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Recent progress in entertainment and gaming systems has brought more natural and intuitive human–
computer interfaces to our lives. Innovative technologies, such as Xbox Kinect, enable the recognition
of body gestures, which are a direct and expressive way of human communication. Although current
development toolkits provide support to identify the position of several joints of the human body and
to process the movements of the body parts, they actually lack a flexible and robust mechanism to per-
form high-level gesture recognition. In consequence, developers are still left with the time-consuming
and tedious task of recognizing gestures by explicitly defining a set of conditions on the joint positions
and movements of the body parts. This paper presents EasyGR (Easy Gesture Recognition), a tool based
on machine learning algorithms that help to reduce the effort involved in gesture recognition. We eval-
uated EasyGR in the development of 7 gestures, involving 10 developers. We compared time consumed,
code size, and the achieved quality of the developed gesture recognizers, with and without the support of
EasyGR. The results have shown that our approach is practical and reduces the effort involved in imple-
menting gesture recognizers with Kinect.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last years, controlling systems by gestures through
Natural User Interfaces (NUI) has become a common practice in
our daily lives [1,2]. In 2006, WiiMote changed the concept of
remote control by allowing players to control games through hand
movements in the 3D space [3]. Then in 2010, Microsoft Kinect for
Xbox became the most popular device not only for its low cost but
also for its simplicity. Kinect allows players to control games
through full-body movement without using a remote control [4].
Indeed, it has promoted the development of new natural interac-
tion applications.

Although Kinect is able to recognize the position of users’ joints,
developers are still left with the time-consuming and tedious task
of recognizing gestures. More precisely, early Software Develop-
ment Kits (SDKs) only provided interfaces and code samples that
enabled developers to access sensor data in real time, such as
RGB-D camera, microphones, and the 3D position of 20 body joints.
Later, some tools proposed to augment the interfaces with a rule-
based approach that relied on a set of parameters and thresholds
on joint location to track movements [5,6]. This approach supports
the creation of gestures by allowing developers to adjust gesture
sensibility by means of threshold values, and then to link these
gestures to specific actions. However, this has become an error-
prone process that requires domain knowledge, experience, and
effort to ad hoc define a set of rules or heuristics so as to recognize
human body gestures, in particular when defining complex ges-
tures. Therefore, techniques that easily adapt to these complex
needs would be necessary.

In order to provide a more flexible and robust approach, we can
see gesture recognition as a classification problem [7]. In this con-
text, a classification problem consists in assigning one label or class
to a gesture in such a way that it is consistent with the available
data about the problem. For dealing with a classification problem,
machine learning techniques can be applied. These techniques use
a gesture training set, in which each gesture is labeled to generate
a classifier. In turn, this classifier evaluates the similarity between
a new gesture and each of the trained gestures, resulting in the
label of the most similar gesture. Although these methods offer
high correct-classification rates [8–10], developers still have to
implement complex algorithms for including gesture recognition
in their own applications.

In this context, we propose EasyGR (Easy Gesture Recognition),1

a gesture-recognition tool that allows developers to define and rec-
ognize gestures without demanding from them specific knowledge
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of machine learning algorithms. The user interface of EasyGR allows
non-specialist users to record, edit, and store gestures, enabling
them to easily create a new training set. Then, by using this training
set, these users may train different machine learning techniques for
gesture recognition. Particularly, EasyGR supports two techniques:
Dynamic Time Warping (DTW) [11] and Hidden Markov Models
(HMM) [12]. Therefore, the approach was validated by analyzing
two factors: the techniques’ accuracy and the efforts required to
develop gesture-controlled applications using and not using EasyGR.
We tested the techniques’ accuracy, by using 7 different gestures
with 80 samples for each gesture. The results showed correct-recog-
nition rates of over 99%. Concerning the amount of effort involved,
we asked 10 developers to implement a gesture controlled applica-
tion using a rule-based approach, and then to re-implement the
application using EasyGR. The comparison between the solutions
of each approach showed that EasyGR can certainly reduce the
efforts to develop gesture recognizers.

The remainder of this article is organized into four sections.
Section 2 covers related works. Section 3 describes the kind of
assistance provided by EasyGR through a motivating example.
Section 4 discusses the experiments and results, along with the
benefits of using EasyGR. Finally, Section 5 presents the conclu-
sions of this work.
2. Related work

There is a vast amount of literature on gesture recognition from
human body movements captured by video cameras. For a review
of the state of the art in human movement recognition in general,
see [13–15,7,16]; for hand gestures see [17,2]; for facial expres-
sions see [1]; for a review of recent Kinect-based computer-vision
algorithms and applications see [18].

