
E�cient Tight Field Bounds Computation based

on Shape Predicates

?

Pablo Ponzio1, Nicolás Rosner2, Nazareno Aguirre1,4, and Marcelo Frias3,4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Argentina. Emails: {pponzio, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEFyN, Universidad de Buenos Aires, Buenos
Aires, Argentina. Email: nrosner@dc.uba.ar

3 Departamento de Ingenieŕıa de Software, Instituto Tecnológico de Buenos Aires,
Buenos Aires, Argentina. Email: mfrias@itba.edu.ar

4 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. Tight field bounds contribute to verifying the correctness of
object oriented programs in bounded scenarios, by restricting the values
that fields can take to feasible cases only, during automated analysis.
Tight field bounds are computed from formal class specifications. Their
computation is costly, and existing approaches use a cluster of computers
to obtain the bounds, from declarative (JML) formal specifications.
In this article we address the question of whether the language in which
class specifications are expressed may a↵ect the e�ciency with which
tight field bounds can be computed. We introduce a novel technique that
generates tight field bounds from data structure descriptions provided in
terms of shape predicates, expressed using separation logic. Our tech-
nique enables us to compute tight field bounds faster on a single work-
station, than the alternative approaches which use a cluster, in wall-clock
time terms. Although the computed tight bounds di↵er in the canonical
ordering in which data structure nodes are labeled, our computed tight
field bounds are also e↵ective. We incorporate the field bounds computed
with our technique into a state-of-the-art SAT based analysis tool, and
show that, for various case studies, our field bounds allow us to handle
scopes in bounded exhaustive analysis comparable to those correspond-
ing to bounds computed with previous techniques.

1 Introduction

Determining to what extent a software artifact is correct is an essential activ-
ity in software engineering, and formal methods have contributed with many
methodologies and techniques to deal with it. Among these techniques, “push
button” formal analysis techniques, i.e., those that do not require user inter-
vention, have received special attention. However, automation usually seriously
impacts on scalability. In an attempt to deal with scalability issues that typically

? This work was partially supported by ANPCyT PICT 2010-1690 and 2012-1298, and
by the MEALS project (EU FP7 MEALS - 295261).

a↵ect automated analyses, di↵erent approaches can be taken in order to simplify
or somehow “limit” the software under analysis. Bounded exhaustive verification
is one of these approaches, that consists of checking the correctness of a program
with respect to its formal specification, but under certain constraints. The ap-
proach introduced in [9] is one of the various bounded exhaustive verification
settings, in which the number of iterations that loops may perform, as well as
the maximum number of objects to be considered for every class involved, are
bounded, in order to assess the correctness of an object oriented program with
respect to its specification, using SAT solving. This approach has proved to be
very useful in finding bugs in object oriented programs [6, 13, 22, 9].

Despite the “limits” imposed on the software under analysis, bounded ex-
haustive verification still su↵ers from scalability issues, enabling in many cases
to analyze programs only for very small scopes (the limit in the number of loop
unrolls and maximum number of objects per class). In order to further scale
up formal automated analysis, in [9, 10] the authors show that by appropriately
removing infeasible cases from the values that class fields can take, bounded
exhaustive verification can be significantly improved. This mechanism, known
as tight field bound computation, is used prior to the actual analysis, and has
proved to be extremely useful for bounded verification, automated test input
generation and for improving symbolic execution [10, 1, 11].

Tight field bounds depend on a formal specification of the valid inputs of
a program under analysis, given in terms of class invariants. Such specification
is used to check which field values in the inputs are infeasible (prior to the
execution of the program), and therefore can be removed from the representation
of the verification problem prior to analysis. To compute field bounds, a large
number of feasibility queries have to be performed. The only proposed approach
available to e↵ectively compute tight field bounds is introduced in [9]. It is based
on declarative formal specifications of class invariants of Java programs given in
JML, and requires a cluster for e↵ectively carrying out this task.

In this work, we study whether the e�ciency in tight field bound computa-
tion depends on the formal language used for expressing class invariants. More
precisely, we show that, if the class invariants used for tight field bound com-
putation are expressed using separation logic’s inductive shape predicates [16],
field bounds can be computed e�ciently. Although less expressive than JML,
shape predicates are expressive enough to describe a broad set of interesting
data structures [16], and have been employed as data structure specification lan-
guage by various tools for software analysis. We introduce a novel approach for
tight field bounds computation, which exploits the fact that shape predicates de-
scribe linked data structures very precisely, and their inductive definition makes
them suitable for tight bounds computation. Furthermore, our field bounds com-
putation approach runs on a single workstation, more e�ciently, in wall-clock
time terms, than the approach introduced in [9] using a cluster of computers,
thus showing that our approach is several orders of magnitude faster. However,
the field bounds computed by our approach correspond to a di↵erent canonical
ordering of structures’ nodes, with respect to [9]. Indeed, while [9] canonically

class AVLTree { class Node {

Node root; int data;

} Node left;

Node right;

}

Fig. 1: Classes for AVL trees

orders nodes in a breadth first fashion, which results in smaller scopes for some
fields, our approach intrinsically leads to depth first node orderings. To assess
the usefulness of the “depth first” field bounds computed by our approach, we
incorporate the field bounds into the tool used in [9], and show that they allow
us to handle scopes that are comparable to those handled by “breadth first” field
bounds, in bounded exhaustive analysis.

