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1 Introduction and main results

The main aim of this paper is to give estimates for the period of solutions of the quasilinear ODE

d
dt

(
φ(x′)

)
+λφ(x) = 0. (1.1)

Throughout this article we consider φ : R → R an increasing odd homeomorphism of R, Φ the
primitive of φ with Φ(0) = 0, and x a real function depending on the variable t. Henceforth we
denote by F the set of all functions Φ satisfying previous conditions.

As usual we call φ-Laplace operator the differential operator x 7→ d
dt
(
φ(x′)

)
. This is named

p-Laplace operator or more briefly p-Laplacian in the particular case that Φ(x) = |x|p/p, 1 < p <∞.
Boundary values problems containing φ-Laplace operator have been extensively studied ( see

e.g [4, 7, 10, 11, 12, 13, 14] and the references therein). A large part of the associated literature is
devoted to the question of existence of solutions.

The problem of estimating the period of solutions is closely related to the eigenvalue problem
on some interval (a,b) of R: { d

dt
(
φ(x′)

)
+λφ(x) = 0

x(a) = x(b) = 0.
(1.2)

The number λ is an eigenvalue if and only if 2(b− a) is an integer multiple of the period of some
solution x(t) of equation (1.1) (see [4]).

For certain functions φ there exists T > 0 such that all solutions of (1.1) have period T . In this
case, T depends on λ but does not depend on the initial conditions satisfied by x then, following [2],
we say that the equation (1.1) is isochronus. As a consequence the set of eigenvalues is a sequence
going to infinity. A well known case of isochrony, although it is not in the form (1.1), is the equation
defining tautochrone curve.

The equation (1.1) is the Lagrange equation with respect to the Lagrangian L(x, x′) = Φ(x′)−
λΦ(x). The associated Hamiltonian is the function

H(ρ, x) = Ψ(ρ)+λΦ(x).

The variable ρ= φ(x′) is the generalized momentum andΨ is the complementary function (Legendre
transform) of Φ defined by

Ψ(x) = sup
y∈R
{xy−Φ(y)}.

The lowercase symbol ψ denotes the derivative function of Ψ. The function ψ becomes the inverse
of φ and therefore Ψ ∈ F (see [8]).

As it is known, the Hamiltonian is a conserved quantity along solutions. In this paper we
call the quantities H and λ energy and frequency respectively. Since x is one-dimensional, two
solutions corresponding to same energy differ in a time translation. Therefore, instead of talking
about solutions associated to initial conditions, we will use energy H to indicate solutions of (1.1).
Positions x and generalized momentums ρ are solutions of the Hamiltonian system{

x′(t) = ∂H
∂ρ = ψ(ρ)

ρ′(t) =−∂H
∂x = −λφ(x)

(1.3)

(see [1]).
For convenience, we will consider 1/4 times the period of solutions of the equation (1.1) and

we will denote it by TΦ(H,λ) (we note that the period depends only on energy H and frequency λ).
In [5] it was obtained the following explicit formula:
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TΦ(H,λ) =
∫ Φ−1( H

λ )

0

du
ψ
(
Ψ−1(H−λΦ(u))

) . (1.4)

If we consider the change of variable v = H−λΦ(u) in the integral (1.4), then we obtain

TΦ(H,λ) =
1
λ

∫ H

0

dv

ψ
(
Ψ−1(v)

)
φ
(
Φ−1

(
H−v
λ

)) . (1.5)

This symmetric convolution formula shows the following relation between periods and frequencies
of complementary functions.

Lemma 1.1. For every H > 0 and λ > 0

TΦ(H,λ) =
1
λ

TΨ

(
H
λ
,
1
λ

)
. (1.6)

Alternatively, (1.6) can be deduced observing that changes of variables (x,ρ, t)→ (ρ, x,−λ−1t)
transform solutions of (1.3) into solutions of its dual system, i.e the system obtained from (1.3) by
means of the substitutions φ↔ ψ and (H,λ)→ (H/λ,1/λ). Note that a↔ b means exchange a and
b.

