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Equivalence Between Representations for Samplable
Stochastic Processes and its Relationship

With Riesz Bases
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Abstract—We characterize random signals which can be linearly
determined by their samples. This problem is related to the ques-
tion of the representation of random variables bymeans of a count-
able Riesz basis. We study different representations for processes
which are linearly determined by a countable Riesz basis. This con-
cerns the representation of continuous time processes by means of
discrete samples.

Index Terms—Finite variance random processes, KL-expan-
sions, reproducing kernel Hilbert space, Riesz bases, sampling.

I. INTRODUCTION

M OTIVATED by the Kramer sampling theorem [1] for
signals, we study similar conditions for random

signals. The random signals or processes considered here are
of finite variance but not necessarily stationary. On the other
hand, as in Kramer’s original result, the samples do not need
to be considered uniformly taken. Kramer’s result is strongly
related to orthonormal bases, but as noted in [2] and [3], what
is really needed is a stability condition, and Riesz bases pro-
vide an appropriate framework for this. Recalling the definition
of a Hilbert space representation given by Parzen [5] of a fi-
nite variance and real valued stochastic process, we will study
different equivalences between several representations for sam-
plable processes. In this context, a samplable process, will mean
a continuous time, or spatial process, which can be completely
linearly determined by a series expansion, using a set of count-
able samples or measurements of the original process. This is re-
lated to the problem of reconstructing a signal from its samples.
As an example, one of the most known results, related to this
problem, is the Whittaker–Shannon–Kotelnikov (WSK) sam-
pling theorem, which also has its stochastic version for wide
sense stationary (w.s.s.) random processes.
Theorem 1.1 [6]: Let be a w.s.s. random

process defined over a probability space , such that its
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spectral measure is concentrated in a finite interval ,
then

(1)

where the convergence is in the -norm.
This result admits some generalizations for related pro-

cesses. In particular, note that, (1) implies that the process
is completely linearly determined by its samples, i.e.,

. Lloyd [7] gave neces-
sary and sufficient conditions, in terms of the spectral measure,
for a w.s.s. process to be completely linearly determined by its
samples. This result can be extended for some nonstationary
processes [8]. However, the condition, for a process, of being
linearly determined by its samples is weaker than the condition
of the samples forming a basis. The study of conditions for a
w.s.s. process to have a basis or minimal system goes back to
Kolmogorov [6], [9]. However, all these references, as in the
case of the WSK theorem, deal with equidistant samples, and
are mostly stated for w.s.s. processes. The stochastic version
of the WSK theorem, under additional conditions, gives an or-
thogonal set or a Riesz basis of samples which spans the Hilbert
space spanned by the whole process [10]. The representation
of signals using Riesz basis has many practical applications
[11], in particular, this gives a robust representation of the
process under additive noise. A classical generalization of the
(deterministic) WSK theorem was given by Kramer [1]. This
result allows us to treat the case of nonuniform samples. In
[3], a converse of this result is given, stated as conditions on
the interpolating functions. Here, by means of the reproducing
kernel Hilbert space [12] associated with the process, we will
give an analogous to Kramer’s result, and its converse, for
random processes, which are the (stochastic) integral trans-
form of an appropriate kernel function. W.S.S. processes are
particular cases of this. Under additional conditions, we prove
that this representation is obtained in a very similar manner to
a Karhunen–Loève (KL) expansion. Related representations
are studied in [13], where these results proved to be useful
for encoding. Similar substitutes are useful in applications
such as signal processing and simulation, where it could be
necessary to convert the problem of analyzing a continuous
time process to that of analyzing a random sequence, and where
the classical KL result may be not applied. For example, in
[14], the particular case of representing stationary Gaussian
random processes by uniformly convergent (in probability)
wavelet expansions is treated. To study conditions for uniform
convergence is of practical importance. Here, we shall see that
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under suitable conditions on the process, which in this case may
be not Gaussian nor stationary either, we also have uniform
convergence in probability.

II. GENERAL CONDITIONS FOR THE EQUIVALENCE
BETWEEN REPRESENTATIONS

Let be a probability space, if is an integrable
random variable, we denote . Let be a set of

indexes, which in our case of interest, is considered uncount-
able. In this paper, we will assume that is a
finite variance, real valued stochastic process with correlation
function . This positive definite function
defines a reproducing kernel Hilbert space (RKHS) [5], [12],
which we will denote as . We are interested in some
Riesz basis for , the closed linear span of in

, and some of their properties.
Definition 1: A Riesz basis for , a Hilbert space, is a family

of vectors , such that , where is
an orthonormal basis of , and is a bounded
bijective operator.
A very useful characterization of Riesz basis is the following

well-known theorem.
Theorem 2.1 [11]: Let be a Hilbert space, is a Riesz

basis for is complete in , and there exists
constants , such that

for all finite scalar sequences .

