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1. Introduction

Consider a locally compact abelian (LCA) group G, and let Ĝ denote its dual group. 
Given a relatively compact Borel subset Ω of Ĝ, the space L2(Ω) is identified with 
the subspace of L2(Ĝ) consisting of those classes corresponding to functions vanishing 
almost everywhere on the complement of Ω. The Paley Wiener space PWΩ consists 
of all square integrable functions whose Fourier transform belongs to L2(Ω). For this 
space, a set Λ ⊆ G is a sampling set if there exist constants A, B > 0 such that for any 
f ∈ PWΩ,

A||f ||22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ B||f ||22.

On the other hand, Λ is an interpolation set for PWΩ if the interpolation problem

f(λ) = cλ,

has a solution f ∈ PWΩ for every {cλ}λ∈Λ ∈ �2(Λ). A set Λ that is at the same time a 
sampling and interpolation set is a complete interpolation set.

Using the Fourier transform, it turns out that Λ is a sampling set (resp. interpolation 
set, complete interpolation set) if and only if Λ, as a set of characters restricted to Ω, is 
a frame (resp. Riesz sequence, Riesz basis) of L2(Ω).

Sampling and interpolation sets satisfy the following necessary geometric conditions, 
proved by Landau in [14] for Rd, and later on extended to LCA groups in [7]:

(i) A sampling set Λ for PWΩ satisfies D−(Λ) ≥ mĜ(Ω);
(ii) An interpolation set Λ for PWΩ satisfies D+(Λ) ≤ mĜ(Ω),

where mĜ denotes the Haar measure of Ĝ, and D+ and D− denote the so called upper 
and lower Beurling’s densities (see Section 3.2 for precise definitions). In some sense, 
the Beurling’s densities measure how the set Λ is distributed in G with respect to the 
distribution of a reference set, that for instance in the case of Rd is the lattice Zd.

In [7], Gröchenig, Kutyniok and Seip raised the natural question of whether there 
exist sampling sets and interpolation sets for PWΩ with densities arbitrarily close to the 
critical density mĜ(Ω). Except for the particular case G = Rd, proved by Marzo in [17]
adapting a construction of Lyubarskii and Seip [16] and Kohlenberg [11], the problem 
remained open till now. The main obstacle, which is a recurrent problem in general 
LCA groups, is the absence of a natural substitute of rescalings. Therefore, a different 
approach is required.

The main goal of this paper is to give a complete solution to the aforementioned 
problem. A natural strategy is to show that, given a compact set Ω, there exists an outer 
(resp. inner) approximation set Ωε of Ω such that L2(Ωε) has a Riesz basis of characters. 
As a consequence, we obtain the existence of sampling (resp. interpolation) sets near the 
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critical density (see Theorem 3.5). Indeed, the Riesz basis of L2(Ωε) becomes a frame 
for L2(Ω) if Ωε is an outer approximation, and it becomes a Riesz sequence if Ωε is an 
inner approximation. The problem to accomplish this strategy in general LCA groups 
is to prove the existence of such “good” approximation sets. To overcome this difficulty, 
we proceed as follows.

First, we show that, given a relatively compact Borel set Ω ⊂ Ĝ that satisfies some 
tiling condition, the space L2(Ω) admits a Riesz basis of characters (see Section 4 for 
details). This is motivated by recent results due to Grepstad and Lev in [6] (see also [12]) 
and it provides an extension of their results. In order to prove this generalization we use 
operator theoretical techniques developed around the theory of shift invariant spaces. 
The shift invariant techniques provide a better understanding of the problem. As a 
consequence, besides the extension of the multi-tiling result of Grepstad and Lev to the 
group setting, we also prove the converse, that is, if a relatively compact set Ω ⊂ Ĝ

admits a Riesz basis of characters with a periodic set of frequencies, then Ω satisfies 
a multi-tiling condition (see Theorem 4.4 for details). This is new even for Rd, and 
complements the result of Grepstad and Lev in order to get a generalization of Fuglede’s 
theorem [5] for Riesz bases and multi tiling sets. In particular it shows that, if for instance 
Ω is a triangle in R2, then L2(Ω) does not admit a Riesz basis of exponentials with a 
periodic set of frequencies. Furthermore, we prove that the boundedness condition over 
Ω cannot be avoided. In order to show that, we construct a counterexample that in 
particular responds in a negative way a question left open by Kolountzakis in [12].

Using the aforementioned multi-tiling result for LCA groups we get several candidates 
for approximation sets, i.e., those sets that satisfy a tiling condition with respect to a 
lattice. However, in general there are not sufficiently many of such sets to assure the 
required approximation, essentially because the group Ĝ may not have a rich family of 
lattices. In order to enlarge the family of candidates, we show that we can also consider 
sets Ωε that satisfy the tiling condition in an appropriate quotient group Ĝ/K instead 
of in the group Ĝ. Thus, we obtain a Riesz basis of characters in L2(π(Ωε)), where π
denotes the canonical projection onto that quotient. Finally, we prove that this Riesz 
basis can be lifted to a Riesz basis of characters for L2(Ωε) (see the last part of Section 5
for the details).

The paper is organized as follows. In Section 2, we introduce preliminary results 
on LCA groups. Section 3 describes the main results. In Section 4 we construct the 
Riesz basis of characters for L2(Ω), under a multi-tiling condition on the set Ω. In 
Section 5 we introduce the notion of quasi-dyadic cubes, which are used to construct 
the approximation sets. Finally, with all the necessary techniques at hand, we proceed 
to the proof of the main result in Section 6.

2. Preliminaries

Throughout this section we review basic facts on locally compact abelian groups (for 
more details see [2,8,9,18]), setting in this way the notations we need for the following 
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sections. Then, we introduce H-invariant spaces that generalize the concept of shift 
invariant spaces in the context of these groups (see [1]).

2.1. LCA Groups

Let G denote a Hausdorff locally compact abelian (LCA) group, and Ĝ its dual group, 
that is;

Ĝ = {γ : G → C, and γ is a continuous character of G},

where a character is a function satisfying the following properties:

(i) |γ(x)| = 1, ∀x ∈ G;
(ii) γ(x + y) = γ(x)γ(y), ∀x, y ∈ G.