Let us take a moment to show as the classical theory on Hamiltonian system allows us to get
(1.4). First, we point out that energy levels of the Hamiltonian function are closed trajectories;
hence the solutions are periodic. The solutions with energy H > 0 intersect the positive coordinate
semi-axis at the points P := (0,Ψ−1(H)) and Q := (Φ−1(H/λ),0). Second, we note that equations
(1.3) are invariant with respect to the changes of variables (x,ρ, t)→ (x,−ρ,−t), (−x,ρ,−t), therefore
trajectories are symmetric with respect to coordinate axis. These facts imply that the period is four
times as long as to go from P to Q. Last, we invoke action-angles variables [1, Section 50] and we
consider the generating function

W(x, I) =
∫ x
Ψ−1(H−λΦ(u))du.

Here we assume that I is the action variable and H is function of I. For the angle variable we have
that

ω =
∂W
∂I
=

∫ x du
ψ
(
Ψ−1(H−λΦ(u))

) ∂H
∂I
.

Now, from [1, p. 280] we know that ω = (∂H/∂I)t, therefore

t =
∫ x du

ψ
(
Ψ−1(H−λΦ(u))

)
and integrating from 0 to Φ−1(H/λ) we get formula (1.4).

For the p-Laplace operator the problem (1.1) is isochronus and, in this case, the formula (1.4)
reduces to

Tp(λ) := TΦ(H,λ) =
B

(
1
p ,−

1
p +2

)
(p−1)

1
qλ

1
p

=
π(p−1)

1
p

psin
(
π
p

)
λ

1
p

, (1.7)

where B denotes the beta function. As a consequence, the spectrum of the one-dimensional p-
Laplace operator is discrete. It is a remarkable open problem whether the multidimensional p-
Laplacian is discrete or continuous.
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In [5], M. Garcı́a-Huidobro, R. Manásevich and F. Zanolin were interested in estimating the
spectrum of the φ-Laplace operator with the purpose of obtaining, what they called, non resonance
intervals, i.e. intervals without eigenvalues. Clearly a sharp bound is better for this goal. In [5] it
was obtained the estimate

1
1+λ

≤ TΦ(H,λ) ≤
2(λ+1)

λ
. (1.8)

In this paper we wish to improve these estimates and discuss the possible optimality of the new
bounds. That is, we would like to characterize the quantities:

U(λ) := sup
H>0,Φ∈F

TΦ(H,λ)

L(λ) := inf
H>0,Φ∈F

TΦ(H,λ).

Remark 1.2. It is easy to show that

TΦ(H,λ) = TΦαβ (βH,λ) ,

where Φαβ(x) = βΦ(αx). Therefore, taking β = H−1 we get

U(λ) = sup
Φ∈F

TΦ(1,λ) and L(λ) = inf
Φ∈F

TΦ(1,λ).

We note that we can use the parameter α in order to introduce an extra condition on functions Φ, for
example that Φ(1) = 1.

Let AΦ(H,λ) and CΦ(H,λ) be defined by

AΦ(H,λ) :=
Ψ−1

(
H
2

)
λφ(Φ−1

(
H
2λ

)
)
+
Φ−1

(
H
2λ

)
ψ
(
Ψ−1( H

2 )
) , (1.9)

CΦ(H,λ) :=max
{ Φ−1

(
H
λ

)
ψ(Ψ−1(H))

,
Ψ−1(H)

λφ
(
Φ−1( H

λ )
)}. (1.10)

The following theorem is our starting point.

Theorem 1.3. If Φ ∈ F then

CΦ(H,λ) ≤ TΦ(H,λ) ≤ AΦ(H,λ). (1.11)

Throughout this article, we denote by K a positive constant that may depend on Φ and on
an arbitrary positive parameter ε, and we assume that the value that K represents may change in
different occurrences in the same chain of inequalities.

We recall that a nondecreasing function ϕ is a ∆2-function when there exists a constant K such
that

ϕ(2x) ≤ Kϕ(x), x ≥ 0.

We remark that if Φ,Ψ are ∆2-functions, we get from the previous theorem an estimate of the period
by powers of λ.

