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a b s t r a c t

We present an integrated thermostatistical study of the Grüneisen parameter and its application to a
quasiharmonic solid. This analysis comprises two parts. The first part considers the connections between
different thermodynamic formulations of the Grüneisen parameter, including those arising from the
Mie-Grüneisen formula and related equations of state. We also establish the most general consequences
of the so-called Grüneisen's rule. In the second part, Grüneisen's rule is used to establish the thermo-
statistics of a solid that obeys the quasiharmonic approximation. Both cases are relevant to the
application of fundamental microscopic models of the heat capacity of solids.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Grüneisen parameter (γ) is a quantity with major theore-
tical and experimental importance in various fields, such as solid-
state physics, geophysics, physical chemistry of materials, and
high-pressure science. Thus, various formulations of γ have been
reported previously, which originate from diverse research fields.
Some of these formulations are macroscopic and they involve
thermodynamic quantities that need to be determined experi-
mentally, whereas other formulations employ properties that are
relevant to microscopic descriptions of behavior, particularly those
that consider the vibrational properties of solids.

In recent years, the definitions and properties of Grüneisen
parameters have been reviewed on several occasions and various
attempts have been made to establish the relations between the γ
parameters that originate various research fields [1–3]. However, a
survey of the most recent studies suggests that conceptual
difficulties and challenges persist [4,5]. The main questions are
related to the connections between the macroscopic definition of γ
and the γ parameters involved in a key group of equations of state
(EOS), beginning with the classical Mie-Grüneisen equation (MGE)
[3,5–8]. There is also a need to establish the exact relations
between the macroscopically defined γ parameters and the

microscopic description of the thermophysics of a solid provided
by the quasiharmonic approximation (QHA) [1,2,9].

Various results that are relevant to both challenges have been
considered in published reviews [1,2], but it is useful to develop a
deductive conceptual framework that formulates consistent rela-
tions between these questions. In principle, this framework should
start with the lowest possible number of definitions and proceed
to establish the formal connections between the relevant quan-
tities. In this manner, it should be possible to accurately distin-
guish definitions from necessary relations and both from the
specific formulas [10,11] used in various application fields, parti-
cularly those based on the QHA [1,2]. The aim of the present study
is to develop a conceptual framework that includes these char-
acteristics using an integrated thermostatistical analysis.

The remainder of this study is organized as follows. In Section 2,
a comparison of various macroscopic definitions is presented and
the question of their compatibility [3] is addressed. In addition, a
general expression of the MGE is presented, fromwhich the various
EOS found in previous studies may be deduced. In Section 3, the
consequences of the so-called Grüneisen's rule (γ ¼ γðVÞ) for the
thermodynamic behavior of a solid are explored. As a key applica-
tion, an expression is presented that connects the macroscopic γ
with the phenomenological description of a solid that obeys the
QHA. Section 4 considers the microscopic interpretation of γ in the
framework of the QHA. In particular, a thermostatistical treatment
of a quasiharmonic solid is performed for two relevant cases, i.e., a
solid with a single vibrational frequency and a solid with n
vibration modes. Section 5 provides a summary and some con-
cluding remarks.
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2. Thermodynamic Grüneisen parameter

2.1. Definition and basic thermodynamic relation

Previous studies describe several quantities related to the
Grüneisen parameter, which originate in various research fields.
This has motivated a long standing discussion about the compat-
ibility [3] among the various γ parameters used in chemical
physics [6], geophysics [7,12,13], crystallography, and high-
pressure physics [1,14].

As the basis of the present study, we adopt the definition of the
‘thermodynamic’ Grüneisen parameter γG traditionally [1,2],
which is written as:

γG ¼ V
∂P
∂E

� �
V
¼ αKTV

CV
; ð1Þ

where α is the isobaric thermal expansion coefficient and KT is
the isothermal bulk modulus. Using a Maxwell relation, Eq. (1)
may be given the following alternative form.

γG ¼ V
CV

∂S
∂V

� �
T

ð2Þ

2.2. Physical contributions to γG

The entropy of a solid may be expressed as the sum of the
vibrational (vib), electronic (el), magnetic (mag), and other possi-
ble (other) contributions [1,2].

S¼ SvibþSelþSmagþSother ð3Þ

The derivation with respect to the logarithm of the volume and the
application of Eq. (2) yields:

∂S
∂ ln V

� �
T
¼ ∂Svib

∂ ln V

� �
T
þ ∂Sel

∂ ln V

� �
T
þ ∂Smag

∂ ln V

� �
T
þ ∂Sother

∂ ln V

� �
T

ð4Þ

and

CVγG ¼ CV ;vibγG;vibþCV ;elγG;elþCV ;magγG;magþCV ;otherγG;other: ð5Þ

This result may be written in the following form.