Thus, the characters generalize the exponential functions γ(x) = γt(x) = e2πitx in the 
case G = (R, +). On every LCA group G there exists a Haar measure. It is a non-negative, 
regular Borel measure mG that is non-identically zero and translation-invariant, which 
means:

mG(E + x) = mG(E),

for every element x ∈ G and every Borel set E ⊂ G. This measure is unique up to a 
constant. Analogously to the Lebesgue spaces, we can define the Lp(G) = Lp(G, mG)
spaces associated to the group G and the measure mG:

Lp(G) :=
{
f : G → C, f is measurable and

∫
G

|f(x)|p dmG(x) < ∞
}
.

Theorem 2.1. Let G be an LCA group and Ĝ its dual. Then

(i) The dual group Ĝ, with the operation (γ + γ′)(x) = γ(x)γ′(x) is an LCA group. 
The topology in Ĝ is the one induced by the identification of the characters of the 
group with the characters of the algebra L1(G).

(ii) The dual group of Ĝ is topologically isomorphic to G, that is, ̂̂G ≈ G, with the 

identification g ∈ G ↔ eg ∈ ̂̂G , where eg(γ) := γ(g).
(iii) G is discrete (resp. compact) if and only if Ĝ is compact (resp. discrete).

As a consequence of (ii) of the previous theorem, we could use the notation (x, γ)
for the complex number γ(x), representing either the character γ applied to x or the 
character x applied to γ.
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Taking f ∈ L1(G) we define the Fourier transform of f , as the function f̂ : Ĝ → C

given by

f̂(γ) =
∫
G

f(x)(x,−γ) dmG(x), γ ∈ Ĝ.

If the Haar measure of the dual group Ĝ is normalized conveniently, we obtain the 
inversion formula

f(x) =
∫
Ĝ

f̂(γ)(x, γ)dmĜ(γ),

for a specific class of functions. In the case that the Haar measures mG and mĜ are 
normalized such that the inversion formula holds, the Fourier transform on L1(G) ∩L2(G)
can be extended to a unitary operator from L2(G) onto L2(Ĝ). Thus, the Parseval 
formula holds:

〈 f, g 〉 =
∫
G

f(x)g(x)dmG(x) =
∫
Ĝ

f̂(γ)ĝ(γ)dmĜ(γ) = 〈f̂ , ĝ〉

for f, g ∈ L2(G). We conclude this subsection with the next classical result.

Proposition 2.2. If G is a compact group, then the characters of G form an orthonormal 
basis for L2(G).

2.2. H-invariant spaces

In this subsection we will review some basic aspects of the theory of shift invariant 
spaces in LCA groups. We will specially focus on the Paley Wiener spaces, that consti-
tutes an important family of shift invariant spaces in which we are particularly interested. 
The reader is referred to [1], where he can find the results in full generality, as well as 
other results related to shift invariant spaces in LCA groups. Let G be an LCA group, 
and let H be a uniform lattice on G, i.e., a discrete subgroup of G such that G/H is 
compact. Recall that a Borel section of G/H is a set of representatives of this quotient, 
that is, a subset A of G containing exactly one element of each coset. Thus, each element 
x ∈ G has a unique expression of the form x = a + h with a ∈ A and h ∈ H. Moreover, 
it can be proved that there exists a relatively compact Borel section of G/H, which will 
be called fundamental domain (see [4] and [10]).

Definition 2.3. We say that a closed subspace V ⊂ L2(G) is H-invariant if

f ∈ V then τhf ∈ V, ∀h ∈ H,

where τhf(x) = f(x − h).
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As we have mentioned, Paley Wiener spaces are important examples of H-invariant 
spaces, which in this context are defined by

PWΩ = {f ∈ L2(G) : f̂ ∈ L2(Ω)},

where Ω ⊂ Ĝ is a Borel set of finite measure (see [7]). Actually, this space is invariant 
by any translation.

Let Λ be the dual lattice of H; that is, the annihilator of H defined by

Λ = {γ ∈ Ĝ : (h, γ) = 1, for allh ∈ H}.

Suppose that Ω tiles Ĝ by translations of Λ, i.e.

ΔΩ(x) :=
∑
λ∈Λ

χΩ(x− λ) = 1, a.e.

In this case, it is well known that {eh}h∈H is an orthonormal basis of L2(Ω). Indeed, 
since Λ is also a uniform lattice, in particular, Ĝ/Λ is compact. So, as we recall in 
Proposition 2.2, H � (Ĝ/Λ)̂ is an orthonormal basis of L2(Ĝ/Λ). On the other hand, 
this space is isometrically isomorphic to L2(Ω), because 1-tiling sets are Borel sections 
of the quotient group Ĝ/Λ up to a zero measure set.

A set Ω multi-tiles, or more precisely k-tiles Ĝ by translations of Λ if

ΔΩ(x) :=
∑
λ∈Λ

χΩ(x− λ) = k, a.e.

For example, if Ω is a disjoint union of 1-tiling sets then the previous condition is satisfied. 
Next lemma shows that the reverse also holds, not only in Rn (see Lemma 1 in [12]), 
but also in the context of the LCA groups.

Lemma 2.4. Let G be an LCA group and H ⊂ G a countable discrete subgroup. A mea-
surable set Ω ⊂ G, k-tiles G under the translation set H, if and only if

Ω = Ω1 ∪ · · · ∪ Ωk ∪R,

where R is a zero measure set, and the sets Ωj, 1 ≤ j ≤ k are measurable, disjoint and 
each of them tiles G by translations of H.

Proof. If Ω is a disjoint union of k sets of representatives of G/H up to measure zero 
then clearly 

∑
h∈H χΩ(x − h) = k, a.e.

For the converse, consider D to be a fundamental domain of G/H and let {hj}j∈N

be an enumeration of the elements of H. We have ΔΩ(d) = k for almost all d ∈ D. If E
denotes the set of the exceptions, define for d ∈ D \ E,
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ij(d) = min{n ∈ N :
n∑

s=1
χΩ(d + hs) = j}, j = 1, . . . , k,

and the measurable sets,

Ej,n = {d ∈ D \ E : ij(d) = n}, n ∈ N.

Finally for j = 1, . . . , k, let Ωj =
⋃

n∈N
(Ej,n + hn). It is straightforward to see that Ω =⋃k

j=1 Ωj∪R, is the desired decomposition. Here the remaining set R = Ω \(Ω1∪ . . .∪Ωk)
has measure zero because it is contained in E + H. �

Going back to the H-invariant spaces, let us recall now the following simple but useful 
proposition, that in the case of LCA groups is a direct consequence of Parseval identity 
and Weil’s formula. From now on, and until the end of this section, D will denote a 
fundamental domain of Ĝ/Λ.