Corollary 1.4. If Φ,Ψ are ∆2-functions then for every ε > 0 there exist a constant K such that

K−1 min
{ 1

λ
1
βΦ
−ε
,

1

λ
1
αΦ
+ε

}
≤ TΦ(H,λ) ≤ K max

{ 1

λ
1
βΦ
−ε
,

1

λ
1
αΦ
+ε

}
(1.12)

where αΦ and βΦ are the Matuszewska-Orlicz indices (see Section 2 for definitions).



Period of Solutions of the φ-Laplace Operator 25

The next proposition gives better estimates than (1.8) and it also establishes the optimality of
the lower bound.

Proposition 1.5. For any λ > 0, we have that

min
{

1,
1
λ

}
≤ L(λ) ≤ U(λ) ≤max

{
λ+2
λ

,
2λ+1
λ

}
.

Moreover,

L(λ) = inf
p>1

Tp(λ) =min
{

1,
1
λ

}
≤max

{
1,

1
λ

}
≤ sup

p>1
Tp(λ) ≤ U(λ).

We can show that the quantity max
{λ+2
λ , 2λ+1

λ

}
is optimal with respect to AΦ(H,λ). More pre-

cisely,

Proposition 1.6. For any λ > 0, we have that

sup
H>0,Φ∈F

AΦ(H,λ) =max
{
λ+2
λ

,
2λ+1
λ

}
.

The article continues as follows. In Section 2 we present the proofs of the above results. In
Section 3 we discuss improvements in the upper bounds of the period.

2 Proofs

Proof. Theorem 1.3. Let (x,ρ) be any non-trivial solution of (1.3) and let

H = Ψ(ρ(t))+λΦ(x(t))

be the energy constant. As we have mentioned above the solutions with energy H > 0 intersect the
positive coordinate semi-axis at the points P := (0,Ψ−1(H)) and Q := (Φ−1( H

λ ),0). Now, we take
R =

(
Φ−1( H

2λ ),Ψ−1( H
2 )

)
(see Figure 1).

- x

6 ρ

Φ−1
(

H
λ

)
Φ−1

(
H
2λ

)

Ψ−1 (H)

Ψ−1
(

H
2

) u

u

u

P

R

Q

τ1

τ2

Figure 1. A quarter of a trajectory

If τ1 is the time taken by a solution to go from P to R in the first quadrant of the xρ-plane and
τ2 is the respective time from R to Q, then

TΦ(H,λ) = τ1+τ2. (2.1)
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We note that x(t),ρ(t) ≥ 0 for t ∈ [0, τ1+τ2].
From (1.3) we have ρ′(t) = −λφ(x(t)). Therefore, since x(t) ≥ 0 and φ is an increasing odd

homeomorphism, then ρ is a non increasing function. This fact and the relation ρ(τ1) = Ψ−1 (H/2)
imply that ρ(t) ≥ Ψ−1(H/2) for t ∈ [0, τ1]. Hence, using the first equation of (1.3) and taking into
account the monotonicity of ψ, we obtain

x′(t) ≥ ψ
(
Ψ−1

(H
2

))
and integrating between 0 and τ1 we have

Φ−1
( H
2λ

)
=

∫ τ1

0
x′(t)dt ≥ ψ

(
Ψ−1

(H
2

))
τ1,

thus

τ1 ≤
Φ−1( H

2λ )

ψ
(
Ψ−1

(
H
2

)) . (2.2)

With the same procedure for t ∈ [τ1, τ1 + τ2], taking into account the second equation of (1.3) and
the inequality x(t) ≥ Φ−1( H

2λ ), we obtain

τ2 ≤
Ψ−1( H

2 )

λφ(Φ−1
(

H
2λ

)
)
. (2.3)

From (2.1), (2.2) and (2.3) we have the second inequality in (1.11).
In order to prove the first inequality, we note that ρ(t) ≤ Ψ−1(H) for t ∈ [0, τ1+τ2], thus

x′(t) = ψ(ρ(t)) ≤ ψ
(
Ψ−1(H)