However, the development of natural interaction interfaces
based on video cameras was found to be significantly difficult
and therefore used mainly in certain specialized applications [4].
Recently, this situation has changed as a result of the broad avail-
ability of new 3D depth cameras, such as Microsoft Kinect, which
promote the development of natural interaction applications in
many domains among much larger audiences [18]. This device,
composed of a Red–Green–Blue camera coupled with a Depth Sen-
sor and a processing module, is able to estimate the movements of
various body parts. Several SDKs, such as Microsoft Kinect SDK,2

OpenNI3 and OpenKinect,4 provide Application Programming Inter-
faces (APIs) to enable developers to access sensor data in real time,
such as RGB-D camera, microphones, and the 3D position of body
joints. In spite of these APIs completeness, they still demand from
developers remarkable efforts to recognize gestures.

Some works have proposed a rule-based approach that relies on
a set of parameters and thresholds on joint location to track move-
ments [5,6]. For example, FAAST [5] supported the creation of ges-
tures by allowing developers to adjust gesture sensibility by means
of threshold values (e.g., ‘‘RightHand.y > Head.y + 0.5’’) and then to
map these gestures to key and mouse events to control arbitrary
applications via full body natural interaction. Similarly, the FUBI
framework [6] is able to describe a richer set of gestures by giving
more complex configuration options in an XML-based definition
language. Conversely, this kind of approach demands developers
noticeable effort to ad hoc define and test a set of rules or heuris-
tics in order to recognize human body gestures. Additionally, mak-
ing rules to recognize complex gestures like a Smash in a tennis
game becomes impractical.
2 http://www.microsoft.com/en-us/kinectforwindows/.
3 http://www.openni.org/.
4 http://openkinect.org/.
Other attempts successfully adapted machine learning tech-
niques -previously applied and extensively studied in the com-
puter vision community- to gesture recognition using Kinect’s
skeletal data [8–10]. For example, Bhattacharya et al. applied Sup-
port Vector Machines (SVM) and Decision Trees (DT) to recognize
aircraft gestures used in the military Air Force [8]. Another
approach successfully applied an algorithm based on Dynamic
Time Warping (DTW) [9]. Although these methods were success-
fully instantiated for certain applications with high correct-classi-
fication rates, developers had to implement complex algorithms
and also perform the training process in an ad hoc way. In partic-
ular, Fothergill et al. addressed the problem of collecting gesture
datasets to improve the accuracy and performance of the ges-
ture-recognition system based on machine learning algorithms
[10].

Wölfel [19] developed Kinectic Space, a tool similar to EasyGR,
which makes it possible to record and automatically recognize cus-
tomized gestures using DTW. However, some substantial differ-
ences exist between Kinetic Space and EasyGR. First, EasyGR
provides not only the recording and recognition of complex ges-
tures but also an object-oriented framework that helps developers
to increase the quality and productivity of implementing gesture-
controlled applications. In particular, our framework provides a
better solution in terms of flexibility and adaptability. For example,
new recognition algorithms can be easily added and different tool-
kits can be supported. Unlike Kinectic Space, which uses one sam-
ple of the gesture as a training set, our training process is based on
n-samples that enable EasyGR to recognize variants of the
gestures.

In this context, our goal is to allow developers to define and rec-
ognize gestures without demanding from them specific knowledge
of machine learning algorithms and to reduce development efforts.
In short, the main difference between the studies described above
and our approach lies in that we addressed the experimental eval-
uation of the approach not only in terms of the accuracy of the rec-
ognition techniques, but also in terms of the development effort in
practice.
3. Easy gesture recognition

When a person faces Kinect, it detects his/her body contour and
identifies the position of 20 body joints in a 3D space ðx; y; zÞ. As the
person moves in front of Kinect, it keeps track of the positions of
each joint. These positions are calculated 30 times per second
and packaged in a skeleton model called ‘stick model’. Each stick
model represents the positions of the 20 joints at a given time,
and subsequent stick models, which contain the movements of
the joints during a period of time, represent a gesture. Therefore,
by using a collection of stick models, third-party applications can
process the human body movements and provide natural
interaction.

However, while Kinect works well for simple human gestures,
such as a hand swipe motion, it fails to recognize complex gestures,
such as a Smash in a tennis game, from a collection of stick models.
To augment Kinect’s gesture-recognition capabilities, developers
can follow one of two more complex and robust approaches. The
first approach consists in creating rules that specify a set of condi-
tions on the positions of some body joints that indicate an intended
gesture. This rule-based solution is good at recognizing simple ges-
tures, but more complex gestures require the specification of sev-
eral rules for identifying each change in the position of the joints.
The second approach is a more flexible alternative and consists
in applying machine learning techniques to the collection of
stick models so as to learn and consequently identify a gesture.

http://www.microsoft.com/en-us/kinectforwindows/
http://www.openni.org/
http://openkinect.org/
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However, developers must learn how to implement and adapt
these techniques for gesture recognition.

In this context, we present EasyGR, a tool which assists the
developer in recognizing gestures to further facilitate the task of
implementing NUI applications. The aim of EasyGR is to retrieve
the skeleton joints from Kinect and infer meaning from the skele-
ton movements in order to identify a gesture. Fig. 1 shows a sche-
matic view of the proposed tool.