Proposition 2.5. The map T : L2(G) → L2(D, �2(Λ)) defined by

T f(ω) = {f̂(ω + λ)}λ∈Λ,

is an isometric isomorphism. Moreover, for each element h ∈ H

T (τh f)(ω) = eh(ω){f̂(ω + λ)}λ∈Λ,

for almost every ω ∈ D.

Remark 2.6. It is not difficult to see that if f̂ and ĝ are equal almost everywhere, then 
for almost every ω ∈ D

{f̂(ω + λ)}λ∈Λ = {ĝ(ω + λ)}λ∈Λ.

This guarantees that T is well defined, and justifies the evaluation of elements of 
L2(G). �

When the H-invariant space is finitely generated, Proposition 2.5 allows to translate a 
problem in (infinite dimensional) H-invariant spaces, to simpler linear algebra problems 
in finite dimensional Hilbert spaces.

Given an H-invariant space V ⊂ L2(G), there exists a measurable function JV which 
is defined in D, takes values on the space of closed subspaces of �2(Λ), and has the 
property that f ∈ V if and only if for almost every ω ∈ D

T f(ω) ∈ JV (ω).
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The measurability of J is understood in a weak sense, i.e., for every v, w ∈ �2(Λ) the 
scalar function ω �→

〈
PJV (ω)v, w

〉
is measurable, where PJV (ω) denotes the orthogo-

nal projection onto JV (ω). The function JV was introduced by Helson and it is called
range function. Although many range functions can be defined for the same H-invariant 
space V, any two of them coincides almost everywhere (see [1] for more details).

In the case of Paley–Wiener spaces, we have a very special description of a range 
function. Consider a Borel set Ω ⊆ Ĝ such that mĜ(Ω) < ∞ and assume that there 
exists a set E ⊂ D of zero measure such that ΔΩ is uniformly bounded on D \ E. If by 
JΩ we denote the range function of PWΩ then it is not difficult to prove the following 
characterization of JΩ.

Proposition 2.7. Denote by Cb(Ω) the set of bounded continuous functions on Ω, extended 
as zero outside Ω, then for each ω ∈ D \ E we have,

JΩ(ω) =
{
{g(ω + λ)}λ∈Λ : g ∈ Cb(Ω)

}
.

Note that, for any continuous function g defined in Ĝ, it holds that gχΩ ∈ Cb(Ω). 
However, the converse it is not necessarily true. From this characterization of JΩ we also 
get the following one:

Corollary 2.8. Given ω ∈ D\E, let λ1, . . . , λm be the elements of Λ such that ω+λj ∈ Ω. 
Then

JΩ(ω) = span{δλj
: j = 1, . . . ,m},

where {δλ}λ∈Λ denotes the canonical basis of �2(Λ).

Proof. Clearly, given v ∈ JΩ(ω), vλ = 0 if λ �= λj for j = 1, . . . , m. This proves one of 
the inclusions. On the other hand, fix any j ∈ {1, . . . , m} and take a bounded continuous 
function gλj

defined in Ĝ such that gλj
(ω + λj) = 1 and gλj

(ω + λ) = 0 for any other 
λ ∈ Λ. Setting g = gλj

χΩ we see that g ∈ Cb(Ω), and clearly {g(ω + λ)}λ∈Λ = δλj
. This 

concludes the proof. �
Note that, another consequence of this Corollary is that a Borel set Ω is k-tiling if 

and only if almost every JΩ(ω) are k dimensional.
These considerations, as well as Proposition 2.5, lead to the following result.

Theorem 2.9. Let Ω be a k-tiling measurable subset of Ĝ. Given φ1, . . . , φk ∈ PWΩ we 
define

Tω =

⎛⎜⎝ φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
...

. . .
...̂ ̂

⎞⎟⎠ ,
φ1(ω + λk) . . . φk(ω + λk)
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where the λj = λj(ω) for j = 1, . . . , k are the k values of λ ∈ Λ such that ω + λ ∈ Ω. 
Then, the following statements are equivalent:

(i) The set ΦH = {τhφj : h ∈ H, j = 1, . . . , k} is a Riesz basis for PWΩ.
(ii) There exist A, B > 0 such that for almost every ω ∈ D,

A||x||2 ≤ ‖Tω x‖2 ≤ B||x||2,

for every x ∈ Ck.

Moreover, in this case the constants of the Riesz basis are

A = inf
ω∈D

‖T−1
ω ‖−1 and B = sup

ω∈D
‖Tω‖.

For a sake of completeness, we will give a proof of this result adapted to our setting. 
For the proof in more general H-invariant spaces see [1].

Proof. Recall that D is a fundamental domain of Ĝ/Λ, and consider a family {aj,h} with 
finitely many non-zero terms, where j = 1, . . . , k and h ∈ H. Using the Fourier transform 
and a Λ-periodization argument we get∥∥∥∥∥∥

∑
j,h

aj,hτhφj

∥∥∥∥∥∥
2

L2(G)

=
∫
D

k∑
j,�=1

mj(ω)
(∑

λ∈Λ

φ̂j(ω + λ)φ̂�(ω + λ)
)
m�(ω) dmĜ(ω),

where mj =
∑

h∈H aj,he−h. For each j, the vector {φ̂j(ω + λ)} has at most k non-zero 
coordinates. More precisely, the only coordinates that can be different from zero are 
those corresponding to the elements λj(ω) ∈ Λ considered in the matrix Tω. So, if 
m = (m1, . . . , mk) then∥∥∥∥∥∥

k∑
j=1

∑
h∈H

aj,hτhφj

∥∥∥∥∥∥
2

L2(G)

=
∫
D

〈T ∗
ωTωm(ω),m(ω) 〉

Ck dmĜ(ω)

=
∫
D

‖Tωm(ω)‖2
Ck dmĜ(ω). (1)

On the other hand

∫
D

‖m(ω)‖2
Ck dmĜ(ω) =

k∑
j=1

∫
D

|mj(ω)|2 dmĜ(ω) =
k∑

j=1

∑
h∈H

|aj,h|2. (2)

Combining (1), (2) and standard arguments of measure theory we get that (i)=⇒(ii).
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For the other implication, note that from (1) and (2) we immediately get that the fam-
ily ΦH is a Riesz sequence for PWΩ. So, it only remains to prove that condition (ii) also 
implies that ΦH is complete. With this aim, let f ∈ PWΩ, and suppose that 〈 f, τhφj 〉 = 0
for every h ∈ H and j = 1, . . . , k. By a Λ-periodization argument we get

0 =
〈
f̂ , e−hφ̂j

〉
=
∫
D

(∑
λ∈Λ

f̂(ω + λ)φ̂j(ω + λ)
)
eh(ω) dmĜ(ω).