)
,

integrating from 0 to τ1+τ2, we get

TΦ(H,λ) ≥
Φ−1

(
H
λ

)
ψ
(
Ψ−1(H)

) . (2.4)

Analogously, since x(t) ≤ Φ−1
(

H
λ

)
and ρ′(t) = −λφ(x(t)), we obtain

TΦ(H,λ) ≥
Ψ−1(H)

λφ
(
Φ−1( H

λ )
) . (2.5)

�

With the purpose of establishing Corollary 1.4 we recall some definitions and results from the
theory of convex functions. We suggest [3, 6, 8, 9, 15] for definitions, proofs and additional details.

We denote by αϕ and βϕ the so called Matuszewska-Orlicz indices of the function ϕ, which are
defined next. Given an increasing, unbounded, continuous function ϕ : [0,+∞)→ [0,+∞) such that
ϕ(0) = 0 we define

αϕ := lim
t→0+

log
(
sup
u>0

ϕ(tu)
ϕ(u)

)
log(t)

, βϕ := lim
t→+∞

log
(
sup
u>0

ϕ(tu)
ϕ(u)

)
log(t)

. (2.6)
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It is known that the previous limits exist and 0 ≤ αϕ ≤ βϕ ≤ +∞ (see [9, p.84]). The relation βϕ < +∞
holds true if and only if ϕ is a ∆2-function ([9, Theorem 11.7]). If ϕ is a homeomorphism, by [9,
Theorem 11.5], we have that

αϕ−1 =
1
βϕ
. (2.7)

Moreover ϕ ∈ F implies αϕ ≥ 1 ([9, Corollary 11.6]). As a consequence, ϕ−1 is a ∆2-function.
If ϕ is an increasing ∆2-function then ϕ is controlled by above and below by power functions

([6, Section 1], [3, Equations 2.3-2.4] and [9, Theorem 11.13]). More concretely, for every ε > 0
there exists a constant K = K(ϕ,ε) such that, for every t,u ≥ 0,

K−1 min
{
tβϕ+ε , tαϕ−ε

}
ϕ(u) ≤ ϕ(tu) ≤ K max

{
tβϕ+ε , tαϕ−ε

}
ϕ(u). (2.8)

We recall the very well known Young’s equality ([8, Equations 2.7-2.8]), for a pair (Φ,Ψ) of
complementary functions in F ×F

xφ(x) = Φ(x)+Ψ(φ(x)). (2.9)

If Φ and Ψ are ∆2-functions then the three terms in this formula become balanced. That means

xφ(x) ∼ Φ(x) ∼ Ψ(φ(x)), x > 0 (2.10)

where the notation f ∼ g means that the ratio f /g remains bounded from above and below by positive
constants for positive x. In fact, the relation xφ(x) ∼ Φ(x) follows from (2.9), the ∆2-condition for
Φ and [15, Theorem 3-1(ii), p.23]. The relation xφ(x) ∼Ψ(φ(x)) is consequence of the ∆2-condition
for Ψ, because in this case we have yψ(y) ∼ Ψ(y) and the desidered relation is obtained by the
substitution y = φ(x).

From (2.10) we have that there exists 0 < c ≤ 1 ≤C < +∞ such that

cΨ(φ(y)) ≤ Φ(y) ≤CΨ(φ(y)), y > 0.

If we replace y by ψ(Ψ−1(x)) and we apply Φ−1 to all members in the chain of inequalities we obtain

Φ−1(cx) ≤ ψ(Ψ−1(x)) ≤ Φ−1(Cx).