γG ¼∑iCV ;iγG;i
∑jCV ;i

ð6Þ

In Eq. (6), CV ;i (with i¼ vib, el, mag, other) represents the
vibrational, electronic, magnetic, and other contributions to the
heat capacity, and γG;i represents the respective Grüneisen para-
meter. In general, these contributions depend on the volume and
temperature, as does γG. The particular case where γG is only a
function of volume is discussed in Section 4.

3. Connection with the Mie-Grüneisen equation of state

To complete the analysis of the thermodynamically defined γ,
we focus on the relation between γG and the parameter γMGE,
which is involved in the Mie-Grüneisen EOS. In the present
section, we perform a thermodynamic analysis of the various
contributions to the energy and the pressure of a solid.

3.1. “Thermal” and “cold” contributions to the E and F energy of a
solid

The total energy (E) of a solid can be expressed as the sum of
two terms. The first (the ‘cold’ contribution Ec) accounts for the
contributions to the energy at T¼0. The second (the ‘thermal’ Eth

contribution) accounts for the effects of temperature:

EðT ;VÞ ¼ Ecð0;VÞþEthðT ;VÞ ð7Þ

where Eth is given by

Eth ¼
Z T

0
CV dT : ð8Þ

In a similar manner, the Helmholtz energy (F) of a solid may be
written as

FðT ;VÞ ¼ Fcð0;VÞþFthðT ;VÞ ¼ Ecð0;VÞþFthðT ;VÞ ð9Þ

where Fth is given by

Fth ¼ �
Z T

0
S dT : ð10Þ

An expression that includes the ‘cold’ (PC) and ‘thermal’ (Pth)
contributions to the equilibrium pressure of a solid may be
obtained by combining Eqs. (9) and (10) with the identity

P ¼ �ð∂F=∂VÞT ; ð11Þ

i.e.,

P ¼ Pcð0;VÞþPthðT ;VÞ ð12Þ

where

Pc ¼ � ∂Ec
∂V

� �
T

ð13Þ

Pth ¼
Z T

0

∂S
∂V

� �
T
dT : ð14Þ

It should be emphasized that the current selection of contributions
to E (Eq. (7)), F (Eq. (9)), and P (Eq. (12)) is not the only possibility.
An alternative description is provided in Section 3.3.

3.2. Exact relation between γG and γMGE

Using the results presented in the previous subsection, it is
possible to express γG (Eq. (1)) in terms of “thermal” (th)
quantities, as follows.

γG ¼ V
∂Pth

∂Eth

� �
V

ð15Þ

Equation (15) is used in the following to establish a general relation
between the thermodynamic Grüneisen parameter and the para-
meter γMGE, which is involved in the Mie-Grüneisen EOS and is
usually written as [5,14,15]

P ¼ PcþγMGE

V
Eth; ð16Þ

i.e.,

γMGE ¼ V
Pth

Eth
: ð17Þ

By integrating Eq. (15) at constant volume, we obtain

Pth ¼
1
V

Z Eth

0
γG dEth; ð18Þ

which may be combined with Eq. (17) to obtain

γMGE ¼
R Eth
0 γG dEthR Eth
0 dEth

¼ 〈γG〉: ð19Þ

Equation (19) gives the general relation between γMGE and γG. In
general, it is evident that these quantities are not identical but they
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are not incompatible, as suggested previously [16]. The former
represents an energy weighted average of the latter over the
corresponding energy range.

3.3. Generalizations

By integrating Eq. (1) between two energy states E0 and E, we
obtain

PðE;V Þ ¼ PðE0;VÞþ
Z E

E0
γG dE ð20Þ

and when applied to the same energy states with Eq. (19), this
yields

PðE;V Þ ¼ PðE0;VÞþ 〈γG〉ðE�E0Þ: ð21Þ

Equation (21) with different energy-weighted averages of γG
reproduces various alternative formulas related to the Mie-
Grünesien EOS, which have been reported previously. In particular,
making E0 ¼ 0 and E¼ Eth, yields Eq. (16). Alternatively, by
identifying E0 with the potential energy of the static lattice and
E�E0 with the total vibrational energy Evib, we obtain

P ¼ P0þ
γvib
V

Evib: ð22Þ

Equation (22) was suggested previously in the fields of the physical
chemistry of solids (e.g., Fumi and Tosi [6]) and geophysics (e.g.,
Mulargia and Boschi [3,12]). Indeed, this equation corresponds to
the case where the only contribution to thermal energy (and to γ) is
vibrational, i.e., it neglects all other contributions to Eth and to γG
(Eq. (6)).