A. Condition for the Existence of a Countable Riesz Basis of
, an Stochastic Kramer Like Theorem and its Converse

The Kramer sampling theorem [1] gives a method for ob-
taining orthogonal sampling formulas, for functions–signals
which are in the range of an appropriate integral operator. The
WSK theorem for band limited functions is a particular case
of this. In the random case, we can see briefly that something
similar happens if we consider processes which are the integral
transform of a suitable random measure. Here, denotes a set
of indexes, which we assume to be, in general, uncountable, as
this is the case of interest in sampling problems.
Theorem 2.2: Let be a random orthogonal measure over a

measurable space , and let
be an stochastic process defined by ,

where ; is a Riesz basis of

, with the control measure ,
and is complete in . Then,

i) belongs to the RKHS generated by
and if is such that

, then .
ii) There exists , a Riesz basis of such that

.

Proof: If is a Riesz basis, then there exists a
biorthogonal basis . Recalling that since is

complete in we have an isometry between and
. Thus, we define and

Then, is a Riesz basis in , with a dual basis given
by . From this, .
We have

Finally, suppose that is such that

for all . This is equivalent to for all

, then and thus for all , since is a

Riesz basis.
Note that in Theorem 2.2, and are both

representations of , in the sense given by Parzen in [5].
Definition 2: A Hilbert space is a representation of a

random process if is congruent to (i.e.,
there exists an isomorphism which preserves inner products).
A related notion is the following.
Definition 3: A family of vectors in a Hilbert space
is a representation of a random process if for

every : .
It is immediate that is a representation of [5].

The importance of these is that some (mean square) problems
may be more easy to solve in another metrically isomorphic
Hilbert space. As in [3] it is possible to give a converse of the-
orem 2.2 (see Theorem 2.3). Giving appropriate conditions on
the sampling functions, it is possible to obtain a Riesz basis of
the whole space . In particular, the random process is lin-
early determined by its samples. In contrast to Garcia’s result
[3], the hypothesis on the signal, in this random case, of being
the image of an integral transform can be dropped. So, in prin-
ciple, one may conjecture that there exists a larger class of pro-
cesses with this property. However, it is rather easy to see (see
Theorem 2.5) that if there exists a Riesz basis of then the
process is the integral transform of an appropriate kernel with
respect to a random measure.
Theorem 2.3: Let be a set of indexes, generally noncount-

able, and let be a stochastic
process. Let be the closed subspace spanned by . Given
sequences and such that

, where convergence is in the norm. The

following assertions are equivalent:
i) and verifies

a.1) for all , and if
verifies for all ,

then , for all .
a.2) for all .

ii) and are Riesz basis of and
, respectively.
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Proof:
: If is a Riesz basis of , then

there exists a biorthogonal basis , such that
and . These are unique,

since is a Riesz basis. It is immediate that ,
for all and from the definition. On
the other hand, recalling the theory of reproducing kernels, for
every , there exists such that

. This can be written as , where

(2)

and where the reproducing kernel Hilbert space
, is equipped with the norm [12]:

. In this way, an isometry is

defined and thus , but
because is also a Riesz basis. In particular, for all

. Finally, let be such that

. Hence,

Then, , thus but

is a basis, then , for all .
: We shall see that of (i) is, indeed, a

Riesz basis.

Step I: Let and be defined as

where the s are such that , thus,

and then pointwise convergence follows from this. On the
other hand,

then, by the Banach–Steinhaus theorem, is a bounded
operator, so there exists such that

Then, by Lemma 3.1.6 of [11], we have that is
Besselian

(3)

For all .