As Φ−1 is a concave function, Φ−1(0) = 0 and 0 < c ≤ 1 we have Φ−1(cx) ≥ cΦ−1(x). In addition,
Φ−1 is a ∆2-function, then there exists a positive constant K such that Φ−1(Cx) ≤ KΦ−1(x) (see [8,
p.23]). Finally, we get

Φ−1(x) ∼ ψ(Ψ−1(x)), x > 0. (2.11)

Proof. Corollary 1.4. By virtue of Theorem 1.3 it is sufficient to prove that the following inequali-
ties

K−1 min
{ 1

λ
1
βΦ
−ε
,

1

λ
1
αΦ
+ε

}
≤
Φ−1

(
H
λ

)
ψ(Ψ−1(H))

,
Ψ−1(H)

λφ(Φ−1(
(

H
λ

)
))

≤ K max
{ 1

λ
1
βΦ
−ε
,

1

λ
1
αΦ
+ε

} (2.12)

hold true for every pair (Φ,Ψ) of complementary ∆2-functions in F ×F . Taking account of (2.11)
it is possible to substitute ψ(Ψ−1(H)) for Φ−1(H) in (2.12). Now using (2.7) and (2.8) with ϕ = Φ−1

we have that
Φ−1

(
H
λ

)
ψ(Ψ−1(H))

≤ K
Φ−1

(
H
λ

)
Φ−1(H)

≤ K max

 1

λ
1
βΦ
−ε
,

1

λ
1
αΦ
+ε

 .
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The lower bound is obtained by similar arguments. The other inequalities are obtained by replacing
Φ↔ Ψ and λ↔ 1/λ. �

Proof. Proposition 1.5
Let A :=Φ−1

(
H
λ

)
, B :=Φ−1

(
H
2λ

)
, C :=Ψ−1(H), D :=Ψ−1( H

2 ) (we note that λ =Ψ(D)/Φ(B)), then
from Theorem 1.3

max
{

A
ψ(C)

,
C

λφ(A)

}
≤ TΦ(H,λ) ≤

B
ψ(D)

+
D

λφ(B)
.

Firstly, dealing with the lower estimate, we have two possibilities φ(A) ≤C or ψ(C) ≤ A, therefore

max
{

A
ψ(C)

,
C

λφ(A)

}
≥min

{
1,

1
λ

}
. (2.13)

Secondly, we work on the upper estimate as follows. If D≤ φ(B), using the inequalityΨ(D)≤ψ(D)D
and the Young’s inequality

BD ≤ Φ(B)+Ψ(D)

we have
B

ψ(D)
+

D
λφ(B)

=
BD

ψ(D)D
+

D
λφ(B)

≤
λ+2
λ

.

In this manner, we have seen that

D ≤ φ(B)⇒ TΦ(H,λ) ≤
λ+2
λ

. (2.14)

Now, exchanging Φ↔ Ψ, B↔ D (consequently λ↔ 1/λ and H↔ H/λ) and using Lemma 1.1
we obtain

φ(B) ≤ D⇒ TΦ(H,λ) =
1
λ

TΨ

(
H
λ
,
1
λ

)
≤

2λ+1
λ

. (2.15)

The upper bound of TΦ(H,λ) follows from (2.14)-(2.15). This concludes the proof of the first
part of Proposition 1.5.

Now, we will prove the optimality of the lower bound considering power functions Φ(x) = |x|p.
By elementary limit arguments and performing some calculations we obtain

lim
p→1

Tp(λ) =
1
λ

and lim
p→∞

Tp(λ) = 1.

Therefore

L(λ) ≤min
{

lim
p→1

Tp(λ), lim
p→∞

Tp(λ)
}
=min

{
1,

1
λ

}
.

and

U(λ) ≥max
{

lim
p→1

Tp(λ), lim
p→∞

Tp(λ)
}
=max

{
1,

1
λ

}
.

From these inequalities and (2.13) we obtain the desired result. �

Proof. Proposition 1.6. The inequality

AΦ(H,λ) ≤max
{
λ+2
λ

,
2λ+1
λ

}
(2.16)

was already proved in the previous proof.
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For a > 0 we consider the odd functions satisfying for x ≥ 0

φa(x) =
{

xa 0 ≤ x ≤ 1
1
a x+ a−1

a x > 1.

As usual, we denote Φa(x) =
∫ x

0 φa(t)dt. It is easy to check that Φa ∈ F and (φa)−1 (x) = φ1/a(x).
Consequently the complementary function of Φa is Φ1/a.