To recognize gestures from the skeleton movements, EasyGR
works in two application modes: the training mode and the recog-
nition mode. The former consists in exercising the gesture-recogni-
tion techniques with a set of potential gestures of the same
movement so that it can be recognized. The training workflow
starts when the trainer stands in front of Kinect and performs a
sample of the gesture. When he/she does so, EasyGR stores the
movements in a buffer as a collection of stick models, which repre-
sents an example of a gesture to be recognized. Next, EasyGR
moves each stick model in the collection to the center of the Kinect
detection field and then normalizes all the body joints in the stick
model by using the distance between the neck and the spine. Thus,
EasyGR is able to manage gestures performed in different places
inside the field and to reduce the impact that different body builds
of users have on the recognition of gestures. Having centered and
normalized all the stick models, EasyGR exercises one of the sup-
ported recognition techniques, thus generating a reference value
that modifies the acceptance threshold for the gesture. This thresh-
old is determined by considering the two training samples of the
same gesture that differ the most, and it is calculated in two differ-
ent ways depending on the technique used (DTW or HMM). This is
explained in detail in Subsection 3.3 below. It is worth mentioning
that all the gestures used for training have to be manually seg-
mented and checked for correctness by using the edition capabili-
ties of EasyGR (More details can be found in Subsection 3.2).

Once the recognition techniques have been trained, EasyGR is
ready to work in recognition mode. This working mode involves
recognizing the gestures performed by the user as one of the
trained gestures. As in the training mode, when the user moves
Fig. 1. Overview of E
in front of Kinect, EasyGR temporarily stores the movements in
the buffer. Here, the recognition mode differs from the training
mode in that, rather than using a manually segmented gesture,
EasyGR segments the buffer at runtime using as segmentation size
the average duration of the gestures registered in the training sam-
ples. When a new stick model is added to the segmented buffer, as
in training mode, EasyGR moves and normalizes the collection of
stick models in the segment and executes the gesture-recognition
technique to generate the corresponding reference value.

Here, instead of storing the reference value as a new example of
a gesture, EasyGR compares the value with the stored acceptance
threshold of each gesture. If the reference value falls inside the
acceptance threshold, it is considered a match – i.e., the input ges-
ture is recognized – and EasyGR notifies the application so that it
can perform the corresponding action. This action was previously
specified by the developer after training each gesture, i.e., the
developer linked gestures with actions in the application to be exe-
cuted upon the recognition of a gesture.

This way the developer does not need to know the details
behind the techniques and can modify the gesture recognition by
training EasyGR again for the new collection of joint movements.
Therefore, the development time and complexity for this kind of
application should be reduced.

3.1. Motivating example

In order to clarify how EasyGR works in practice, we now pres-
ent the following example. It consists in developing a tennis game
where the main goal is to recognize the Smash gesture performed
with the right hand. A Smash is a powerful downward hit that
sends the ball forcefully over the net. Fig. 2 shows six frames of a
person performing the Smash gesture in front of Kinect. Each frame
contains the stick model of the person which is represented by the
3D position ðx; y; zÞ of the 20 body joints. The white joint indicates
the position of the right hand ðxrhand; yrhand; zrhandÞ in each frame, and
the red line indicates the progression of this position in the perfor-
mance of the Smash. In the last frame, we can observe the whole
asyGR context.



Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

Fig. 2. Sequence of six stick models performing the Smash gesture.
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progression of the right hand position called trajectory. We denote
the trajectory of the right hand as Trhand ¼ ðx1; y1; z1Þ . . . ðx6; y6; z6Þ.
The trajectories of the body joints allow EasyGR to identify
gestures.

For simplicity, let us assume that the trajectory corresponding
to right hand is sufficient for EasyGR to identify the Smash gesture.
To make gesture recognition possible, the trainer has to feed Easy-
GR with a set of samples of the Smash gesture. These samples
should involve trajectories representing not only different ways
of performing the same gesture but also different trainers with dif-
ferent body builds since the diversity of samples can improve the
accuracy of the recognition techniques.

3.2. Moving and normalizing the stick models

Once diverse trajectories of the Smash have been performed,
the next step consists in making the trajectories invariant to the
trainer’s position. As the trainer can be in different locations within
the Kinect detection field, the 3D position of the Smash trajectories
can drastically vary, making them unsuitable for comparison. To
make the trajectories comparable, EasyGR translates the collec-
tions of stick models to the coordinates origin (0, 0, 0) as shown
in Fig. 1.

This translation process involves the following steps. First, we
calculate the Centroid of the spine trajectory using Eq. (1). The
Centroid is a 3D point that represents the geometric center of
the trajectory, and it is calculated by adding all the points of the
trajectory and dividing the result by the number of points n. In
this way, we obtain the distance and direction for translating the
movement.

Centroid ¼ ð�x; �y;�zÞ ¼
Pn

i¼1ðxi; yi; ziÞ
n

ð1Þ

Next, we translate the collection of stick models so that the Cen-
troid of the spine trajectory moves to the coordinates origin. We do
this by subtracting the Centroid from each point of the collection of
stick models (Eq. (2)). Thus, we obtain centered movements,
which allow trajectories corresponding to the same gestures to
be visually overlapped, i.e., the points of the trajectories are
proximal.