2 Bounded Verification and Tight Field Bounds

Tight field bounds help improving various kinds of analysis, one of which is
bounded verification via SAT solving, as performed in [9, 10]. Therein, a pro-
cess for verifying whether a given Java program satisfies a JML specification in
bounded contexts, is presented. This process is based on, given a scope (maxi-
mum number of loop iterations, and maximum number of instances of the classes
involved), encoding the program and its formal specification as a propositional
formula, in such a way that the resulting formula is satisfiable if and only if
there exists an execution of the program within the provided scope that violates
the specification. If the resulting formula is unsatisfiable, then the program is
correct with respect to its specification, within the provided scope.

Various intermediate languages are employed in [9, 10] during the translation
from Java code and JML contracts to a propositional formula. In particular,
the relational formal languages DynAlloy [8], Alloy [14] and KodKod [20] are
involved in the process. KodKod [20] is able to profit from upper bounds for
relations. These bounds capture information about which tuples in the rela-
tions involved in a relational constraint problem (in our case, resulting from the
translation of an annotated program) are infeasible due to the constraints. Since
tuples in the domains of relations are represented as propositional variables in
the formula resulting from the translation, infeasible cases lead to removing the
corresponding variables (or, more precisely, replacing the corresponding variables
by false). This is highly relevant, since variable removal contributes to scaling
up SAT based analysis.

In order to introduce the concept of tight field bound, let us first describe
briefly, by means of an example, the intermediate representation of the Java
heap in Alloy and KodKod. For further details, we refer the reader to [9]. Con-
sider the classes in Fig. 1, which may be part of a definition of AVL trees. In
(Dyn)Alloy, program states are captured by sets of object identifiers to repre-

sent class extensions, and binary relations from the class extension to the cor-
responding datatype, to represent fields. For instance, for the classes in Fig. 1,
a program state would comprise sets AVLTree and Node, and relations root ✓

AVLTree⇥ (Node[{null}) and left, right ✓ Node⇥ (Node[{null}) (we disregard
integer fields for presentation purposes). Assuming scope 3 for Node in the anal-
ysis, class Node is represented in KodKod as the set Node = {N0, N1, N2}, while
field left is represented by a relation left ✓ {N0, N1, N2}⇥ {N0, N1, N2, null}.

In the translation from a relational model to a propositional formula, relations
are represented via sets of propositional variables. For instance, relation left

above is represented by propositional variables:

{l

x,y

| x 2 {N0, N1, N2} ^ y 2 {N0, N1, N2, N3, null}}.

The variables in this set capture the possible values for field left, in the corre-
sponding program state. More precisely, a variable l

Ni,Nj being true in a given
instance of a constraint solving problem indicates that nodes N

i

and N

j

are
related via field left in the corresponding program state.

For example, assuming similar representations for fields root and right,
when variables ro

T0,N0 (for root), l

N0,N1 , l

N1,null, l

N2,null (for left), r

N0,N2 ,
r

N1,null and r

N2,null (for right) are true, and all the remaining variables are
false, we obtain the structure of Fig. 2(a).

Notice that constraints that are part of the specification force some variables
in the resulting relational constraint problem to be false. For instance, if the
linked structure is acyclic in a given state (e.g., in the state prior to the exe-
cution of the program under analysis), variables l

Ni,Ni are all necessarily false.
Thus, these variables can be replaced by false, reducing the number of variables
required to encode bounded program correctness for SAT solving. More precisely,
if we know beforehand that certain relationships between heap objects are for-
bidden, we can remove the infeasible variables that represent them. KodKod
allows one to do so, by providing an upper bound. Formally, an upper bound for
a field f : A ! B is a relation U

f

✓ A⇥B. Given an upper bound U

f

, KodKod
will get rid of all the variables p

a,b

2 M

f

such that (a, b) /2 U

f

, replacing them
by false.

Of course, the “tighter” the upper bound, the better, since tighter bounds
allow one to remove more variables (recall that SAT solving algorithms have an
exponential worst case time complexity, that depends on the number of propo-
sitional variables). However, we are interested in considering only sound upper
bounds, i.e., those composed solely by infeasible variables, otherwise we would
compromise the whole SAT-based analysis. For instance, an upper bound

U

left wrong

= Node⇥ (Node [null)� {(N0, null), (N1, null), (N2, null)}

forbids the left field of any node to be null, causing the analysis to omit all the
valid non-empty AVL tree instances. Thus, we want to compute tight bounds
that only get rid of infeasible variables in the propositional formula encoding a
program state.

Tight field bounds are useful for analysis. However, determining these bounds
is not easy, and they have to be computed from specifications, prior to analysis.
In particular, in [9, 10] tight field bounds are computed from declarative JML
specifications, which are translated into Alloy’s relational logic. As an example,
consider the following fragment of a relational logic specification of AVL trees:

AVL_Invariant:

(all n: Node | n in this.root.*(left + right) - null =>

n !in n.^(left + right)) and

...