Step II: Let be the reproducing kernel Hilbert space
induced by the linear operator

note that is well defined, and is the range
of : equipped with the norm

.
Let us see that , in the sense of set inclu-
sions. Let , then , taking

in account that and that
converges by (Step I) (3), then by (2)

, and thus . On

the other hand, if , then , for some
, but if and recalling

again (2): , with

, , then .
Step III: Now, let us see that their norms are equiva-

lent. In fact, consider the inclusion map
and in the -norm and such

that in the -norm. But as and

are both RKHS, then convergence in norm implies
pointwise convergence for each , so we have that

for all , thus

, and then by the closed graph theorem is con-
tinuous, but is also a bijective map, then there exist
constants such that

but we have seen that , with ,
and since these coefficients are unique (condition a.1)

. On the other hand, ,

thus

and then is a frame [11].
Step IV: Now, we shall see that is a Riesz basis of

. Indeed is a biorthogonal system [11],
with as in (Step I), indeed and then

, thus ,

moreover, is also a Riesz basis of and then
the same holds for in . Finally, let us see
that . For this, take such
that , but this implies
for all , and then a.s.
The fact that every samplable process admits a representa-
tion as an stochastic integral of a certain type of kernel, in
this case, is a consequence of the fact that is sepa-
rable and that all separable Hilbert spaces are isometrically
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isomorphic. We will give a complete proof of this, in order
to make the development of the work self-contained. First,
we need the following theorem.

Theorem 2.4 [15, p. 242]: Let the covariance function of
a random process admit the following repre-
sentation: where is a posi-

tive measure over , and is com-
plete. Then, admits the following representation:

where

is an orthogonal random measure, such that .
With this result, and assuming that is in the following

infinite dimensional, we can prove:
Theorem 2.5: If is a Riesz basis of , given

a measure space, such that is separable and
infinite dimensional, then:
There exists an orthogonal random measure over ,

with control measure , i.e., , such that there
exists a Riesz basis of , and ,

with and as in a.1)

of theorem 2.3, and a complete system.
Proof: If is a Riesz basis of , then

is separable as it is , so there exists an isometric isomor-
phism , and taking , then

is a Riesz basis of . So, we take,

The coefficients are the same, unique, s of the previous
result, so (a.1) of Theorem 2.3 holds. On the other hand,

, thus and then

and is complete, indeed, take such that
, for all , and since

and from the biorthogonality of and
, we have

As this holds, for every , then a.s. and
thus a.e. . Finally, from the representation Theorem
2.4, it follows that there exists a random measure , such that

, and .

Remark: Alternatively, one may construct the random mea-
sure , and the Riesz basis in the following way:
as and are both separable, take any pair of or-
thonormal basis and of and ,
respectively, and define over the algebra of -measurable sub-
sets with finite measure

Then, one can verify that if then
, and

From this, the measure extends as usual. Now, given , the
stochastic integral , for is constructed in the

standard way, defining an isometry.

B. Application: A Sampling Theorem

The following corollary shows how the previous results may
be applied to the problem of characterizing process which are
linearly determined by its samples, and which also form a Riesz
basis.
Corollary 2.1: Let be a finite variance stochastic

process. For sequences ,
, , such that , the

following are equivalent:
i)

(b.1.) ,

and for all .
(b.2.) .

ii) The sequences and are Riesz basis of
and , respectively.

iii) Given a measure space, such that
is separable and infinite dimensional, there exists

an orthogonal random measure over , and
such that is a Riesz basis

of , with , is a Riesz
basis of such that

and .

C. Examples

1) TheWSK TheoremWith a Riesz Basis: Let ,
be defined by

where is an orthogonal random measure, such that
1 For some nonnegative

, is a standard result such that , exists [15].
Moreover we can take , such that , a.e. on ,
for some , and a.e. on . The resulting
process is w.s.s. and it is easy to verify that is a Riesz
basis of and that, is also a Riesz basis of

. Moreover, the dual basis is given by ,

and then , and obviously,
.

2) Bessel–Hankel Transforms: Consider ,
a process defined in the following way: take a
Wiener process, and the orthogonal basis

1In this case, the condition on of being absolutely continuous with respect
to the Lebesgue measure, is necessary, as it was proved in [10].
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, where is the th positive zero of the Bessel func-
tion , . Thus, if

then

where convergence is in the m.s. sense, this follows from
the convergent, classic formula

.

III. KARHUNEN–LOÈVE-TYPE EXPANSIONS

In the previous section, we have seen that the random vari-
ables and the functions are related. Indeed if is
the associated dual basis we know that . We
would like to give some additional condition under which the
s are obtained in a similar fashion to “random Fourier coeffi-

cients” as in the original KL expansion. This point of view may
be of more practical use in some applications. However, in this
case, we shall confine to the case when is an open subset of
. First we begin with a result.
Proposition 3.1: Let be an open subset, let

be a m.s. continuous random process and let be a finite Borel
measure, such that is equivalent to the Lebesgue measure (
and . If there exists a

Riesz basis of and if is as in the previous result,
then is a Bessel sequence (with respect to ),
and defines a linear, bounded, and injective

operator.
Remark: Note that under these conditions there exists an

stochastically equivalent measurable version of [15],
i.e., a version which is - measurable, as a function
of . Indeed, we shall work with that measurable
version.