ðxi; yi; ziÞ0 ¼ ðxi � �x; yi � �y; zi � �zÞ ð2Þ

The next step is to normalize the collection of stick models in
order to reduce the impact of the different body builds on
recognizing gestures. Thus, we normalize all the body joints in
the stick model by using the distance between the neck and
the spine as presented in [20]. Once we have centered and
normalized all the collections of stick models, EasyGR is ready to
be trained.
3.3. Exercising the gesture-recognition techniques

The next step in the training process is to exercise the recogni-
tion techniques with the centered and normalized trajectory set of
the right hand representing the Smash gesture. For each trajectory,
EasyGR generates a reference value which is used to calculate the
acceptance threshold for the Smash. The threshold is determined
by the two reference values that differ the most, i.e., the two trajec-
tories that differ the most. When a new gesture is performed, Easy-
GR generates a new reference value for this gesture. If this value
falls inside the acceptance threshold, then the gesture is recog-
nized. To generate the acceptance threshold, EasyGR supports
two techniques: Dynamic Time Warping (DTW) and Hidden Mar-
kov Models (HMM), each of which works differently.

3.3.1. Dynamic Time Warping
This algorithm finds the similarity between two time series by

aligning them optimally. A time series is an ordered sequence of
values measured at equally spaced time intervals. This sequence
of values represents the trajectories of the right hand in our exam-
ple. To align two trajectories, DTW iteratively stretches and shrinks
the time axis so as to find the minimum distance between each
pair of points in the trajectories. Applying DTW results in a dis-
tance value that measures the similarity between the trajectories.

After applying the algorithm between each pair of trajectories
in the set, we obtain a model trajectory that represents the set
and the acceptance threshold for the Smash. The model trajectory
is the one that resembles the rest of the trajectories the most. We
select it by adding all the distances from each trajectory to the rest
and selecting the trajectory that gets the lowest distance. The
upper limit of the acceptance threshold is given by the longest dis-
tance between the trajectories that differ the most. Therefore, we
set the acceptance threshold between 0 and this value.

3.3.2. Hidden Markov Models
HMM is a way to represent stochastic processes, i.e., processes

that model the aleatory behavior of one or more variables over
time. In our example, the trajectories are modeled as a finite-state
machine, where each state is the position of the right hand during
the performance of the Smash. When a user performs a gesture, the
main goal of HMM is to discover if the corresponding sequence of
states is a possible state transition, i.e., is accepted by the model. As
the right hand positions are continuous values, and therefore inap-
propriate for a finite-state representation, we need to apply a pre-
vious step that transforms all the points of the trajectories into a
finite number of states.

This step consists in applying the k-means [21] algorithm to the
training set of the Smash trajectories. The k-means algorithm
groups the trajectory points in k numbered clusters, thus mapping
each point with the number of the cluster and turning each



Listing 1. Recognizing the Smash by using EasyGR.
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trajectory into a numeric sequence. To achieve this, first the
algorithm randomly assigns all the points of the trajectories to
one of the k clusters. Then, for each cluster, k-means calculates
the centroid of all the points in the cluster by using Eq. (1).Then,
k-means evaluates all the points and reassigns each point to the
cluster whose centroid is nearest it, according to the proximity
criteria (Eq. (3)). This criteria is the Euclidean distance between
the point (Pi in the equation) and the cluster centroid (Cj in the
equation). Having moved all the points to the corresponding clus-
ter, the algorithm recalculates the centroid of each cluster. This
process is repeated until no point movement is required, i.e., all
the points are in the correct group.

DðPi;CjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ

2 þ ðzj � ziÞ2
q

ð3Þ

Eq. (3) calculates the Euclidean distance between the point Pi

and the Centroid Cj.
Once we have applied k-means, we obtain a set of numbered

clusters that represents the HMM states and all the trajectories
in the training set represented as sequences of clusters. Now, we
use all these sequences to train the HMM by applying the Baum–
Welch algorithm [22]. This algorithm finds the most likely transi-
tion probabilities between states that best adapt the model to
the training sequences.

Finally, we evaluate all the Smash sequences in the trained
model to generate the acceptance threshold for the gesture. Evalu-
ating a sequence means calculating the probability of this sequence
belonging to the model. This is done by computing all the different
paths of the model that can generate the sequence. After evaluat-
ing all the sequences, we select the minimum probability as the
lower limit of the acceptance threshold. Therefore, we set the
acceptance threshold between this value and 1.