This fragment specifies acyclicity, using closure operators (* is reflexive-transitive
closure, while ^ is transitive closure). These specifications are complemented
with symmetry-breaking predicates, which are automatically produced from
class specifications [9]. Such symmetry breaking predicates force a canonical,
breadth-first ordering, in the labeling of structures’ nodes. This helps removing
redundant structures (similar to partial-order reduction in the context of model
checking). For AVL tree specifications, for instance, the corresponding symmetry
breaking predicate would forbid producing the structure in Figure 2(b), while
accepting structure in Figure 2(a). Notice that these two structures are isomor-
phic, and thus is su�cient to consider only one of them (especially in languages
like Java, with no pointer arithmetic, where the specific memory addresses where
nodes are allocated, abstracted as node labels in this formal representation, is ir-
relevant). Using class specifications and symmetry breaking, in [9] a tight bound
for a field f is computed by querying the SAT solver about the feasibility of each
variable in the representation of f . So, for instance, for every pair of nodes N

i

and N

j

within a given scope, one would have to check:

SAT(AVL Invariant ^ AVL Symmetry Breaking ^N

i

.left.N
j

),

that is, is there a (valid) AVL tree within the given scope in which N

j

is the left
node of N

i

? If this is not the case, then the propositional variable representing
N

i

.left.N
j

can be removed. All these queries are independent, and therefore
can be performed in parallel. The actual process for computing tight bounds in
[9] uses an iterative approach, that first removes variables whose infeasibility can
be quickly determined (and maintaining those whose feasibility is determined).
Those that reach a timeout are processed again, after simplifying the satisfiability
problem thanks to the variables already determined infeasible. In order to carry
out this process e↵ectively, a cluster of computers is employed [9, 10].

2.1 Tight Bounds and Separation Logic Invariants

Separation logic [19] is an extension of first order logic that enables one to reason
about programs dealing with heap allocated data structures in a concise manner.
It provides two novel operators to describe heap properties: separating conjunc-
tion (⇤), and separating implication (�⇤). Intuitively, h1 ⇤ h2 describes a heap
that comprises two disjoint parts satisfying formulas h1 and h2, respectively. We

nullnull nullnull

T0

N0

N1 N2

nullnull nullnull

T0

N1

N0 N2

(a) (b)

Fig. 2: Two isomorphic AVL tree instances

avl(t0, h0)
.

= (t0 = null ^ h0 = 0) _ (t0 7! t1, t2 ⇤ avl(t1, h1) ⇤ avl(t2, h2) o

h0 = 1 +max(h1, h2) ^ |h1 � h2| 1)

Fig. 3: AVL tree specification given as a shape predicate

do not consider �⇤ in this work; we refer the reader to [19] for details. In sepa-
ration logic, inductive shape predicates are used to describe heap allocated data
structures, as well and their state evolution as a program is executed. Figure 3
shows a sample shape predicate characterizing AVLs. Symbol o separates the
spacial part from the pure part of a shape predicate. It represents a conjunction,
since a predicate is satisfied if both the spatial and pure parts are satisfied.

In this paper we study if tight field bounds can be computed more e�ciently,
if class invariants are expressed in a di↵erent formal language. We propose ex-
pressing such predicates in separation logic. Separation logic inductive shape
predicates provide useful information, that can be exploited to e�ciently com-
pute field bounds. Consider for instance the shape predicate in Fig. 3, char-
acterizing AVLs. Notice that whenever avl(n, h) and n 6= null, we know that
n.left 6= n, since ⇤ forces the “left subtree” of n to be in a disjoint part of the
heap with respect to n. Furthermore, a particular unfolding of shape predicate
p univocally denotes a shape of the data structure defined by p (if the accumu-
lated pure part is satisfiable). For example, unfolding the avl predicate (Fig. 3)
as follows (we disregard the height in this unfolding, for the sake of simplicity):

t0 7! t1, t2 ⇤ t1 7! t3, t4 ⇤ t2 7! t5, t6 o

t3 = null ^ t3 = null ^ t4 = null ^ t5 = null ^ t6 = null

Due to the semantics of ⇤, variables t0, t1 and t2 must be replaced by di↵erent
node identifiers N0, N1 and N2, respectively. We thus obtain the shape of the
AVL in Fig 2(a). Assuming that avl is our class invariant, a tight bound for
field left is forced to contain pairs (N0, N1), (N1, null), (N2, null) (similarly for

p(v⇤) :=
_

(9v0⇤ : � o ⌃)

� := emp | vk 7! vk1 , .., vkn |p(v
⇤)|�1 ⇤ �2

⌃ := � ^ �

� := v1 = v2 | v = null | v1 6= v2 | v 6= null | �1 ^ �2

� := b | a | �1 _ �2 | �1 ^ �2 | ¬� | 9v : � | 8v : �

b := true | false | v | b1 = b2

a := s1 = s2 | s1 s2

s := k

int
| v | k

int
⇥ s | s1 + s2 | � s |max(s1, s2) |min(s1, s2)

Fig. 4: Shape predicate specification framework ([16])

right), since otherwise the valid shape of Fig. 2(a) would be disallowed, and
the analysis would not be sound.

Our approach is based on the above described observations. Intuitively, given
a shape predicate p and a finite sequence of node identifiers as input, our ap-
proach works by recursively unfolding p, canonically labeling nodes, and adding
the corresponding pairs to the resulting tight bound. When all the structures
comprising the input node sequence have been “visited”, the approach finishes
returning a tight bound.