Since {eh}h∈H is an orthonormal basis for L2(Ĝ/Λ), then

∑
λ∈Λ

f̂(ω + λ)φ̂j(ω + λ) = 0, a.e. ω mĜ.

Thus T ∗
ω({f(ω + λj)}kj=1) = 0, where λj = λj(w). Therefore, T (f) = 0 a.e. mĜ. �

3. Sampling and interpolation near the critical density

In this section we study sampling sets, and interpolation sets on PWΩ, when Ω is a 
relatively compact subset of Ĝ. In [7], Gröchenig, Kutyniok, and Seip introduced two 
notions of densities that suitably generalize the Beurling’s densities defined in Rd. Our 
main goal is to prove that there exist sampling sets, and interpolation sets whose densities 
are arbitrarily close to the critical one, answering a question raised by Gröchenig et al.
in [7].

3.1. Standing hypothesis

Since we will work with relatively compact sets Ω, throughout this paper we will 
assume that G is a second countable LCA group such that its dual Ĝ is compactly 
generated. In order to avoid trivial cases, we will also assume that G is not compact.

By the standard structure theorems, Ĝ is isomorphic to Rd × Zm × K, where K is a 
compact subgroup of Tω. Consequently, G is isomorphic to Rd × Tm × D, where D is a 
countable discrete group. This is not a serious restriction, as the following lemma shows 
(see [3] or [7]).

Lemma 3.1. Assume that Ω ⊆ Ĝ is relatively compact, and let H be the open subgroup 
generated by Ω. Then H is compactly generated and there exists a compact subgroup 
K ⊆ G such that every f ∈ PWΩ is K-periodic. Furthermore, the quotient G/K is 
homeomorphic to Rd × Tm × D, where D is a countable discrete abelian group, and 
Ĝ/K � H.

Therefore, given a relatively compact set Ω ⊆ Ĝ, this lemma shows that the space 
PWΩ essentially lives in L2(G/K), and Ĝ/K � H is compactly generated.
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3.2. Beurling-type densities in LCA groups

To begin with, recall that a subset Λ of G is called uniformly discrete if there exists 
an open set U such that the sets λ + U (λ in Λ) are pairwise disjoints. In some sense, 
the densities in Rd compare the concentration of the points of a given discrete set with 
that of the integer lattice Zd. In a topological group, this comparison is done by means 
of the following relation:

Definition 3.2. Given two uniformly discrete sets Λ and Λ′ and non-negative numbers α
and α′, we write αΛ � α′Λ′ if for every ε > 0 there exists a compact subset K of G such 
that for every compact subset L we have

(1 − ε)α#(Λ ∩ L) ≤ α′ #(Λ′ ∩ (K + L)).

Now, we have to fix a reference lattice in the group G. As we mentioned at the 
beginning of this section, since Ĝ is compactly generated, G is isomorphic to Rd×Tm×D, 
where D is a countable discrete group. So, a natural reference lattice is H0 = Zd×{e} ×D. 
Using this reference lattice, and the above transitive relation, we have all what we need 
to recall the definitions of upper and lower densities.

Definition 3.3. Let Λ be a uniformly discrete subset of G. The lower uniform density of 
Λ is defined as

D−(Λ) = sup{α ∈ R+ : αH0 � Λ}.

On the other hand, its upper uniform density is

D+(Λ) = inf{α ∈ R+ : Λ � αH0}.

These densities always satisfy that D−(Λ) ≤ D+(Λ), and they are finite. Moreover, 
it can be shown that the infimum and the supremum are actually a minimum and a 
maximum. In the case that both densities coincide, we will simply write D(Λ). It should 
be also mentioned that in the case of Rd, these densities coincide with the Beurling’s 
densities when the reference lattice is Zd.

Using these densities, Gröchenig, Kutyniok, and Seip obtained (see [7]), the following 
extension of the classical result of Landau to LCA groups.

Theorem 3.4. Suppose Λ is a uniform discrete subset of G. Then

S) If Λ is a sampling set for PWΩ, then D−(Λ) ≥ mĜ(Ω);
I) If Λ is an interpolation set for PWΩ, then D+(Λ) ≤ mĜ(Ω).
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A natural question is whether there exist sampling sets and interpolation sets near 
the critical density. In the case G = Rd a positive answer was given by Marzo in [17]. 
The following theorem is our main result, which completely answers this question.

Theorem 3.5. Let Ω be a compact subset of Ĝ, and let ε > 0. Then, the following state-
ments hold:

(i) There exists a sampling set Jε for PWΩ such that

D (Jε) ≤ mĜ(Ω) + ε.

(ii) If mĜ(∂Ω) = 0, then there exists an interpolation set Jε for PWΩ such that

D (Jε) ≥ mĜ(Ω) − ε.

Although roughly speaking the strategy of the proof will be similar to the one used 
in [16] and [17] (see also [11]), in order to pursue this strategy, we will have to over-
come several technical issues. This will be done in the following two sections. Finally, 
in Section 6 we will combine the obtained results, and we will provide the proof of 
Theorem 3.5.

4. Constructing Riesz basis in the context of LCA groups

The relation between multi-tiling sets and the existence of Riesz bases in the Rd

setting was first pointed out in [6] by Grepstad–Lev. More precisely, they proved that a 
bounded Riemann integrable Borel set Ω ⊆ Rd admits a Riesz basis of exponentials if 
it multi-tiles Rd with translation set a lattice Λ. Later on, Kolountzakis gave in [12] a 
simpler proof of this result in a slightly more general form (see also [13] for a different 
approach). Important special cases had been proved by Lyubarskii–Seip in [16], and 
Marzo in [17], (see also [15] and [19]).

One of the main theorems of this section is the following generalization of Grepstad–
Lev’s result to the LCA group setting.

Theorem 4.1. Let H be a uniform lattice of G, Λ its dual lattice, and k ∈ N. Then, there 
exist a1, . . . , ak ∈ G, depending only on the lattice Λ, such that for any relatively compact 
Borel subset Ω of Ĝ satisfying

ΔΩ(ω) :=
∑
λ∈Λ

χΩ(ω − λ) = k, a.e. ω ∈ Ĝ,

the set

{eaj−h χΩ : h ∈ H, j = 1, . . . , k}

is a Riesz basis for L2(Ω).
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We would like to emphasize that, in the previous theorem, the same set {a1, . . . , ak}
can be used for any k-tiling set Ω. We call such a k-tuple (a1, . . . , ak) H-universal. The 
following result is a slight improvement of the already known results.