3.4. EasyGR in action

To help trainers build the training set of the Smash and then
train the techniques described above, we equipped EasyGR with
a graphical interface as shown in Fig. 3. The interface allows train-
ers to define a gesture (1) and record a set of sample movements of
References:

1- List of different gestures 5- Start training

2- List of samples of the gesture 6- Gesture playback management

3- List of body joints 7- Execute k-means with # clusters

4- Available recognition techniques 8- Import and export the trained technique

Fig. 3. Graphic interface of EasyGR for training gesture-recognition techniques.
this gesture (2). To train the techniques, the trainers can select the
body joints (3) considered relevant in the recognition of the ges-
ture (e.g., the right hand for recognition of the Smash). At this
point, the trainer should analyze all the trained gestures that can
be concurrently recognized and select the minimum number of
joints to recognize the intended gesture. Having more than one
joint to watch, EasyGR will be able to distinguish between two ges-
tures that are too similar. Once the trainer has identified the
required joints, she/he selects the recognition technique to be
applied (4) and finally start the training by pressing the ’add train-
ing’ button (5). In addition, the graphic interface allows trainers to
visualize the stored gestures through the avatar in the central
panel, control the playback (6), and apply k-means to the selected
training set (7).

Once the selected technique has been trained, the last step con-
sists in storing the result of the training to be used in the end-user
application. To achieve this, the trainers press the export XML but-
ton (8) for EasyGR to create a configuration file that contains infor-
mation such as the selected technique, the body joints used to
determine the gesture, and the acceptance threshold values,
among other data. It should be noted that developers do not have
to train the techniques multiple times, i.e., every time they want a
gesture to be recognized. EasyGR reads the values in the stored
XML and uses them to determine if a new gesture is recognized.

In order to use the trained gesture in an end-user application,
the developer needs to link the gesture recognition with an action
inside the application. Let us assume the application that simulates
the tennis game is being developed in C#, using Unity3D5 as graph-
ics engine. Listing 1 shows the code that a developer must include.
This algorithm has the default C# script structure of Unity3D, which
defines two states in the execution of the application: Start and
Update methods. The Start method (line 5) is executed once and
aims to define the variables that will be used over the execution of
the application. This method involves three steps. The first step is
to define the user that EasyGR will observe in order to recognize
his/her gestures (line 7). With this instruction, the developer obtains
5 http://unity3d.com/.

http://unity3d.com/
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the reference to the user skeleton number 1. This skeleton contains
the 3D positions of the body joints which are updated all the time by
the Kinect SDK.

The second step involves loading the Smash gesture from the
XML stored in the training phase (line 9). After that, the developer
links the gesture recognition with an action, i.e., with the methods
that EasyGR will execute when the Smash is recognized (line 10).
Here, the link is made by means of the name of the method to be
executed (SmashRecognized), which is defined by the developer.
Note that EasyGR works asynchronously in relation to the applica-
tion. When a gesture is recognized, EasyGR executes the linked
method for the application to take over.

The third step of the Start method is to begin recognizing the
gesture (line 11). From now on, as the player moves in front of
Kinect, EasyGR adds each new stick model representing the player
movement to a buffer. The buffer is a collection of stick models that
implement a queue, in which the addition of a new stick model
causes the removal of the old one from the buffer. We set the size
of the buffer as the longest gesture used in the training step. There-
fore, as the buffer is updated, EasyGR takes the stick models
between 0 and the buffer size from the buffer and evaluates the
recognition techniques with the models as input. If the value gen-
erate by the technique falls inside the acceptance threshold for the
Smash gesture, EasyGR executes the linked method (line 19), and
pauses the recognition process until all stick models that corre-
spond to the recognized gesture are replaced in the buffer. The
linked method should contain the actions that will be executed
when the gesture is recognized, such as the avatar simulating the
Smash and hitting the ball (line 21). Note that when EasyGR exe-
cutes the linked method, it sends two parameters: Feedback and
Animation. Feedback is an object that has information about the
recognition and depends on the selected technique. If the tech-
nique is HMM, Feedback contains the probability of the recogni-
tion; if the technique is DTW, Feedback contains the distance
applied to the trajectory to center it. On the other hand, Animation
Fig. 4. Trajectory of the gesture
is the list of frames of the buffer used to evaluate the gesture-rec-
ognition technique.

Concurrently with the recognition of the Smash, the application
displays its graphic environment. For this purpose, the developer
writes the behavior of the displayed elements in the Update
method (line 14). This method is executed periodically over the
entire execution of the application. In our example, the developer
wrote the visualization of the avatar movements by using the 3D
positions of the body joints, which are updated by EasyGR.

When the application is running, the player moves in front of
Kinect, thus updating the body joints and moving the avatar (line
16). Concurrently, EasyGR uses the body joints to evaluate the
trained technique, trying to recognize the Smash. When this hap-
pens, EasyGR executes the linked method SmashRecognized, and
the application executes the expected movements for the Smash.

Note that we created the example by using Unity3D engine;
however, EasyGR can be used in any graphic engine that supports
C# language.

4. Experimental results

This section describes the experiments to assess whether Easy-
GR helps developers to implement gesture-controlled applications.
The objective of the first experiment was to assess the accuracy of
the gesture-recognition techniques supported by EasyGR (Subsec-
tion 4.1). Therefore, we created a gesture training-set with seven
gestures: Circle, Elongation, Swim, Smash, Punch, Swipe Right,
and Swipe Left (Fig. 4). These gestures were selected because they
involve movements of upper and lower body joints. Each gesture
was performed 20 times by four people with different body builds
and in different positions inside the Kinect detection field (a total
of 560 samples). In addition, all samples were carefully checked
for correctness. Thus, in order to estimate the accuracy of the dif-
ferent techniques, we applied the 10-fold cross-validation strategy
[23]. The sample was randomly partitioned into 10 equal and
s used in the experiments.