Computing the integral
∫ x

0 φa(t)dt for x ≤ 1 and x > 1 we get

Φa(x) =

 xa+1

a+1 0 ≤ x ≤ 1
x2

2a +
a−1

a x− (a−1)(2a+1)
2a(a+1) x > 1

Therefore the inverse function Φ−1
a (x) is equal to ((a+ 1)x)

−a
a+1 when 0 ≤ x ≤ 1/(a+ 1). In order to

compute Φ−1
a (x) for x > 1/(a+1), we have to solve the quadratic equation

y =
x2

2a
+

a−1
a

x−
(a−1)(2a+1)

2a(a+1)

for x. Of the two solutions of this equation we are only interested in the largest one. After some
elementary calculations we conclude that

Φ−1
a (x) =

 ((a+1)x)
1

a+1 0 ≤ x ≤ 1/(a+1)

−a+1+
√

a
a+1
√

2x(a+1)+ (a+2)(a−1) x > 1/(a+1)

and
dΦ−1

a

dx
(x) =

 ((a+1)x)
−a

a+1 0 ≤ x ≤ 1/(a+1)
√

a+1
√

a
√

2(a+1)x+(a+2)(a−1)
x > 1/(a+1).

It is easy to show that

lim
a→0+
Φ−1

a (x) =min(1, x) and lim
a→+∞

dΦ−1
a

dx
≡ 1. (2.17)

Now, we compute lim
a→+∞

Φ−1
a (x) for x > 0. As we can assume x > 1/(a+1), we have

lim
a→+∞

Φ−1
a (x) = 1+ lim

a→+∞


√

2xa+
a(a+2)(a−1)

a+1
−a


= 1+ lim

a→+∞

2xa+ a(a+2)(a−1)
a+1 −a2√

2xa+ a(a+2)(a−1)
a+1 +a

= 1+ lim
a→+∞

2x− 2
a+1√

2x
a +

(a+2)(a−1)
a(a+1) +1

= 1+ x

(2.18)

We also need to calculate lim
a→0+

dΦ−1
a

dx . Firstly, we assume 0 < x < 1. Since a→ 0+ we can suppose

x < 1/(a+1), therefore

lim
a→0+

dΦ−1
a

dx
= lim

a→0+
((a+1)x)

−a
a+1 = 1.
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Secondly, if x > 1 then x > 1/(a+1) and consequently

lim
a→0+

dΦ−1
a

dx
= lim

a→0+

√
a+1

√
a

√
2(a+1)x+ (a+2)(a−1)

= lim
a→0+

√
a+1

√
a√

a2+2ax+a+2(x−1)
= 0.

Finally, if x = 1 then lim
a→0+

dΦ−1
a

dx = 1/
√

3. Hence,

lim
a→0+

dΦ−1
a

dx
= χ(0,1), for x > 0, x , 1. (2.19)

Let H > 0 and H , 2. Using the formula dΦ−1
a /dx = 1/(φa ◦Φ

−1
a ) and taking account of (2.17),

(2.18) and (2.19) we have

lim
a→+∞

AΦa(H,λ) = lim
a→+∞

 Φ−1
1/a

(
H
2

)
λφa

(
Φ−1

a

(
H
2λ

)) + Φ−1
a

(
H
2λ

)
φ1/a

(
Φ−1

1/a

(
H
2

)) 
= lim

a→+∞

1
λ
Φ−1

1/a

(H
2

) dΦ−1
a

dx

∣∣∣∣∣∣
x= H

2λ

+Φ−1
a

( H
2λ

) dΦ−1
1/a

dx

∣∣∣∣∣∣
x= H

2


=

1
λ

min
(
1,

H
2

)
+

( H
2λ
+1

)
χ(0,1)

(H
2

)
=

H
λ +1 if H < 2
1
λ if H > 2.

In a similar way

lim
a→0+

AΦa(H,λ) =

H+1
λ if H < 2λ

1 if H > 2λ.