Theorem 4.2. Let H be a uniform lattice of G and k ∈ N. Then, there exists a Borel set 
N ⊆ Gk such that mGk(N) = 0 and every k-tuple (a1, . . . , ak) ∈ Gk \N is H-universal.

Remark 4.3. Note that, if we fix a fundamental domain D, given any universal k-tuple 
(a1, . . . , ak) there exists a unique k-tuple (d1, . . . , dk) ∈ Dk such that

{eaj−h χΩ : h ∈ H, j = 1, . . . , k} = {edj−h χΩ : h ∈ H, j = 1, . . . , k}.

So, we can restrict out attention to universal k-tuples belonging to Dk. In this case, 
consider the “uniform” probability measure on Dk given by the restriction of the Haar 
measure of Gk to Dk (conveniently normalized). Then another way to state Theorem 4.2
is that a k-tuple in Dk is almost surely H-universal. �

The second main result of this section is the following converse of Theorem 4.1.

Theorem 4.4. Let H be a uniform lattice of G and Λ its dual lattice. Given a relatively 
compact subset Ω of Ĝ, if L2(Ω) admits a Riesz basis of the form

{eaj−h χΩ : h ∈ H, j = 1, . . . , k}

for some a1, . . . , ak ∈ G, then Ω k-tiles Ĝ with Λ.

The proofs of these results are provided in the next subsection. Then, in the last 
subsection we will show a counterexample that answers negatively a question raised by 
Kolountzakis in [12].

4.1. Proofs of Theorems 4.1, 4.2 and 4.4

We begin with two technical lemmas. Following Rudin’s book [18], we will say that a 
function p is a trigonometric polynomial on G if it has the form

p(g) =
n∑

j=0
cjγj(g)

for some n ∈ N, cj ∈ C and γj ∈ Ĝ.

Lemma 4.5. The zero set of a trigonometric polynomial p on G has zero Haar measure.
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Proof. By the standing hypothesis, we can identify G with the group Rd × Tm × D, 
for some countable discrete LCA group D. Hence, given (x, ω, d) ∈ Rd × Tm × D, the 
polynomial p can be written as

p(x, ω, d) =
n∑

j=0
cjρj(x)τ(ω)δ(d)

where ρ ∈ R̂d, τ ∈ T̂d, and δ ∈ D̂. Let Cp = {(x, ω, d) : p(x, ω, d) = 0}, and suppose by 
contradiction that mG(Cp) > 0. Since

Cp =
⋃
d∈D

Cp ∩
(
Rd × Tm × {d}

)
,

there exists d0 ∈ D such that

mG

(
Cp ∩

(
Rd × Tm × {d0}

))
> 0.

If we restrict p to Rd × Tm × {d0} we get the trigonometric polynomial q on Rd × Tm

q(x, ω) =
n∑

j=0

(
cjδ(d)

)
ρj(x)τ(ω)

that is non-trivial and its zero set has positive measure. This is a contradiction, and 
therefore mg(Cp) = 0. �
Lemma 4.6. Let K1 and K2 be compact subsets of Ĝ. If

Γ = {λ ∈ Λ : (λ + K1) ∩K2 �= ∅},

then #Γ < ∞.

Proof. Note that Γ ⊂ Λ ∩ (K1 −K2), where K1 −K2 = {k1 − k2 : kj ∈ Kj , j = 1, 2}. 
Since Λ is a discrete set and (K1 −K2) is compact, then Γ should be necessarily a finite 
set. �
Proof of Theorems 4.1 and 4.2. Given a1, . . . , ak ∈ G, define the functions φ1, . . . , φk by 
their Fourier transform in the following way:

φ̂j := eaj
χΩ, j ∈ {1, . . . , k}. (3)

We will show that under the hypothesis on Ω, there exist a1, . . . , ak such that φ1, . . . , φk

translated by H form a Riesz basis for PWΩ.
Choose a fundamental domain D of Ĝ/Λ. Since Ω is a set that k-tiles Ĝ, for almost 

every ω ∈ D, the vectors φ̂j(ω) have at most k entries different from zero. These entries 
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are those that correspond to the (different) elements λj = λj(ω) ∈ Λ, 1 ≤ j ≤ k, such 
that ω + λj ∈ Ω. For ω ∈ D consider the matrix

Tω =

⎛⎜⎝ φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
...

. . .
...

φ̂1(ω + λk) . . . φ̂k(ω + λk)

⎞⎟⎠ .

By Theorem 2.9, the H-translations of φ1, . . . , φk form a Riesz basis for PWΩ if and only 
if there exist A, B > 0 such that

A||x||2 ≤ ‖Tωx‖2 ≤ B||x||2, (4)

for every x ∈ Ck and almost every ω ∈ D. The rest of the proof follows ideas of [12]
suitably adapted to our setting. Firstly, note that

Tω =

⎛⎜⎝ φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
...

. . .
...

φ̂1(ω + λk) . . . φ̂k(ω + λk)

⎞⎟⎠ =

⎛⎜⎝ ea1 (ω + λ1) . . . eak
(ω + λ1)

...
. . .

...
ea1 (ω + λk) . . . eak

(ω + λk)

⎞⎟⎠

=

⎛⎜⎝ (a1, λ1) . . . (ak, λ1)
...

. . .
...

(a1, λk) . . . (ak, λk)

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎝

(a1, ω) 0 . . . 0 0
0 (a2, ω) . . . 0 0
...

...
. . .

...
...

