 0, hence most points are reinjected with x < 0, so most of the trajectories go through the lam-
inar phase, as it happens in the limit a! �1. Therefore, by setting in Eq. (21) a ¼ �1, the relation proposed in Ref. [14]

b ¼ p� 1
p

ð23Þ

is recovered.
In Fig. 2 a dashed arrow indicates the shifting of the characteristic exponent from corresponding to Eq. (21) marked by

bullets, to marks of the open circles corresponding to by Eqs. (22) and (23) for a > 0 and a < 0 respectively.

5. Numerical simulation

In this section we check and compare the previous analytical results with numerical simulations. Among of great variety
of maps showing Type-I intermittency, there is a class of maps for which the local part and the chaotic parts become explic-
itly separated in its algorithm. For these maps it is relatively simply to control the parameter what makes them suitable to
carry on a comparison between analytical and numerical results (see, among others, the maps studied in [11,17,22,23]).

In this sense, to deal with an exemplifying Type-I intermittency behavior, we have modified the map [17] (a generaliza-
tion of the map used in [11]) as follows

xnþ1 ¼ FðxnÞ ¼
eþ xn þ ajxnjp if xn < xr

ð1� x̂Þ xn�xr
1�xr

� 	c
þ x̂ otherwise

8<
: ð24Þ

where xr is the root of the equation eþ xn þ xp
n ¼ 1, c > 1 draws the nonlinear term of the reinjection mechanism and the

parameter x̂ corresponds to the LBR. In Fig. 3 we present the map graphs for different values of the parameters c and x̂.

Fig. 3. Map of Eq. (24) for p ¼ 2 with the bisecting line. The vertical dashed line indicates xr . Cases of c ¼ 0:5 and c ¼ 2 correspond to the red and blue lines,
The green arrows indicate the corresponding reinjection mechanism that gives the different RPDs. For each case, the LBRs x̂ ¼ 0:1 and x̂ ¼ �0:1 are also
indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The method we have presented in this work is applied to study the map Eq. (24). In order to confirm that the function MðxÞ
can be approximated by Eq. (5), we have computed this function by using Eq. (4), the results are shown in Fig. 4 for two val-
ues of c. In this figure, the solid line corresponds to the least mean square fit while dots are referred to the numerical values.
As Fig. 4 shows, the approximation provided by Eq. (5) and the numerical data are, in practice, indistinguishable. The RPD is
obtained according to Eq. (6) by using the computed values of m and x̂ that satisfy Mðx̂Þ ¼ x̂. We point out that in this case x̂ is
a control parameter for the map but, in general, we can find its value by fitting the numerical or experimental data to Eq. (5).
In Fig. 5(a) and (b) we have plotted the RPD given by Eq. (6) with x̂ and m coming from the numerical data used in Fig. 4.

Concerning the probability density of the laminar phase length wðlÞ, the subfigures c, d and e of Fig. 1 present several
shapes very similar to the classical function proposed in [15]. However, the shapes plotted in subfigures a, b and f are quite
different from the classical one. To be concise, we have numerically checked the prediction shown in Fig. 1(a) and (b). In this
case a suitable value of c was necessary to provide a RPD with a > 0, an estimation of a as a function of c was obtained by
following Ref. [17], as

a � c�1 � 1: ð25Þ

Thus, to obtain a positive a, we require c less than 1. Therefore the values c ¼ 0:55 and c ¼ 0:7, together with the values of
the x̂ used in Fig. 4, constitute a suitable set of parameters to study the case referred in rows a and b of the Table 1.

In Fig. 5(c) and (d) graphs for the analytical expression Eq. (12) are shown. We have used the same function /ðxÞ of
Fig. 5(a) and (b) and they have been obtained from the function MðxÞ used for Fig. 4. The insets in Fig. 5(c) and (d) underline

Fig. 4. Dots showing numerical MðxÞ values from Eq. (4) for the map Eq. (24) and solid lines for the corresponding least mean square fit, they are in practice
indistinguishable. The slopes are mðc ¼ 0:7Þ ¼ 0:588 and mðc ¼ 0:55Þ ¼ 0:645 with the parameters: a ¼ 1;p ¼ 2; c ¼ 0:05; e ¼ 10�4 and x̂ ¼ 0:001 for c ¼ 0:7
and x̂ ¼ �0:03 for c ¼ 0:55.

Fig. 5. RPD and wðlÞ for the map Eq. (24) with the same parameters values employed in Fig. 4. Dots correspond to numerical results. To plot the RPDs in the
frames (a) and (b), for c ¼ 0:7 and c ¼ 0:55 respectively, Eq. (6) is used with m obtained by fitting the data of Fig. 4, giving the following values of a. (a):
m ¼ 0:588;a ¼ 0:426. (b): m ¼ 0:645;a ¼ 0:824. The function wðlÞ from Eq. (12) corresponding to the RPDs of (a) and (b) are presented by solid lines in the
subfigures (c) and (d) respectively. The insets in (c) and (d) are zoomed images corresponding to the greatest l.
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the different behaviors of wðlÞ for the largest values of l. In both cases, he have found an excellent agreement between numer-
ical data (dots) and analytical expressions given by Eq. (12).