Finally, from Eq. (22), it is possible to derive an expression that
is used in the calculation of the room-temperature (R) P vs V
values from the so-called Hugoniot (H) data [8,15], which were
obtained in shockwave (SW) experiments, i.e.,

PR ¼ PHþ
γSW
V

ðER�EHÞ: ð23Þ

In summary, it may be stated that the parameters γMGE, γvib, and
γSW involved in various pressure-energy EOS are energy-weighted
averages of γG with different energy integration limits. Thus, these
parameters should generally be considered as different quantities.
This conclusion agrees with that of a previous study by one of the
current authors (AFG) [8].

4. Grüneisen's rule and the thermodynamics of solids

4.1. A general consequence

It follows from Eqs. (19) and (21), that if γG is only a function of
volume (and not of energy), the various γ parameters discussed in
the previous section are identical, i.e.,

γMGE ¼ γG ¼ γvib ¼ γSW: ð24Þ

The particular case where Eq. (24) holds is often referred to as
Grüneisen's rule. In the following, we study the thermodynamics
of a solid that satisfies Eq. (24) exactly. Therefore, we examine the
consequences of the following condition.

∂γG
∂Eth

� �
V
¼ 0 ð25Þ

The derivative in Eq. (25) may be expressed as

γG ¼ V
∂Pth

∂T

� �
V

∂T
∂Eth

� �
V
¼ V
CV

∂Pth

∂T

� �
V
; ð26Þ

which in combination with Eq. (25) yields

V
1

C2
V

∂2Pth

∂T2

� �
V
� 1

C3
V

∂CV

∂T

� �
V

∂Pth

∂T

� �
V

" #
¼ 0: ð27Þ

Finally, by introducing into Eq. (27), the identity

∂2Pth

∂T2

� �
V
¼ 1
T

∂CV

∂V

� �
T

ð28Þ

we obtain the relation

γG ¼
∂CV

∂ ln V

� �
T

∂CV
∂ ln T

� �
V

: ð29Þ

Equation (29) may be considered the most general consequence of
Grüneisen's rule. It is interesting to note that this relation was
previously employed by Ahlers as a definition of a new γ
parameter that need to be evaluated based on experimental data
[17]. Ahlers' parameter agrees with γG, where the latter is only a
function of volume.

4.2. γG for quasiharmonic lattice vibrations

As a key application of the general result given by Eq. (29), we
will evaluate the γG that corresponds to the case where there is
only a vibrational contribution to γ. In particular, we assume a
harmonic behavior, such as that represented by the Einstein or
Debye model of solids with a characteristic temperature θ, which
is only a function of volume. In this case, which we refer to as the
QHA [2], the temperature and volume dependency of the heat
capacity of a solid may be described in terms of a single
dimensionless variable

CV ;vib ¼Φ½z� ð30Þ
where z¼ T=θðVÞ. In this case, we obtain

∂CV

∂ ln V

� �
T
¼ � dΦ

d ln z
d ln θ
d ln V

ð31Þ

∂CV

∂ ln T

� �
V
¼ � dΦ

d ln z
: ð32Þ

By introducing Eqs. (31) and (32) into Eq. (29), we obtain an
expression that connects γG for a solid in the QHAwith the volume
dependency of the characteristic temperature, i.e.,

γG ¼ �d ln θ
d ln V

: ð33Þ

Equation (33) indicates that Grüneisen's rule holds exactly for a

quasiharmonic solid. Conversely, a quantity defined as �d ln θ
d ln V

[1]

agrees with γG only when the latter does not depend explicitly on
temperature.

4.3. γG for a linear electronic contribution

In general, the electronic contribution to the heat capacity of a
solid is described as a linear function of temperature, i.e.,

CV ;el ¼ βðVÞT ð34Þ
where the coefficient βðVÞ might be treated as dependent only on
volume. By applying Eq. (29), we obtain:

γG;el ¼
∂ ln β
∂ ln V

: ð35Þ

Equation (35) may also be obtained by applying the definition
(Eq. (2)) to the electronic contribution for the entropy involved in
Eq. (3), i.e., Sel ¼ βðVÞT . Thus, we conclude that Grüneisen's rule
holds exactly for a system where the only contribution to the heat
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capacity is given by Eq. (34). However, in the most general case of
a quasiharmonic solid (Eq. (30)) with an electronic contribution
(Eq. (34)), γG will depend on both V and T (Section 2.2), thus
Grüneisen's rule will not apply.

5. Microscopic interpretation of the Grüneisen parameters in
the QHA

5.1. Solids with a single vibration frequency

The thermal contributions to the Helmholtz and the total
energy of a harmonic solid with a single frequency ωðVÞ are given
by Eqs. (36) and (37), respectively [18,19].