0 0 . . . (ak−1, ω) 0
0 0 . . . 0 (ak, ω)

⎞⎟⎟⎟⎟⎟⎠
= Eω Uω. (5)

Since Uω is unitary, to prove the inequalities in (4) is equivalent to show that

A||x||2 ≤ ‖Eωx‖2 ≤ B||x||2, (6)

for every x ∈ Ck, and almost every ω ∈ D. By Lemma 4.6, applied to K1 = D and 
K2 = Ω, when ω runs over (a full measure subset of) the fundamental domain D, only a 
finite number of different matrices Eω appear in (5), say E1, . . . , EN . Thus, it is enough to 
prove that they are all invertible. Note that the determinants of the Eω are polynomials 
of the form

d(x1, . . . , xk) =
∑
π∈Sk

sgn(π)
k∏

j=1
(xπ(j), λj(ω)),

evaluated in (a1, . . . , ak) ∈ G × · · · ×G = Gk, where Sk denotes the permutation group 
on 1, . . . , k. Since Λ is countable, the set of trigonometric polynomials on Gk



E. Agora et al. / Advances in Mathematics 285 (2015) 454–477 469
Pk =

⎧⎨⎩p(x1, . . . , xk) =
∑
π∈Sk

sgn(π)
k∏

j=1
(xπ(j), λj) : for any (λ1, . . . , λk) ∈ Λk

⎫⎬⎭
is countable. This set contains the trigonometric polynomials d(x1, . . . , xk) associated to 
the determinants of the matrices Ej. Note that it also contains the polynomials associ-
ated to matrices E′

j coming from any other k-tiling set. Therefore, the universal k-tuple 
(a1, . . . , ak) that we are looking for, is any k-tuple such that

p(a1, . . . , ak) �= 0 ∀p ∈ Pk.

To prove that such a k-tuple exists, we will use a measure theoretical argument based 
on Lemma 4.5. Note that Gk is a compactly generated LCA group, and Λk is the dual 
lattice of the uniform lattice Hk in Gk. Hence, using Lemma 4.5 with Gk instead of G, 
we get that the union of the zero sets corresponding to these polynomials has zero Haar 
measure in Gk. Therefore, there exist a1, . . . , aN ∈ G so that (a1, . . . , aN ) does not belong 
to any of these zero sets. In particular, for these values of aj, the matrices E1, . . . , EN

are invertible. Then, by Theorem 2.9, the H-translations of the functions φ1, . . . , φk form 
a Riesz basis for PWΩ. This is equivalent to say that

{eaj−h χΩ : h ∈ H, j = 1, . . . , k},

is a Riesz basis on L2(Ω). The same holds for any other k-tiling set Ω′ by construction 
of Pk and the k-tuple (a1, . . . , ak). �
Proof of Theorem 4.4. Recall that for each ω ∈ D

JΩ(ω) =
{
{g(ω + λ)}λ∈Λ : g ∈ Cb(Ω)

}
.

The hypothesis implies that there exists E ⊂ D of measure zero such that, given w ∈
D \ E, the set of vectors

{{eaj
(ω + λ)χΩ(ω + λ)}λ∈Λ : j = 1, . . . , k} (7)

is a Riesz basis of JΩ(ω). In particular, dim JΩ(ω) = k for all ω ∈ D\E. By Corollary 2.8, 
if λ1, . . . , λm be the elements of Λ such that ω + λj ∈ Ω then

JΩ(ω) = span{δλj
: j = 1, . . . ,m},

where {δλ}λ∈Λ denotes the canonical basis of �2(Λ). This implies that

#{λ ∈ Λ : ω + λ ∈ Ω} = dim JΩ(ω),

and we already know that this dimension is equal to k for every ω ∈ D \ E. Thus, Ω is 
k-tiling with respect to the lattice Λ. �
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4.2. A counterexample for unbounded sets in R

The same scheme cannot be applied if Ω is not relatively compact, as the following 
example shows. This example also gives a negative answer to the open problem left by 
Kolountzakis in [12].

Example 4.7. Let G = R, and consider the following subset of R̂ � R:

Ω0 = [0, 1) ∪
∞⋃

n=2
[n− 2−(n−2), n− 2−(n−1)).

This is a 2-tiling set with respect to the lattice Z (see Fig. 1).

Fig. 1. The set Ω0.

However, if we consider the functions φ1 and φ2 defined through their Fourier trans-
form by

φ̂j(ω) = e2πiajω χΩ0 ,

for j = 1, 2, then integer translations of φ1 and φ2 are not a Riesz basis for PWΩ for any 
choice of a1, a2 ∈ R. In other words, (a1 + Z) ∪ (a2 + Z) is not a complete interpolation 
set for PWΩ for any pair a1, a2 ∈ R.

To show this, recall that in the proof of Theorem 4.1 we proved that the integer 
translations of φ1 and φ2 form a Riesz basis for PWΩ if and only if the matrices

Eω =
(
e2πia1λ1(ω) e2πia2λ1(ω)

e2πia1λ2(ω) e2πia2λ2(ω)

)
,

and their inverses are uniformly bounded for almost every ω in the fundamental domain, 
which we for simplicity choose to be the interval [0, 1). For this particular Ω0, λ1(ω) is 
always equal to zero, while λ2(ω) = n if ω ∈ [1 − 2−(n−1), 1 − 2−n), for n ∈ N. Therefore

Eω =
(

1 1
e2πia1λ2(ω) e2πia2λ2(ω)

)
,

which can be rewritten as

Eω =
(

1 0
0 e2πia1λ2(ω)

)(
1 1
1 e2πi(a2−a1)λ2(ω)

)
.

So, if a2−a1 ∈ Q, there exists a set of positive measure such that the matrices Tω are not 
invertible for ω in that set. On the other hand, if a2−a1 /∈ Q, as the set {e2πi(a2−a1)n}n∈N

is dense in T, the matrices E−1
ω are not uniformly bounded.
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Since the set Ω0 multi-tiles R with other lattices too, a natural question is whether or 
not we can obtain Riesz basis using these lattices. The answer is no, and the idea of the 
proof is essentially the same. For this reason, we only make some comments on the main 
differences, and we leave the details to the reader. First of all, recall that the (uniform) 
lattices of R have the form Λα = αZ, for some α ∈ R. It is not difficult to prove that 
Ω0 multi-tiles R only for lattices corresponding to α = k−1, for some k ∈ N. Moreover, 
with respect to the lattice Λk−1 , the set Ω0 is 2k-tiling. Furthermore, in the proof of 
Theorem 4.1 we showed that given a1, . . . , a2k ∈ R then we have: (a1+Z) ∪ . . .∪(a2k+Z)
is a complete interpolation set for PWΩ if and only if the matrices

Eω =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1 1

e2πia1λ1(ω) e2πia2λ1(ω) . . . e2πia2k−1λ1(ω) e2πia2kλ1(ω)
...

...
. . .