Table 1
Confusion matrix of DTW and HMM-3 with 80 samples.
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balanced subsamples, nine of which were used for training and one
for testing the model. This process was repeated 10 times with
each of the 10 subsamples used exactly once as the validation data
for testing. For each iteration, we not only counted the number of
correctly classified gestures, but also built a confusion matrix that
helped us to detect possible mislabeling classification of gestures
and perform a more detailed analysis than mere proportion of cor-
rect guesses. Finally, all results from the folds were averaged to
produce a single estimation.

The second experiment involved 10 developers, who were given
a two-phase assignment (Subsection 4.2). In the first phase, the
developers designed an application controlled by the seven ges-
tures described above by using the rule-based approach. In the sec-
ond phase, they developed the same application by using EasyGR.
To obtain an indicator of human effort, we computed and analyzed
two metrics: non-blank, non-commented lines of code (NLoC) of
methods implemented by a developer, and the time taken by a
developer to implement a given gesture. We took these metrics
on the resulting source codes in an attempt to assess the advanta-
ges of EasyGR over the rule-based approach in software
maintenance.

Finally, we evaluated the quality of the resulting source-code
when employing either the rule-based approach or EasyGR for rec-
ognizing gestures (Subsection 4.3). To compute the quality of each
solution, we tested both solutions with a total of 210 gesture sam-
ples and compared their recognition rates.
4.1. Accuracy of the recognition techniques

To determine to what extent the number of samples used for
training influenced the techniques’ accuracy, we varied the num-
ber of samples among 20, 40, 60, and 80 samples for each gesture.
Unlike DTW, HMM requires pre-defining the number of clusters to
be used; therefore, to determine the influence of the number of
clusters on the accuracy, we used 3 and 5 clusters. Fig. 5 illustrates
the experimental results for DTW, HMM-3, and HMM-5. The num-
ber of samples is listed along the horizontal axis, while the tech-
nique’s accuracy is listed along the vertical axis. From the bar
chart, we can see that increasing the number of samples improves
DTW’s accuracy. For example, DTW’s accuracy started at 0.95 when
20 samples were used and reached 0.991 when 80 samples were
used. In addition, HMM’s accuracy reached a peak of 0.99 for 3
and 5 clusters at 60 samples and then started to slightly decline
to 0.97 in the case of 5 clusters. This decline can be explained by
the fact that increasing the number of clusters improves the ges-
ture fidelity, which makes the execution of the gesture more diffi-
cult to imitate. In other words, the imitation of the gesture must
cross over each of the clusters to be recognized.

To visually evaluate the performance of both algorithms, we
calculated a confusion matrix (Table 1) for DTW and HMM-3 using
Fig. 5. Graph that compares the number of gestures correctly classified for each
technique depending on the number of samples used for training.
80 samples. A confusion matrix shows how the predictions are
made by the different techniques. In particular, the rows indicate
the known class of the gesture and the columns indicate the pre-
dictions made by the classifier. The value of each element in the
matrix is the number of predictions made. All correct predictions
are located along the diagonal of the Table, and the off-diagonal
elements show the errors made. From this confusion matrix, we
calculated three measures (accuracy, precision, and recall) in order
to evaluate the performance of both techniques.

Accuracy is the overall correctness of the model and is calcu-
lated as the sum of correct classifications divided by the total num-
ber N of classifications, where the terms nij ð1 6 i; j 6 kÞ correspond
to the number of instances classified as class number i, when they
actually belong to class number j, and k is the number of classes:

Accuracy ¼
Pk

i¼1nii

N
ð4Þ

In particular, the accuracy of DTW and HMM-3 revealed a high
correct-recognition rate of 0.991 and 0.989, respectively. In addi-
tion, accuracy should also be validated with precision and recall
to perform a more detailed and rigorous evaluation of the perfor-
mance of the classifiers.

Precision is a measure of the accuracy provided that a specific
class has been predicted, that is, the correct classifications penal-
ized by the number of incorrect classifications. It is defined by:

Precisioni ¼
tpi

tpi þ fpi
ð5Þ



Table 2
Precision and recall.