Fth ¼ 3NkBT ln 1� exp �ℏωðVÞ
kBT

� �� �
ð36Þ

Eth ¼
3Nℏω

exp ℏωjðVÞ
kBT

� �
�1

ð37Þ

By combining Eqs. (36) and (37) with the identities
S¼ �ð∂Fth=∂TÞV and CV ¼ ð∂Eth=∂TÞV , and introducing the results
in Eq. (2), we obtain

γG ¼ �d ln ωðVÞ
d ln V

: ð38Þ

Equation (38), which is sometimes treated as a microscopic
definition of γG [4,9,14], may be obtained directly from Eq. (33)
by making θ¼ ℏωðVÞ=kB, which is the standard definition of θfor a
solid with a single vibration frequency [9,18,19].

The γMGE parameter of this solid may then be calculated by
combining the definition (Eq. (17)) with Eq. (11), i.e., from the
relation

γMGE ¼ � ∂Fth
∂V

� �
T

V
Eth

: ð39Þ

By introducing into Eq. (39), the expressions for Fth (Eq. (36)) and
Eth (Eq. (37)), we obtain

γMGE ¼ �d ln ωðVÞ
d ln V

: ð40Þ

Equations (38) and (40) indicate that for a quasiharmonic solid
with a single vibration ω, the γG and γMGE parameters are
identical, as expected from Eq. (19) because γG (Eq. (38)) and
γMGE (Eq. (40)) are only functions of volume.

5.2. Solids with “n” vibration modes

Fth and Eth, respectively, for a solid with n modes of vibration
are given by the relations [18,19]

Fth ¼ kBT∑
n

j
ln 1� exp �ℏωjðVÞ

kBT

� �� �
ð41Þ

Eth ¼∑
j

ℏωjðVÞ
exp ℏωjðVÞ

kBT

� �
�1

: ð42Þ

In a similar manner to the previous subsection, for γG, we obtain:

γG ¼
∑jCV ;j � ∂ ln ωjðVÞ

∂ ln V

� �
∑jCV ;j

¼∑jCV ;jγG;j
∑jCV ;j

: ð43Þ

In Eq. (43), which extends Eq. (38) to the case of n modes of
vibration, CV ;j is the contribution of the mode j to the CV of a solid.
Previously, Eq. (43) was obtained by Barron [1] from vibrational
entropy considerations.

Analogously, the γMGE may be obtained by combining Eq. (39)
with Eqs. (41) and (42), thus we obtain

γMGE ¼
∑jEth;j � ∂ ln ωjðVÞ

∂ ln V

� �
∑jEth;j

¼∑jEth;jγG;j
∑jEth;j

; ð44Þ

where Eth;j is the contribution of the mode j to Eth of a solid.
In the QHA, the γG and γMGE parameters of a solid with nmodes

of vibration may be interpreted as weighted averages of the γG;j for
a single vibration mode (Eq. (38)). However, for γG, the individual
γG;j parameters are weighted using the respective contribution CV ;j

to the specific heat, whereas γMGE is an energy average of the γG;j
using weighting factors as the contributions Eth;j to the thermal
energy of a solid.

It should be emphasized that in a solid with n vibration modes,
both γG (Eq. (43)) and γMGE (Eq. (44)) are functions of V and T. As a
consequence, Grüneisen's rule does not hold so these two γ
parameters are not identical. To the best of our knowledge,
Eq. (44) and its consequences for the relation between γG and
γMGE have not been presented previously.

6. Conclusions

The Grüneisen parameter has been the subject of numerous
studies. However, previous studies suggest two theoretical chal-
lenges to the understanding and appropriate application of this
key thermophysical parameter. First, there are long-standing
claims of an inconsistency among the definitions of γG and γMGE.
Second, there is a need for a formulation of the exact connections
at the microscopic level between both parameters in the frame-
work of the QHA.

With respect to the first problem, we showed that the defini-
tions of γG and γMGE are not inconsistent. Indeed, γG is the
energetic average of γMGE. We also showed that the definitions
are identical when γG is only a function of the volume, i.e., when
the so-called Grüneisen's rule holds.

With respect to the second problem, we showed that in
the QHA, Grüneisen's rule leads to an expression for γG and the
volume dependency of the characteristic temperature θ. This
result was interpreted microscopically in detail for two funda-
mental cases: the case with a single oscillation frequency and that
with n oscillation modes. In both cases, we evaluated the relevant
thermodynamic quantities γG and γMGE. We found that for a solid
with n oscillation modes, the QHA leads to a γG, which is the
average of each mode's contribution to the specific heat at
constant volume, and to a γMGE, which is the average of each
mode's contribution to the energy. We also showed that γG and
γMGE are not identical in this case.

As a final remark, we suggest that this systematization of the
thermodynamic relations and the microscopic interpretations that
we present should be of importance for the formulation of the
energetic equation of state and its application to the treatment of
shockwave data, as well as its applications to geophysics and high-
pressure physics, and to the systematization, critical analysis, and
prediction of the thermodynamic properties of solids.

In future research, we will focus on the use of γG in the
formulation of the EOS for nanosystems.
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