Hence

sup
H>0,Φ∈F

AΦ(H,λ) ≥max
{

sup
0<H,2

lim
a→+∞

AΦa(H,λ), sup
0<H,2λ

lim
a→0+

AΦa(H,λ)
}

=max
{
λ+2
λ

,
2λ+1
λ

}
.

The result follows taking account of (2.16).
�

3 Additional results

We can improve the upper bound obtained in Theorem 1.3 with a similar argument to that used in
its demonstration employing piecewise linear functions instead of piecewise constant ones to bound
trajectories.

We consider P, Q, R, τ1 and τ2 as in the proof of Theorem 1.3. Let ρ̃ = ax+ b and x̃ = mρ+ n
be the equations of the straight lines connecting the points P with R and R with Q respectively, then
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a = Ψ
−1(H/2)−Ψ−1(H)
Φ−1(H/2λ) , b = Ψ−1(H), m = Φ

−1(H/2λ)−Φ−1(H/λ)
Ψ−1(H/2) and n = Ψ−1(H/λ). Due to the concavity of

the function ρ = Ψ−1 (H−λΦ(x)), for x ≥ 0 and ρ ≥ 0, we have that the trajectory (x(t),ρ(t)) satisfies
ρ(t) ≥ ρ̃(t) for t ∈ [0, τ1] and x(t) ≥ x̃(t) for t ∈ [τ1, τ1+τ2].

Taking into account (1.3), we get x′(t) ≥ ψ(ρ̃(t)) for t ∈ [0, τ1] and ρ′(t) ≤ −λφ(x̃(t)) for t ∈
[τ1, τ1+τ2]. Integrating from 0 to τ1, we obtain

τ1 ≤

∫ τ1

0

x′(t)dt
ψ(ax(t)+b)

=
1
a

∫ Ψ−1( H
2 )

Ψ−1(H)

du
ψ(u)

= Φ−1
( H
2λ

)
−

∫ Ψ−1(H)

Ψ−1( H
2 )

du
ψ(u)

,

where −
∫

denotes the averaged integral. In a similar way, integrating over the interval [τ1, τ1+τ2] the
inequality 1 ≤ −λ−1ρ′/φ(x̃), we have

τ2 ≤ −λ
−1

∫ τ1+τ2

τ1

ρ′(t)dt
φ(x̃(t))

= −λ−1
∫ τ1+τ2

τ1

ρ′(t)dt
φ(mρ+n)

≤ Ψ−1
(H

2

)
λ−1−

∫ Φ−1( H
λ )

Φ−1( H
2λ )

du
φ(u)

.

If we define

BΦ(H,λ) := Φ−1
( H
2λ

)
−

∫ Ψ−1(H)

Ψ−1( H
2 )

du
ψ(u)

+Ψ−1
(H

2

)
λ−1−

∫ Φ−1( H
λ )

Φ−1( H
2λ )

du
φ(u)

(3.1)

then, according to our previous discussion, we have the following result.

Proposition 3.1. For any H > 0
TΦ(H,λ) ≤ BΦ(H,λ).

Recalling the definition of AΦ(H,λ) given in (1.9) and bounding the functions 1/φ and 1/ψ by
their maximum values over the corresponding integration intervals in (3.1), we obtain

BΦ(H,λ) ≤ AΦ(H,λ).

However, as it is shown in the following result, the optimal upper bound for BΦ(H,λ) is the
same that for AΦ(H,λ).

Theorem 3.2. For any λ > 0

sup
H>0,Φ∈F

BΦ(H,λ) =max
{
λ+2
λ

,
2λ+1
λ

}
.