(a) Average NLoC
* NLoC representing the implememtation of all the gestures with EasyGR

(b) Average Time Consumed for Gesture Implementation

Fig. 6. Results comparing the Average NLoC (a) and the Average Time Consumed for
Gesture Implementation (b) using and not using EasyGR.
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where tpi and fpi are the numbers of true positive and false positive
predictions for the considered class i. In detail, precision is calcu-
lated from the confusion matrix as:

Precisioni ¼
tpi

tpi þ fpi
¼ nii

nii þ
P

j–inji
ð6Þ

Recall is a measure of the ability of a prediction model to select
instances of a certain class from a data set, that is, the number of
correct classifications penalized by the number of missed items.
It is defined by the formula:

Recalli ¼
tpi

tpi þ fni
ð7Þ

where tpi and fni are the numbers of true positive and false negative
predictions for the considered class. In detail, recall is calculated
from the confusion matrix as:

Recalli ¼
tpi

tpi þ fni
¼ nii

nii þ
P

j–inij
ð8Þ

From Table 2 we can see that both methods performed very
well. The lowest precision was 0.95 for DTW in class Circle and
0.95 for HMM-3 in class Punch. The rest of the classes had a high
precision rate. The lowest recall was 0.94 for DTW in class Punch
and 0.94 for HMM-3 in class Smash, and the rest of the classes
had a high recall rate.

4.2. Development efforts

For the second experiment, we selected 10 developers from the
human–computer interaction course in the School of Exact Sci-
ences at UNICEN, Argentina. This course was delivered to graduate
and advanced students of Systems Engineering, who had program-
ming experience. During the lectures, the developers were trained
in machine learning for gesture recognition, rule-based approach,
EasyGR, and application development by using Kinect SDK.

In order to start with the experiment session, we asked the
developers to implement an application controlled by the seven
gestures defined above, using a rule-based approach similar to
[6]. Once the developers finished the assignment, we asked them
to re-implement the gesture-recognition support by using EasyGR.
In addition, we kept a record of the time consumed to implement
each gesture recognizer. Note that, as the developers were familiar
with the application domain and with both approaches prior to the
two phases of the experiment, we considered that the order in
which the two assignments were performed did not bias the exper-
iment in favor of any approach.

Fig. 6 summarizes the results obtained by developing the
gesture-recognition support for the seven gestures using the
rule-based approach and EasyGR. Fig. 6a shows the NLoC needed
for each approach. Note that we only considered the NLoC needed
to implement the gesture-recognition support, leaving aside the
line of code to implement the application behavior. Here, we can
see a significant reduction in application size with EasyGR. Except
for the NLoC of the Elongation gesture, the NLoC for recognizing
only one gesture by using the rule-based approach is greater than
the NLoC needed to implement all the gestures by using EasyGR.
These improvements result from the gesture-recognition task
being embedded in EasyGR, which requires the developer to imple-
ment only the code to be executed when the gesture is recognized.

With the rule-based approach, Swim, Circle, and Smash were
the most complex gestures to be defined due to the changes in
the direction of the movements. On the other hand, Punch, Swipe
Left, and Swipe Right were the easiest gestures to be defined since
each one involved movements of only one body joint in only one
direction but the results show that these gestures required many
rules. We attribute this to the fact that the rule-based approach
requires a single line of code to define each gesture, but more lines
to distinguish between gestures that are too similar and likely to be
confused. For example, Swipe Left or Swipe Right and Swim are
likely to be confused, since in both Swipe movements the rules
are defined on the same body joints as in Swim. In addition, the
fact that Swim involves movements that look similar to Swipe Left
and Swipe Right together is a further source of confusion. Further,
the two lines of code required by Elongation gesture may be
explained by the fact that this gesture is the only one determined
by the right-foot joint. To conclude, a developer wanting to include
gesture recognition by using the rule-based approach must be con-
cerned not only with the rules that define the gesture, but also
with the rules that avoid confusing each gesture with the others
being concurrently recognized. As a consequence, the greater the
number of gestures that can be concurrently recognized, the bigger
the effort required when using the rule-based approach.

Fig. 6b shows the time consumed per gesture implementation.
The time consumed for EasyGR includes the time required to create
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the training-set, link the application to EasyGR, and test the solu-
tion, while the time consumed for rule-based approaches includes
the time required to develop and debug the rules and test the solu-
tion. Regarding the training time required by EasyGR, we took into
account the time developers needed to create 25 samples for each
gesture, because the developers realized that this number of sam-
ples was enough to achieve acceptable recognition rate. We can see
from the chart that the participants using EasyGR required less
time for developing a gesture than those not using EasyGR assis-
tance. Moreover, the total time spent implementing the gesture-
recognition support for the seven gestures by using EasyGR was
shorter than the time spent implementing only one gesture by
using the rule-based approach.

It is worth noting that the biggest effort when using EasyGR lies
in creating the gesture training set. However, this effort – in terms
of the time and the NLoC – is not as strenuous as that involved in
defining the rules when using the rule-based approach.
4.3. Accuracy of the approaches in real-time gesture recognition

Finally, we compared the performance of EasyGR with that of
the rule-based approach concerning accuracy in order to assess
the code complexity vs. precision trade-off. Unlike Section 4.1, the
purpose of the evaluation described in this section is not to assess
the effectiveness of EasyGR when recognizing gestures, but to
quantify the source code quality resulting from employing either
rule-based or EasyGR for actually recognizing gestures. To achieve
this, we compared both implementations by analyzing their preci-
sion in terms of correctly recognized real-time gestures.