Regarding the characteristic relation, we have used Eqs. (21) and (25) to get the relationship between any of the two pairs
of parameters p; c and p0; c0 of the map Eq. (24) that lead to the same given characteristic exponent b. Then, if (p; c) provide a
given b the same values can be obtained by with the pair (p0; c0) by applying the relation

c0 ¼ pc
ðp0 � pÞcþ p0

: ð26Þ

In this sense, we proceed by numerically evaluating the exponent b for p ¼ 2; p ¼ 4 and p ¼ 6. For the first case we chose
c2 ¼ 3 for which we have b ¼ 1=3. For the other case from Eq. (26) we have c4 ¼ 3=5 and c6 ¼ 1=5 for p ¼ 4 and p ¼ 6 respec-
tively. Fig. 6 shows the characteristic relations for these parameter values. Numerical data are fitted and depicted by the
three parallel lines which show that the characteristic exponent b can be approximated in either case by b � 0:344, very
close to the analytical expected value b ¼ 1=3. Each line slope in Fig. 6 corresponds to a bullet of the horizontal dashed line
of Fig. 2. Note that we have chosen the three cases as distributed over the three regions labeled in Fig. 2. Note that if only
adecreasing RPD functions are considered (then a < 0), to get a characteristic exponent in the interval 0 < b < 1=2, it must be
p ¼ 2, as Eq. (21) establishes. This case is shown by a black solid line in Fig. 6. we have also plotted the red solid lines cor-
responding to cases also drawn in red color in Fig. 2.

With respect to the characteristic relation for x̂ < 0, we have set x̂ ¼ �0:05 in the examples, for p ¼ 6 and p ¼ 4, as re-
ferred in Fig. 6, having a > 1 and 0 < a < 1, respectively. The numerical characteristic relations are plotted in Fig. 7 (dots)

Fig. 6. Characteristic relations for the map (24) for the three p values used in Fig. 2. The exponent c has been chosen to give the same critical exponent b,
according to Eq. (26). Dots stand for the numerical simulation results, the parallel solid lines are fits of the numerical data with b � 0:344, close to the
analytical value b ¼ 1=3. In all cases a ¼ 1; x̂ ¼ 0 and c ¼ 0:05.

Fig. 7. Characteristic relations for the map (24) for the two cases of Fig. 2 with x̂ ¼ �0:05. Dots stand for numerical data. The solid black segments slopes are
given by Eq. (22) for p ¼ 4 and p ¼ 6. Dashed black segments are the same as above, but with slopes given by Eq. (23). Red solid lines show the least mean
square fitting of the numerical data, giving bp¼6 ¼ 0:63 close to b ¼ 2=3, as predicted by Eq. (22), and bp¼4 ¼ 0:65, between b ¼ 3=4 and b ¼ 1=2 as predicted
by Eqs. (22) and (23) respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and the red solid straight lines show the least mean square fitting of the numerical data sets. To support the applicability of
Eqs. (22) and (23) in any case, we show in Fig. 7 two line segments with their end points corresponding to the largest e. These
solid line segments have the slope given by Eq. (22) for p ¼ 6 and p ¼ 4. In the same graph we present the dashed segments
corresponding to have used Eq. (23). It is important to note that when a > 1 (p ¼ 6 in our case) there are not many reinjected
points on the left side of x ¼ 0. The estimations provided by Eq. (22) are very close to the straight line obtained by fitting the
numerical data. Note, however, that for 0 < a < 1 (p ¼ 4 in our case) the straight line fit lies between the lines corresponding
to Eqs. (22) and (23). The classical case related to a < 0, having many points reinjected on the side x < 0, has not been plotted
because it is well known and accepted that it fits better in the curve given by Eq. (23).

6. Conclusions

In this work we have extended to Type-I intermittency some recent results obtained in [17,18] to study types I and II
intermittencies. Even though, there are many papers devoted to this type of intermittency, to our knowledge, the character-
isation of Type-I intermittency based on the characteristic exponent and the probability density wðlÞ of laminar phase length
has not been fully considered in its general form, up to now. To study this kind of intermittency by finding wðlÞ, we have
directly applied the methodology recently developed for the Type-I and Type-III cases [17,18]. We start out our analysis
for this work with a numerical evaluation of the function MðxÞ introduced in the second section. It is argued, and checked
in practice, that this function is much more easy to be computed than the reinjection probability density RPD itself. Once
MðxÞ is known, the reinjection probability density can be obtained. This RPD can behave as an increasing or a decreasing
function, this is to say, both increasing and decreasing forms may appear. We have found a rich variety of possible profiles
for the function wðlÞ. Furthermore, for some cases, these wðlÞ shapes are qualitatively different from the classical one. This fact
allows us to identify Type-I intermittency cases that might have been hidden until now. We have ascertained a very good
agreement between the RPDs and the new analytical probability density wðlÞ of the laminar length with the numerical
simulations.

An interesting result we have established states that, in the case of LBR close to zero, the characteristic relation also holds
for increasing RPDs. Therefore, we have also shown that very different RPDs can lead to the same characteristic exponent b.
The analytical predictions have been supported by several numerical simulations and computational checks. For negative
LBR, two limit cases for the characteristic exponent have been addressed. In the first case, when the RPD is an increasing
and convex function, the characteristic exponent is obtained by setting a ¼ 0 in the general expression Eq. (21) with b given
by Eq. (22). On the other hand, the second case can be applied for decreasing RPD and the characteristic exponent is approx-
imated by setting a ¼ �1 in Eq. (21), from which the classical expression Eq. (23) is recovered. In either case, the accuracy
depends on the LBR value, a fact that demands future research to ensure a more precise description.
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