We will consider shape predicates defined using the specification framework of
[16], shown in Figure 4 (with slightly modified syntax). The framework supports
shape predicates encompassing a spatial and a pure part (� and ⌃, respectively).
The spatial part is a sequence of ⇤ separated formulas describing how a data
structure is organized in the heap (�). The pure part is heap independent, and,
in [16], is restricted to pointer equality/inequality (�) and Presburger arithmetic
(�). As it will be discussed later on, our analysis supports more expressive shape
predicates, e.g., allowing ⌃ to be an arbitrary arithmetic formula. However, for
illustration purposes, we restrict ourselves to the framework above, and regard
richer extensions as future work. For the sake of clarity, we assume all free
variables of shape predicates to be existentially quantified (we therefore omit
existential quantifiers).

It is worth mentioning that shape predicates are less expressive than JML.
JML allows one to describe structures that “share” substructures of the heap,
some of which cannot be captured by our employed shape predicate specification
framework. However, as we mentioned, shape predicates are very expressive,
being able to capture many heap-allocated datatypes, and as we show in this
paper, enabling us to compute tight bounds very e�ciently, contributing to the
SAT based analysis of these structures.

Algorithm 1 Unfold algorithm

1: function Unfold(p(r, v1, . . .), f, l)
2: if l � f = 0 then . No addresses
3: let base(p) = emp o bt1 ^ . . . ^ btj return {base(p)}

4: result = ; . There are addresses available (l � f > 0)
5: let ind(p(r, . . .)) = r 7! r1, . . . ⇤ ip1(y1, . . .) ⇤ · · · ⇤ ipi(yi, . . .) o it1 ^ . . . ^ itl

6: . Share l � (f + 1) addresses between recursive calls
7: for (f1, l1), .., (fi, li) 2 partition(f + 1, l, i) do
8: set1 =Unfold(ip1(y1, . . .), f1, l1)
9: . . .

10: seti =Unfold(ipi(yi, . . .), fi, li)
11: for (s1, . . . , si) 2 set1 ⇥ . . .⇥ seti do

12: result = result [{(r 7! r1, . . . o it1 ^ . . . ^ itl)] s1] . . .] si}

13: return result

3 Tight Bounds Calculation from Shape Predicates

For the sake of clarity, we will start by describing how tight field bounds can
be computed from shape predicates using a brute force technique. We will then
explain how this starting technique is improved, both in terms of memory con-
sumption, and computation time, in particular by normalizing the inputs of the
brute force algorithm, and applying memoization. For presentation reasons, we
describe our technique on a subset of the shape predicates definable in the frame-
work of Section 2.1, namely predicates with one base and one inductive case.
Extending the technique to support more general shape predicates is straight-
forward (although we do not deal with this extension, due to space reasons).
Without loss of generality, we assume that the only variable allowed to be bound
to a heap node in the right-hand side of a shape predicate is r (short for root).
In summary, throughout this section we consider shape predicates to have the
form:

p(r, v1, . . .) =(emp o bt1 ^ . . . ^ bt

j

)_

(r 7! r1, . . . ⇤ ip1(y1, . . .) ⇤ · · · ⇤ ipi(yi, . . .) o it1 ^ . . . ^ it

l

)

where bt

z

, 1 z j, it
z

, 1 z l are pure terms (cf. Section 2.1), and
ip

z

, 1 z i are shape predicate’s names (possibly distinct from p). Finally, we
assume a fixed set of fields f1, .., fn for the heap, and an ordered set of addresses
A = [N0, N1,], which corresponds to the allowed labels for reference fields.

Let us start describing the brute force approach. The inputs to this algo-
rithm are a shape predicate p describing the valid instances of the heap, and the
indexes f and l of an ordered subset [N

f

, ..., N

l

] of A. Its outputs are tight field
bounds for fields f1, . . . , fn, for heaps with exactly l � f input nodes (labeled
N

f

, . . . , N

l�1). The brute force approach is composed of various stages, namely,
predicate unfolding, concrete instance generation, and tight bound construction.
We now describe these stages in detail.

Unfolding shape predicates. The brute force approach starts by unfolding a pred-
icate, as indicated by Function Unfold shown as Algorithm 1. Unfold(p, f, l)
yields the set of separation logic formulas representing instances of p with exactly
l � f nodes.

As an example, consider the shape predicate for AVLs, shown in Fig. 3. Un-

fold(avl(r0, h0), 0, 2) should return two separation logic formulas, representing
the two feasible AVL’s with two nodes. When executingUnfold(avl(r0, h0), 0, 2),
in line 7, partition(0+1, 2, 2) tries all the feasible partitions of the sequence [N1]
of addresses (corresponding to the interval f = 1, l = 2) between the two recur-
sive calls. It returns two possibilities: assigning node N1 to the first recursive
call (indexes (1, 2), (2, 2) in the main loop) and none to the second, or pass-
ing no nodes to the first recursive call and assigning N1 to the second (indexes
(1, 1), (1, 2)). Let us consider the first case in more detail. The first recursive
call, corresponding to Unfold(avl(r1, h1), 1, 2)), yields {t1 7! h1, t2, t3 ⇤ emp ⇤