For assessing the precision of the implementations, we ran-
domly selected 30 samples of each gesture from the gesture set
used in Section 4.1 above and then we reproduced each gesture
in a real-time sequence so as to simulate a random Kinect input.
To simulate a transition movement, we created and inserted a
motionless gesture, which represents a user waiting to perform
the next gesture, between gestures into the simulated sequence.
Next, we used the sequence to exercise the implementations
developed in both approaches. The number of gestures correctly
recognized by each approach in real-time gesture recognition is
summarized in Fig. 7.

The different gestures are listed along the horizontal axis, while
the number of correctly recognized gestures is listed along the ver-
tical axis. From the bar chart, we can see that except for the Punch
gesture, in which the precision difference was marginal, using
EasyGR achieved higher accuracy of the gesture recognition than
the rule-based approach. In particular, EasyGR recognized 202 ges-
tures from a total of 210 gestures, thus providing an accuracy of
0.96 in real-time gesture recognition, while the rule-based
approaches recognized 177 from a total of 210 gestures reaching
an accuracy of 0.84.
Fig. 7. Comparison between EasyGR and Rule-based approaches considering
accuracy in real-time gesture recognition.
4.4. Lesson learned and threats to validity

In brief, EasyGR indeed facilitates the task of including gesture
recognition in NUI applications, and the results of the evaluations
of EasyGR are promising. During the experiments with different
gestures and applications, EasyGR obtained correct-recognition
rates of over 99% and reduced the development-time, size and
complexity of implementing gesture-controlled applications. As
we expected, the higher the number of samples used for training,
the higher the accuracy of all the techniques.

Each technique has specific characteristics, advantages and dis-
advantages. The developer will choose the technique that best suits
his/her needs. For example, DTW will be preferable when the pri-
ority of the developer is to know how the gesture is being recog-
nized. In this way, the developer may obtain the distance from a
new-user trajectory to the model trajectory and generate a feed-
back for the user, i.e., EasyGR informs the user how to improve
the movement. This will be useful in applications like simulators.
Instead, HMM will be the best choice if the application needs to
vary the gesture fidelity. In this way the developer may be willing
to reduce the gesture fidelity in order to obtain correct-recognition
rates near 100% in applications that do not require a high gesture
fidelity, like games. In such cases, the developer is responsible for
finding a balance between gesture fidelity and the usability of
the application.

Our study also highlights the importance of providing tools
equipped with machine-learning techniques not only to ease the
development of gesture recognizers but also to free the developer
from the requirement of knowing the mathematical and logical
details behind these techniques.

However, to generalize the results we need to consider a num-
ber of threats to validity. Regarding the technique’s precision, we
need to consider the body build of the person performing the ges-
ture because we have not tested the tool with extreme features,
e.g., very short or very tall people. In addition, we need to consider
the correctness of each gesture because we performed the gestures
in an ideal environment, i.e., we have not included the gestures
performed in bad lighting, those performed away from the Kinect
detection field, and those performed incorrectly. Concerning the
development effort, we should bear in mind the developers’
knowledge of gesture recognition and Kinect because we con-
ducted the experiment with developers who were familiar with
the projects and technologies used in the case studies. Anyway,
this point deserves further studies since developers with different
backgrounds, domain knowledge, or levels of expertise might
achieve different solutions.
5. Conclusions

In this article we have presented a gesture-recognition tool to
help developers include gesture recognition in NUI applications.
In particular, EasyGR enables developers to create, train and recog-
nize gestures. For the first two activities, EasyGR brings a graphic
interface that allows non-specialist users to capture gestures and
train the recognition techniques. EasyGR supports Dynamic Time
Warping and Hidden Markov Models as recognition techniques.
For the third, the developers have a template code for gesture rec-
ognition that they can include in their application, thus decreasing
the development effort. Therefore, the main contribution of EasyGR
is that it assists developers in the implementation of NUI applica-
tions. By encapsulating the gesture recognition, EasyGR reduces
the complexity of managing the gesture data and the algorithms
needed to build a NUI application.

The results of applying EasyGR in the case studies reported in
this article are encouraging. We have evidence that EasyGR
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contributes to reducing the code size and complexity of gesture
controlled applications. Furthermore, we have obtained correct-
recognition rates of over 99% with each techniques. In particular,
we observed that increasing the number of clusters used in HMM
improves the gesture fidelity but makes the gesture harder to imi-
tate; thus the developer should find a balance between the gesture
fidelity and the usability of the application.

Nonetheless, EasyGR still has some limitations and improve-
ments that we expect to address in future versions of the tool. First,
the gesture recognizer is unable to automatically adapt itself to the
skills of the user. For instance, a developer creating a multilevel
game would need a more restrictive recognizer every time the user
completes each level. Although EasyGR does not have this feature,
the developer can create different gestures to suit the user’s skills.
Second, we will focus on including new gesture-recognition tech-
niques like Naïve-Bayes-Nearest-Neighbor [24] and String Match-
ing [25].
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