...
...

e2πia1λ2k−1(ω) e2πia2λ2k−1(ω) . . . e2πia2k−1λ2k−1(ω) e2πia2kλ2k−1(ω)

e2πia1λ2k(ω) e2πia2λ2k(ω) . . . e2πia2k−1λ2k(ω) e2πia2kλ2k(ω)

⎞⎟⎟⎟⎟⎟⎠
and their inverses are uniformly bounded for almost every ω ∈ [0, k−1). By construction 
of Ω0, for each m ∈ N we can find an interval I ⊆ [0, k−1) of positive measure such that 
for every ω ∈ I there exists j ∈ {1, . . . , 2k} so that λj(w) = m. On the other hand, as in 
the case studied before, either the orbit

{(e2πia1 m, e2πia2 m, . . . , e2πia2k−1 m, e2πia2k m)}m∈Z,

is periodic or there exist elements of the orbit as close as we want to the first row vector 
(1, . . . , 1). Therefore, the matrices E−1

ω cannot be uniformly bounded in a full measure 
subset of [0, 1).

5. Quasi-dyadic cubes

In the previous section we proved that there exist many Borel sets Ω in Ĝ such that 
L2(Ω) admits a Riesz basis of characters. However, in general, there are not enough sets 
of this kind so that they can be used to approximate an arbitrary compact set. Let us 
briefly explain the reason. In the classical case of Rd, the approximation is done by means 
of sets that are union of dyadic cubes. Note that the dyadic cubes of side length equal 
to 2−n are fundamental domains for the lattice 2−nZ. Hence, the dilation of the cubes 
is reflected in the refinement of the lattices. So, in order to get a good approximation 
in more general LCA groups, the idea is to look for a nested family of lattices whose 
corresponding fundamental domains become in some sense smaller and smaller. This is 
the main issue, because to get such a family in the group Ĝ � Rd × Zm × K may be 
difficult (or even impossible), because of the compact factor. The key to overcome this 
difficulty is given by the following classical result (see [8]).
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Lemma 5.1. Given a neighborhood U of e in Ĝ, there exists a compact subgroup K
included in U and such that Ĝ/K is elemental, that is

Ĝ/K � Rd × Zm × T� × F, (8)

where F is a finite group.

In Rd × Zm × T� × F , the above mentioned strategy to obtain dilations by means of 
refinements of lattices can be done without any problem. More precisely, we consider

Λn = Λn(d,m, �) = (2−nZ)d × Zm × Z�
2n × F ⊆ Ĝ/K,

Q(n)
0 = [−2−n−1, 2−n−1)d × {0} × [−2−n−1, 2−n−1)� × {e}. (9)

This leads to the following definition of quasi-dyadic cubes.

Definition 5.2. Let K be a compact subgroup of Ĝ such that Ĝ/K is elemental, and let 
π the canonical projection from Ĝ onto the quotient. Identifying the quotient Ĝ/K with 
the group Rd×Zm×T�×F , the family of quasi-dyadic cubes of generation n associated 
to K, denoted by D (n)

K , are defined by

Q
(n)
λ = π−1(Q(n)

λ )

where Q(n)
λ = λ + Q(n)

0 for λ ∈ Λn.

Note that in order to distinguish the cubes in the quotient from the cubes in Ĝ, for 
those in Ĝ/K we use calligraphic letters. Note also that the quasi-dyadic cubes Q(n)

λ are 

relatively compact. Indeed, if S(n)
λ is a relatively compact Borel section of Q(n)

λ in the 

group Ĝ, then Q(n)
λ = S

(n)
λ + K.

The main difference with the classical case, is that the quasi-dyadic cubes are para-
metrized not only by a (dyadic) lattice, but also by some compact subgroups. This family 
of quasi-dyadic cubes clearly satisfies many of the arithmetical and combinatorial proper-
ties of the classical dyadic cubes. However, for our purposes, the following approximation 
result is the most important.

Proposition 5.3. Let C be a compact set and V an open set such that C ⊂ V ⊂ Ĝ. 
There exists a compact subgroup K of Ĝ such that Ĝ/K is an elemental LCA group, and 
Q

(m)
λ1

, . . . , Q(m)
λk

∈ D
(m)
K for m ∈ N large enough such that

C ⊆
k⋃

j=1
Q

(m)
λj

= π−1

⎛⎝ k⋃
j=1

λj + Q(m)
0

⎞⎠ ⊆ V.
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Proof. Let U be a compact neighborhood of e in Ĝ such that C+U ⊆ V . Take a compact 
subgroup K contained in U which satisfies

Ĝ/K � Rd × Zm × T� × F,

for some integers d, m, � ≥ 0. Let π : Ĝ → Ĝ/K denote the canonical projection. By our 
assumptions on the open set U we have for n large enough that

C ⊆ C + Q
(2n)
0 ⊆ C + Q

(n)
0 ⊆ V.

On the other hand, by the compactness of C, there exist γ1, . . . , γj ∈ C such that

C ⊆
j⋃

i=1

(
γi + Q

(2n)
0
)
.

Consider the lattice Λ4n, and λi,1, . . . , λi,si ∈ Λ4n such that

π(γi + Q
(2n)
0 ) = π(γi) + Q(2n)

0 ⊆
si⋃

h=1

(
λi,h + Q(4n)

0
)
⊆ π(γi) + Q(n)

0 .

Let {λ1, . . . , λk} be an enumeration of the elements of Λ4n used to cover all the sets 
π(γi) + Q(2n)

0 . Then, the above inclusions imply that

C ⊆
j⋃

i=1

(
γi + Q

(2n)
0
)
⊆

k⋃
j=1

π−1(λj + Q(4n)
0
)
⊆

j⋃
i=1

(
γi + Q

(n)
0
)
⊂ V.

Thus, we can take m = 4n, and the proof is complete. �
Another good property of the quasi-dyadic cubes is the following.

Proposition 5.4. Let Ω be finite a union of quasi-dyadic cubes in D (n)
K . Then, the space 

L2(Ω) admits a Riesz basis of characters (restricted to Ω).

If π : Ĝ → Ĝ/K denotes the canonical projection, then the set π(Ω) multi-tiles the 
quotient space with the lattice Λn defined in (9). By Theorem 4.1, this implies the 
existence of a Riesz basis of characters in the space L2(π(Ω)). Now, we need a result 
that gives us a way to lift this basis. This is provided by the following result, which in 
particular concludes the proof of Proposition 5.4.