Proof:

This integral can be bounded, using the Cauchy–Schwartz in-
equality and the Bessel condition on the s:

Now, if is a compact subset, , and since is m.s.
continuous then is continuous and bounded. In a similar
manner as in the previous bound, by the Cauchy–Schwarz in-
equality, we have

Then, converges uniformly over compact sets. On

the other hand, ,
so the are continuous over , and the same holds for

from the uniform convergence. Now, if is such

that , thus , and then

we have , a subsequence,
such that a.e. , and since , then

, for all . But the condition (a.1) from The-

orem 2.2, implies , for all . Thus,

is a well defined, linear, and bounded operator, which is
injective.
Now, if is a measure space, given the process ,

and if is a basic sequence, we can find the random vari-
ables , calculating an integral over .
Theorem 3.1: Let be measurable (i.e.,

is -measurable), a Riesz basis of , and let
be a -finite measure, such that .

If is a basis of , such that
, where convergence in the m.s. sense, then

i)

(4)

defines a bounded linear operator from to ,
and , where is the dual basis of

with respect to the -norm.
ii)

(5)

defines a bounded linear operator from to ,
and , where is the dual basis of

with respect to the -norm.
Proof:
i) Let us prove first that is well
defined and bounded. Indeed, if is -mea-
surable, and as then
for almost all . Thus, as , the integral 4
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is well defined. On the other hand, by Minkowski’s and
Cauchy–Schwarz’s inequalities, respectively,

(6)
Now, let us prove that , indeed, for
each , define . It is

easy to verify that these s are bounded linear operators
from to , and strongly, since in a

similar way to (6), we can obtain

If is Riesz basis, there exist
basis constants, so that

But , so by

Lebesgue’s theorem

from this , since is closed. Finally, as
if , then .

ii) If is such that is -measurable, then
is -measurable. On the other

hand, by the Cauchy–Schwarz inequality

So is well defined and, by Fubini’s theorem

where is defined as in (4), and as in (2). Thus,
defines a bounded operator.

Final Remarks: Note that from the proof of Theorem 3.1
we get that , so if a.s. then

for all , thus . In a similar manner, if
, then and so . In particular,

if is the whole space , then is injective. A similar
analysis holds for .
In these last results, cannot be an unconditional

(Riesz) basis with respect the -norm, indeed, if this
would be the case, as the are already a Riesz basis, we
should have that , and

integrating, we obtain , which contradicts

the fact that .

A. About Uniform Convergence in Probability

Let us prove that if the process, in addition, verifies some
regularity conditions we have that the previous expansions con-
verge uniformly in probability over any compact interval
. That is, if , then for every :

as . The proof of this theorem is an standard argument,
previously we recall Kolmogorov’s condition.
Lemma 3.1 [15, p. 191]: Let be a separable random

process satisfying the following condition: there exists a non-
negative monotonically nondecreasing function and a func-
tion , such that
and and

. Then,

By a direct application of this, one can prove
Theorem 3.2: If is such that there exists constants

and such that for every :
then for every interval :

as .
Proof: Writing . Suppose without loss

of generality that , then
. From this,

(7)

Let us bound the first term of the sum on the right side of this
inequality by means of the Kolmogorov condition. For small ,
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, and if we denote , , then,
by Tchevichev’s inequality and the frame bounds

where

, is the upper frame bound for the se-

quence , and is its dual basis. We would like
to show that . Indeed, as
for every . On the other hand, for each fixed ,

is a continuous function on the

variable , since these nonnegative series converges pointwise,
each term is continuous by the continuity
condition on the process, and by Dini’s criterion, then these se-
ries converges uniformly on . Then, is continuous
in , defining , let us see that is contin-
uous at 0. If : ,
whenever . Then, by Dini’s criterion .
Recalling Kolmogorov’s condition of Lemma 3.1, with

. Then,

is such that

Finally, as , recalling (7),

the proof is complete.

IV. CONCLUSION

We gave conditions for a finite variance random process to be
reconstructed from its discrete samples. The conditions are anal-
ogous to the conditions for signals, studied by Kramer in
[1] and Garcia [3]. Finally, we relate this expansions to KL-like

expansions and study some detailed convergence facts of them,
such as uniform convergence.
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