Proof. We consider the functions Φa defined in the proof of Proposition 1.6. By performing the
change of variables u = Ψ−1(v) and u = Φ−1(v) in the integrals (3.1) we obtain

BΦa(H,λ) = Φ−1
a

( H
2λ

) ∫ H
H
2

∣∣∣∣∣dΦ−1
1/a

dv

∣∣∣∣∣2 dv∫ H
H
2

dΦ−1
1/a

dv dv
+

1
λ
Φ−1

1/a

(H
2

) ∫ H
λ

H
2λ

∣∣∣∣dΦ−1
a

dv

∣∣∣∣2 dv∫ H
λ

H
2λ

dΦ−1
a

dv dv

=: Φ−1
a

( H
2λ

)
I1+

1
λ
Φ−1

1/a

(H
2

)
I2.
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We note that the functions dΦ−1
α

dv are decreasing and verify the second equality in (2.17) and
(2.19). Therefore they are uniformly bounded on closed intervals excluding 0. Hence, by the
Lebesgue dominated convergence theorem, we can see that lim

a→+∞
I2 = 1. To evaluate lim

a→+∞
I1 we

consider several cases for H. If H < 2 then, using (2.19), we obtain lim
a→+∞

I1 = 1. If H ≥ 2, taking

account of Hölder inequality and the monotonicity of
dΦ−1

1/a
dv , we get

I1 ≤
dΦ−1

1/a

dv

∣∣∣∣∣∣
v= H

2

.

Therefore, by elementary calculations we have

limsup
a→+∞

I1 ≤ 1 if H = 2 and lim
a→+∞

I1 = 0 if H > 2.

Then, from (2.17) and (2.18)

lim
a→+∞

BΦa(H,λ) =
(
1+

H
2λ

)
lim

a→+∞
I1+

1
λ

min
{
1,

H
2

}
=

1+ H
λ if H < 2

1
λ if H > 2

and
limsup
a→+∞

BΦa(2,λ) ≤ 1+
2
λ
.

Finally, using that BΦ satifies the anolougous duality formula that TΦ, we have that BΦa(H,λ) =
1
λBΦ1/a( H

λ ,
1
λ ) and cosequently we conclude

sup
H>0,Φ∈F

BΦ(H,λ) ≥ sup
H>0

max
{

lim
a→0+

BΦa(H,λ), lim
a→+∞

BΦa(H,λ)
}

=max
{
λ+2
λ

,
2λ+1
λ

}
.

�

For the functions Φ(x) = |x|p/p with p > 1, the upper bound obtained in Proposition 1.5 can be
improved.

Proposition 3.3. For any λ > 0 we have that

sup
p>1

Tp(λ) ≤
λ+1
λ

. (3.2)

Proof. From the formula (1.7) for the period Tp, proving (3.2) is equivalent to show that for all
p > 1

(p−1)

 π

psin
(
π
p

)
p

≤ λ

(
1+

1
λ

)p

. (3.3)

As the function in the right hand side of (3.3) attains its minimum at (p− 1), inequality (3.3) is
implied by

1−
x
π
≤

sin x
x
, (3.4)

where x = π/p. Now, since (3.4) is a well known inequality (see inequality (29) on page 47 of [16]),
the proof is complete. �
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In view of the previous result, we can hypothesize that the inequality TΦ(H,λ) ≤ λ+1
λ holds

for every Φ ∈ F and H > 0. We could not prove this inequality, however we performed various
numerical experiments that support our hypothesis, generating functions randomly in the class F
and computing the period numerically by means of a recursive adaptive Simpson quadrature. The
result is consistent with the hypothesis. Nevertheless, likewise in the case of the bounds of AΦ and
BΦ, the functions Φa seem to be approximately extremals, at least among those we have checked.
In the Figure 2, we show the hypothetical bound and the graph of sup

H>0
TΦa(H,λ) for several values

of a. In order to compute the supreme, we consider energies H > 0 in an equally spaced grid with
extremals 0.1 and 11.

We point out that the function U satisfies the inequalities in Proposition 1.5 and U(λ) = 1
λU( 1

λ ).
If we suppose that U is meromorphic with an unique pole in 0 then the only option would be that
U(λ) = κ 1+λ

λ with 1 ≤ κ ≤ 1.5.

Figure 2. sup
H>0

TΦa(H,λ) for a = 1
200 ,

1
198 , . . . ,1,3, . . . ,70.

Finally, we would like to pose an interesting open question. In addition to the power functions,
is there another function φ for which the equation (1.1) is isochronous? We conjecture that the
answer is no.
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