emp o h1 = 1 + m(h2, h3) ^ a(h2 � h3) 1 ^ r2 = r3 = null ^ h2 = h3 = 0}
(one formula standing for a tree with exactly one node), whereas the second,
Unfold(avl(r2, h2), 2, 2) produces {emp o r2 = null ^ h2 = 0} (one formula rep-
resenting the empty tree). The inner loop, line 11, iterates over all the feasible
combinations of formulas for the left and right trees, i.e., formulas in the carte-
sian product of the sets resulting from the i recursive calls. Our running example
has only one possible combination, as the results of the recursive calls were sin-
gletons. Then, line 12 combines the formula standing for the root of the structure
with each of the feasible pairs of left and right subtrees. In our example, this is
r0 7! h0, r1, r2, t1 7! h1, t2, t3 ⇤ emp ⇤ emp o h1 = 1 +m(h2, h3) ^ a(h2 � h3)
1 ^ r2 = r3 = null ^ h2 = h3 = 0 and emp o r2 = null ^ h2 = 0, respectively.
In this step, the algorithm uses operator], which merges the spatial and pure
parts of its input formulas using ⇤ and ^, respectively.

In this example, Unfold(avl(r0, h0), 0, 2) leads to the following pair of for-
mulas:
t0 7! h0, t1, t4 ⇤ t1 7! h1, t2, t3 ⇤ emp o t0 7! h0, t1, t2 ⇤ emp ⇤ t2 7! h2, t3, t4 o

h0 = 1 +m(h1, h4) ^ a(h1 � h4) 1^ h0 = 1 +m(h1, h2) ^ a(h1 � h2) 1^
h1 = 1 +m(h2, h3) ^ a(h2 � h3) 1^ h2 = 1 +m(h3, h4) ^ a(h3 � h4) 1^
t2 = t3 = t4 = null^ t1 = t3 = t4 = null^

h2 = h3 = h4 = 0 h1 = h3 = h4 = 0

These formulas stand for all the feasible AVL instances with exactly two
nodes. It is worth noticing again that, due to the semantics of operator ⇤, in
line 7 the algorithm can feed the root node and its recursive calls with disjoint
partitions of the input address set (the domains of the subheaps r0 7! h0, r1, r2,
avl(r1, h1), and avl(r2, h2) must be all disjoint in r0 7! h0, r1, r2 ⇤ avl(r1, h1) ⇤
avl(r2, h2)). Thus, this allows us to ignore many distributions of addresses to
subheaps that involve aliasing.

Generating concrete instances from separation logic formulas. The second step
produces all the concrete heap instances represented by the formulas returned
by Unfold. Notice that (as seen in the example of the previous section) each
formula f returned by Unfold comprises a pure part: pr

f

= t1 ^ . . . ^ t

l

, and

a spatial part: sp
f

= x1 7! x1,1, .. ⇤ . . . ⇤ x

m

7! x

m,1, First, we perform a
symmetry breaking procedure in order to reduce the number of feasible instances
of a formula f yielded by Unfold. This procedure involves traversing sp

f

from
left to right, assigning address N

i

to each variable x
i

such that x
i

7! x

i,1, .. 2 sp

f

during the traversal. Applying this procedure to the instances in the example
above yields (formulas in boldface were added in this step):

t0 7! h0, t1, t4 ⇤ t1 7! h1, t2, t3 ⇤ emp o t0 7! h0, t1, t2 ⇤ emp ⇤ t2 7! h2, t3, t4 o

h0 = 1 +m(h1, h4) ^ a(h1 � h4) 1^ h0 = 1 +m(h1, h2) ^ a(h1 � h2) 1^
h1 = 1 +m(h2, h3) ^ a(h2 � h3) 1^ h2 = 1 +m(h3, h4) ^ a(h3 � h4) 1^
t2 = t3 = t4 = null^ t1 = t3 = t4 = null^

h2 = h3 = h4 = 0^ h1 = h3 = h4 = 0^
t0 = N0 ^ t1 = N1 t0 = N0 ^ t2 = N1

The soundness of this procedure is guaranteed by the semantics of the ⇤

operator. Notice that this fixes the ordering of addresses in valid heap instances,
and therefore induces a heap canonicalization. Thus, it can be thought of as
the equivalent of using symmetry breaking predicates in TACO’s tight bound
computation procedure.

Next, we invoke a decision procedure in order to obtain the models of the
formulas generated in the previous step, i.e, to yield concrete structures. Ob-
serve that all the variables in the formulas are existentially quantified, and their
pure part comprises only conjunctions of formulas in the language of Section
2.1. Therefore, we can encode the pure part of each formula produced in the
previous step in the input language of any modern SMT solver, to obtain con-
crete instances from it. Continuing with our example, after calling a decision
procedure with the formulas we get:

t0 7! h0, t1, t4 ⇤ t1 7! h1, t2, t3 ⇤ emp o t0 7! h0, t1, t2 ⇤ emp ⇤ t2 7! h2, t3, t4 o

h0 = 2 ^ h1 = 1^ h0 = 2 ^ h2 = 1^

t2 = t3 = t4 = null^ t1 = t3 = t4 = null^

h2 = h3 = h4 = 0^ h1 = h3 = h4 = 0^
t0 = N0 ^ t1 = N1 t0 = N0 ^ t2 = N1

In this case, both formulas are satisfiable and have one model. Therefore,
each of these formulas represents a valid heap instance, which can be obtained
by replacing variables by values in the formula’s spatial part:

N0 7! 2, N1, null ⇤ (N1 7! 1, null, null) ⇤ (emp)
N0 7! 2, null, N1 ⇤ (emp) ⇤ (N1 7! 1, null, null)