Theorem 5.5. Let K be a compact subgroup of an LCA group G such that K̂ is countable. 
Suppose that there exists a subset Q of G/K such that L2(Q) admits a Riesz basis of 
characters of G/K. If π : G → G/K denotes the canonical projection, and Q̃ = π−1(Q), 
then L2(Q̃) also admits a Riesz basis of characters.
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Proof. On the one hand, note that Ĝ/K � K⊥ ⊆ Ĝ, where K⊥ denotes the annihilator 
of K. So, the Riesz basis for L2(Q) can be identified with some elements {γn} in Ĝ. 
On the other hand, the elements K̂ form an orthonormal basis for L2(K) endowed 
with the normalized Haar measure mK . Moreover, since K̂ can be identified with the 
quotient group Ĝ/K⊥, the orthonormal basis for L2(K) can be identified with a system 
of representatives {κm} of Ĝ/K⊥.

Now, we will prove that {γn + κm} is a Riesz basis for L2(Q̃). First of all, we will 
prove that it is complete. Let F ∈ L2(Q̃) such that 〈F, γn + κm 〉 = 0 for every n and m. 
By the Weil’s formula, mG = mK × mG/K provided we renormalize conveniently the 
Haar measure on G/K. So, using this formula and the fact that (k, γn) = 1 for every 
k ∈ K we get for every m and every n

0 =
∫
Q̃

F (g)(g, γn + κm) dmG(g)

=
∫
Q

⎛⎝∫
K

F (g + k)(g + k, γn + κm) dmK(k)

⎞⎠ dmG/K(π(g))

=
∫
Q

⎛⎝∫
K

F (g + k)(g, κm) (k, κm) dmK(k)

⎞⎠ (π(g), γn) dmG/K(π(g)).

Fix m. Then, using that {γn} is a Riesz basis for L2(Q) we get that

(g, κm)
∫
K

F (g + k) (k, κm) dmK(k) = 0 mG/K-a.e.

So, since {κm} is a (countable) orthonormal basis of K, we get that

∫
K

|F (g + k)|2 dmK(k) =
∑
m

∣∣∣∣∣∣
∫
K

F (g + k) (k, κm) dmK(k)

∣∣∣∣∣∣
2

= 0 mG/K-a.e.

Hence, by the Weil’s formula we get:

‖F‖2
L2(Q̃) =

∫
Q

⎛⎝∫
K

|F (g + k)|2 dmK(k)

⎞⎠ dmG/K(π(g)) = 0.

Therefore {γn + κm} is complete.
Now, in order to prove that it is also a Riesz sequence, consider a sequence {cn,m}

with finitely many non-zero terms. Then
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∥∥∥∥∥∑
n,m

cn,m(γn + κm)

∥∥∥∥∥
2

L2(Q̃)

=
∫
Q̃

∣∣∣∣∣∑
n,m

cn,m(g, γn + κm)

∣∣∣∣∣
2

dmG(g)

=
∫
Q

∫
K

∣∣∣∣∣∑
n,m

cn,m(g + k, γn + κm)

∣∣∣∣∣
2

dmK(k) dmG/K(π(g)).

(10)

Since (k, γn) = 1 for every k ∈ K, the sum inside the integrals can be rewritten as

∑
n,m

cn,m (g + k, γn + κm) =
∑
m

(
(g, κm)

∑
n

cn,m (π(g), γn)
)

(k, κm).

Therefore, using that {km} is an orthonormal basis of L2(K) we get

∫
K

∣∣∣∣∣∑
n,m

cn,m (g + k, γn + κm)

∣∣∣∣∣
2

dmK(k) =
∑
m

∣∣∣∣∣∑
n

cn,m (π(g), γn)

∣∣∣∣∣
2

. (11)

So, substituting (11) in (10), we obtain,∥∥∥∥∥∑
n,m

cn,m (γn + κm)

∥∥∥∥∥
2

L2(Q̃)

=
∑
m

∫
Q

∣∣∣∣∣∑
n

cn,m (π(g), γn)

∣∣∣∣∣
2

dmG/K(π(g)).

Finally, since {γn} as a Riesz basis for L2(Q), there exist A, B > 0 such that

A
∑
m,n

|cn,m|2 ≤
∥∥∥∥∥∑
n,m

cn,m (γn + κm)

∥∥∥∥∥
2

L2(Q̃)

≤ B
∑
m,n

|cn,m|2,

and this concludes the proof. �
Remark 5.6. Statements analogous to Theorem 5.5 hold when we instead of Riesz bases 
consider orthogonal bases or frames of characters. A proof in the case of orthonormal 
basis is contained in the proof of Lemma 3 of [7]. �

6. Proof of the main result

Finally, using the techniques developed in the previous sections, we provide the proof 
of our main Theorem 3.5.

(i) Sampling case: Since the Haar measure is regular, there exists an open subset V of Ĝ
such that Ω ⊆ V and m ̂(V \Ω) ≤ ε. By Lemma 5.3, there exists a compact subgroup 
G
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K of Ĝ so that Ĝ/K is elemental, m ∈ N large enough, and Qλ1 , . . . , Qλk
∈ D

(m)
K

are such that

Ω ⊆
k⋃

j=1
Q

(m)
λj

⊆ V.

Let Ωε be the union of these k quasi-dyadic cubes. Then, by Proposition 5.4, the 
space L2(Ωε) admits a Riesz basis consisting of characters of Ĝ (restricted to Ωε). 
Let {ebn χΩε

} denote this basis, and let Jε = {bn} ⊆ G. Using Theorem 3.4 we 
get that D(Jε) = mĜ(Ωε) ≤ mĜ(Ω) + ε. Note that {ebn χΩ} is a frame for L2(Ω), 
because it is obtained by projecting a Riesz basis for the bigger space L2(Ωε). So, 
Jε is a sampling set for PWΩ.

(ii) Interpolation case: Since mG(∂Ω) = 0, we can work with the interior of Ω. For the 
sake of simplicity we will use the same letter for it. Let C be a compact subset of Ω
such that mĜ(Ω \C) ≤ ε. Again by Lemma 5.3, there exists a compact subgroup K

of Ĝ so that Ĝ/K is elemental, m ∈ N large enough, and Qλ1 , . . . , Qλk
∈ D

(m)
K are 

such that

C ⊆
k⋃

j=1
Q

(m)
λj

⊆ Ω.

As before, if Ωε is the union of the k quasi-dyadic cubes, then the space L2(Ωε)
admits a Riesz basis consisting characters of Ĝ (restricted to Ωε). In this case, 
the set Jε consisting of these characters, forms a Riesz sequence in L2(Ω). This is 
equivalent to say that, as points of G, they form an interpolation set for PWΩ. Since 
D(Jε) = mĜ(Ωε) ≥ mĜ(Ω) − ε, which concludes the proof. �
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