Graphically, these formulas correspond to the following tree structures:

null

nullnull

N0 , 2

N1 , 1 null

nullnull

N0 , 2

N1 , 1

Tight field bounds from concrete heap instances. The last step uses the heap
instances produced by the previous step to build tight field bounds. The resulting
tight field bound is composed by the union of all the field values occuring in any
of the aformentioned heap instances. Returning to our example, the field values
added by each of the instances above are:

left = N0 7! N1 +N1 7! null left = N0 7! null +N1 7! null

right = N0 7! null +N1 7! null right = N0 7! N1 +N1 7! null

height = N0 7! 2 +N1 7! 1 height = N0 7! 2 +N1 7! 1
The union of the values above results in the AVL bounds for scope exactly 2:

left = N0 7! N1 +N0 7! null +N1 7! null

right = N0 7! N1 +N0 7! null +N1 7! null

height = N0 7! 2 +N1 7! 1
It is important to remark that SAT-based analyses typically use non-strict

scopes. That is, if scope k is given, the analysis explores all the feasible heap
instances with up to k nodes. To compute tight field bounds in such a case, we
sequentially run the brute force approach for up to k nodes, and return the union
of the resulting bounds.

3.1 Improvements to the brute force algorithm

The approach just introduced must generate a potentially exponential number
of structures before computing tight field bounds. To avoid this problem, we can
compute bounds on the fly, during the traversal of the input shape predicate,
without generating instances. This leads to an alternative algorithm SLField-

Bounds(p(r, v1, ..., vn), f, l), which produces as output a pair containing: (i) a
tight field bound for scope exactly l� f , for the structure defined by p, and (ii)

the set of feasible assignments of values to the variables r, v1, ..., vn.
Let us illustrate this alternative with an example. Suppose we execute SLField-

Bounds(avl(r0, h0), 0, 5) to obtain field bounds for scope exactly 5, for AVLs.
SLFieldBounds traverses the input shape predicate in the same way as Un-

fold. The computation of field bounds for AVLs with exactly 5 nodes involves
at some point recursive calls SLFieldBounds(avl(r1, h1), 1, 3) and SLField-

Bounds(avl(r2, h2), 3, 5). The following table shows the results of these calls:

parameters bound assignment
avl(r1, h1) l : N1 7! N2 +N1 7! null +N2 7! null {(r1 = N1, h1 = 2)}
[N1, N2] r : N1 7! N2 +N1 7! null +N2 7! null

h : N1 7! 2 +N2 7! 1
avl(r2, h2) l : N3 7! N4 +N3 7! null +N4 7! null {(r2 = N3, h2 = 2)}
[N3, N4] r : N3 7! N4 +N3 7! null +N4 7! null

h : N3 7! 2 +N4 7! 1

At this point, the algorithm assigns N0 to the root node, pointed to by variable
r0, and builds a bound for the combination of the root node (r0 7! h0, r1, r2)
with the results of the recursive calls shown above. However, the algorithm only
adds field values to the resulting bound when the pure part of the predicate
is satisfiable, otherwise field values of invalid structures would be included in

S5 S7 S10 S12 S15 S17

Linked List
TACO(w) 00:11 00:11 00:15 00:24 00:47 01:04
TACO(seq) 02:56 02:56 04:00 06:24 12:32 17:04
SL 00:00.065 00:00.091 00:00.094 00:00.110 00:00.129 00:00.141

BSTree
TACO(w) 00:11 00:11 00:16 00:38 01:56 04:05
TACO(seq) 02:56 02:56 04:16 10:08 30:56 65:20
SL 00:00.268 00:00.209 00:00.508 00:00.633 00:01.032 00:01.389

TreeSet
TACO(w) 00:16 00:30 01:44 02:51 05:19 16:42
TACO(seq) 04:16 08:00 27:44 45:36 85:04 267:12
SL 00:00.667 00:01.159 00:02.693 00:04.352 00:08.266 00:11.483

AVL
TACO(w) 00:17 00:32 01:55 03:46 10:36 47:25
TACO(seq) 04:32 08:32 30:40 60:16 169:36 2845:00
SL 00:00.121 00:00.195 00:00.403 00:00.561 00:00.944 00:01.387

Table 1: Times required for computing tight field bounds from JML specifications
and from shape predicates, for various case studies (in MM:SS.sss)

the resulting bound. That is, we incorporate the constraint solving that in the
brute force takes place when building concrete instances, during the process of
unfolding and traversing the formula. For the example, the formula to solve is:
h0 = 1+m(h1, h2)^a(h1, h2) 1^r1 = N1^h1 = 2^r2 = N3^h2 = 2^r0 = N0

which has only one model: r0 = N0 ^ r1 = N1 ^ r2 = N3 ^ h0 = 3 ^
Thus, SLFieldBounds performs a search for all the models of the pure

part of its input predicate, using all the feasible combinations of assignments in
recursive calls together with the assignment for the root node.

Memoization. When fed with shape predicates with more than one recursive call,
as in the case of AVLs, cases can be repeated. As an example, we showed above
calls SLFieldBounds(avl(r1, h1), 1, 3) and SLFieldBounds(avl(r2, h2), 3, 5).
Notice that the resulting bounds are tight field bounds for AVLs with exactly two
consecutive addresses. They are equivalent, up to renaming. SLFieldBounds

solves these equivalent problems independently, and thus repeats computations.
To avoid this problem, we “memoize” SLFieldBounds, i.e., we use a matrix
M to store the results of calls to SLFieldBounds, “normalized” to have 0 as
a starting address. Whenever a call to SLFieldBounds is made with a given
scope (the pair f and l), we check first whether the corresponding “normalized”
bound and assignment have been computed before, to avoid recomputing it. Of
course, to produce the actual bound, a shift must be applied to the normalized
stored bounds and assignments, before returning it.

4 Experimental Results

To assess our approach, we perform two experiments. The first is a compari-
son of our algorithm for tight bounds computation from shape predicates, with
TACO, that computes tight bounds from JML specifications. The second is an

S5 S7 S10 S12 S15 S17

Linked List

Contains
TACO 0:00:01 0:00:02 0:00:03 0:00:04 0:00:05 0:00:07
SL 0:00:01 0:00:02 0:00:03 0:00:04 0:00:05 0:00:07

Insert
TACO 0:00:02 0:00:02 0:00:03 0:00:04 0:00:05 0:00:09
SL 0:00:02 0:00:02 0:00:03 0:00:04 0:00:05 0:00:09

Remove
TACO 0:00:02 0:00:02 0:00:04 0:00:06 0:00:07 0:00:13
SL 0:00:02 0:00:02 0:00:04 0:00:06 0:00:07 0:00:13

BSTree

Find
TACO 0:00:02 0:00:12 0:26:15 TO TO TO
SL 0:00:02 0:00:16 0:24:20 2:48:21 TO TO

Remove
TACO 0:00:02 0:00:09 0:08:35 2:06:14 TO TO
SL 0:00:02 0:00:08 0:05:43 1:39:50 TO TO

Insert
TACO 0:02:06 0:29:22 TO TO TO TO
SL 0:02:15 0:33:15 TO TO TO TO

AVL

Find
TACO 0:00:03 0:00:05 0:00:16 0:00:36 0:02:44 0:12:36
SL 0:00:03 0:00:05 0:00:31 0:01:09 0:15:43 0:35:27

FindMax
TACO 0:00:01 0:00:01 0:00:02 0:00:03 0:00:05 0:00:08
SL 0:00:01 0:00:01 0:00:02 0:00:04 0:00:09 0:00:31

Insert
TACO 0:00:56 0:01:03 0:03:42 0:11:48 1:15:15 TO
SL 0:00:57 0:01:05 0:04:25 0:14:12 1:12:32 TO

TreeSet
Find

TACO 0:00:03 0:00:05 0:00:47 0:02:19 0:16:45 1:15:05
SL 0:00:03 0:00:07 0:00:48 0:03:47 0:34:04 1:31:50

Insert
TACO 0:00:30 0:02:54 TO TO TO TO
SL 0:00:29 0:02:34 TO TO TO TO

Table 2: Comparison of the impact of “depth first” vs. “breadth first” tight field
bounds, in SAT-based bounded verification (in H:MM:SS)

assessment of the profit provided by the tight bounds computed by our algo-
rithm, that as was mentioned before, di↵er in some cases from those computed
by TACO, since the canonical ordering of nodes is di↵erent (depth first in our
case, vs. breadth first in the case of TACO). For both assessments, we consider
the following data structures: an implementation of sequences based on singly
linked lists (Linked List); TreeSet from package java.util, based on red-black
trees (TreeSet); AVL trees from [2] (AVL); and binomial heaps used in [21] (Bi-
nomial Heap). These classes have JML specifications, used in [9] for analysis.
We took shape predicates characterizing these structures from the literature,
and performed slight modifications to make them equivalent to the correspond-
ing JML descriptions. We ran our algorithm on a 2.0Ghz, 2MB cache computer,
with a dual core processor. TACO was run on a cluster of 16 computers, each
with 2 dual core processors (2.67GHz, 2MB cache per core) each (as reported
in [9]). Running times are reported using a format given in the tables’ caption,
with TO and OoM indicating that the analysis exhausted the time (3 hours) and
memory (2Gb), respectively. The experiments can be reproduced by downloading
http://dc.exa.unrc.edu.ar/staff/pponzio/sltb/FM14exp.tgz, and follow-
ing the instructions therein.

The results of the comparison of tight bound computations are summarized
in Table 1. Our algorithm always terminated in at most a few seconds (time
is reported in these cases including milliseconds). The time employed by TACO

in computing the bounds is shown as wall clock time (TACO(w)), and is also
“sequentialized” (TACO(seq)), i.e., an estimation of the sequential time is given,
by multiplying the wall clock time by 16, the number of computers. Notice that
this estimation is very conservative, since the parallelisation takes advantage of
cores (the number of cores is 64), and we are multiplying the parallel time by the
number of computers (16). As these experiments show, computing bounds from
separation logic shape predicates, our approach, is various orders of magnitude
more e�cient than doing so from JML specifications.

Our second set of experiments compares the impact of “depth first” tight field
bounds, computed from shape predicates, with “breadth first” tight field bounds,
computed from JML specifications, in SAT-based bounded verification. We per-
formed bounded verification of several methods of the studied classes, comparing
TACO tight bounds with tight bounds computed with our approach. All the an-
alyzed methods are correct with respect to their specifications. We chose correct
implementations because they represent the worst case for SAT-based analyses,
as they require the whole state space to be explored. Loops were unrolled enough
to cover the corresponding scopes, and method calls were inlined. The results
are summarized in Table 2. Notice that for lists, both approaches led to the
same times. This is so because, in this data structure, breadth first and depth
first node labelings coincide, and therefore the field bounds computed with both
approaches are the same. For tree-like structures, our “depth first” field bounds
yield running times that are similar to those obtained by using the “breadth
first” field bounds. In general, the di↵erences are not significant, with depth first
bounds being slightly less e�cient, with a few exceptions in which our bounds
lead to better running times.

5 Related Work

This is the first attempt to use shape predicates for tight bounds calculation.
A closely related approach to the work on this paper is that of [9, 10], which
introduces an algorithm for tight bounds calculation that works by making a
big number of parallel queries to SAT solving. The drawback of this approach
is that it requires a lot of computational resources. Our experiments show that
this algorithm can run for more than an hour on a cluster of sixteen machines
(64 cores). In contrast, the approach presented here is significantly more e�cient
for bounds computation. Our case studies point out that our approach can per-
form bounds calculation in at most a few seconds, running on a single computer.
However, TACO allows for JML specifications of data structures, which can be
argued to be easier to write for an average programmer than the shape predi-
cates required by our approach (as well as more expressive). In both works, the
calculated bounds are shown useful to achieve better runtime e�ciency, in the
context of SAT-based bounded exhaustive analysis of Java container classes with

rich structural invariants. JForge [6] also performs SAT based analysis of Java
programs with JML specifications. We do not provide an experimental compar-
ison with JForge, since the tool has been shown to perform poorly compared to
tight bounds based approaches in [9], and has not been improved lately. Further
examples of SAT based bounded analyses are presented in [13, 22]. They are tai-
lored for C programs, and do not make use of tight bounds. Besides TACO, there
are other approaches that benefit from the use of tight bounds. [11] introduces an
adaptation of the Lazy Initialization mechanism of Symbolic Java PathFinder,
that makes use of tight bounds. [18] introduces a dataflow analysis that allows
propagating tight bounds to all the states of a program, starting with bounds
for the initial state (as those calculated by TACO and our approach). FAJITA
[1] is a version of TACO especially tailored for automated test generation. As
is the case with TACO, FAJITA’s e�ciency heavily relies on tight bounds. All
these approaches make use of bounds, but none proposes alternative ways of
computing bounds.

We borrow the shape specification mechanism of [16], which we use to capture
class invariants, employed as inputs by our algorithms for tight bounds calcu-
lation. The traditional use of shape predicates is in the verification of shape
and size properties of programs manipulating linked data structures [16]. Other
works extend [16] (e.g., [17, 7]) by improving the verification process with dif-
ferent mechanisms. In these cases, the focus is on using shape predicates and a
corresponding calculus to prove properties of programs via some form of sym-
bolic execution using shape predicates. Other examples of successful separation
logic based verification approaches are presented in [3, 5, 15]; they are concerned
with proving memory safety properties of programs. Our approach is di↵erent:
we use shape predicates to compute bounds, which can then be used for a num-
ber of di↵erent bounded SAT based analyses, such as bounded verification [9]
and test generation [11, 1].

6 Conclusion

The use of tight bounds is crucial for improving the e�ciency and increasing
the scalability of SAT-based bounded verification [9], as well as other related
analysis techniques, such as test generation [1] and symbolic execution [11]. In
this article we introduced an algorithm for tight bounds calculation based on
shape predicates. This algorithm exploits the precision of shape predicates in the
description of linked structures, to e�ciently compute tight bounds, significantly
outperforming TACO, the existing approach to bounds calculation, by several
orders of magnitude. Our approach computes field bounds that di↵er from those
computed by TACO, since the canonical ordering considered for the nodes of
the structure under analysis is depth first, as opposed to TACO’s breadth first
labeling. Although this has an impact in the size of bounds for some fields, we
showed in our experiments that our bounds are also e↵ective.

Tight bounds have the potential of improving analysis times in other con-
texts. In this respect, we are working on adapting Korat [4] to use tight bounds

for faster test generation. Also, in the context of SAT based white box test gen-
eration, we plan to extend path conditions with shape information, using it to
remove irrelevant variables from the encoding of traces.

References

1. Abad P., Aguirre N., Bengolea V., Ciolek D., Frias M., Galeotti J., Maibaum
T., Moscato M., Rosner N., Vissani I., Improving Test Generation under Rich
Contracts by Tight Bounds and Incremental SAT Solving, in ICST 2013, 2013.

2. J.Belt, Robby, X.Deng. Sireum/Topi LDP: A Lightweight Semi-Decision Procedure
for Optimizing Symbolic Execution-based Analyses in FSE’09, 2009.

3. J. Berdine, B. Cook, S. Ishtiaq, SLAYER: memory safety for systems-level code in
CAV’11, 2011.

4. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java
predicates in ISSTA 02, pp. 123-133, 2002.

5. C. Calcagno, D. Distefano, P. OHearn, H. Yang. Compositional shape analysis by
means of bi-abduction in POPL’09, 2009.

6. G. Dennis, F. Chang, D. Jackson. Verification of Code with SAT in ISSTA06, 2006.
7. W.N. Chin, C. Gherghina, R. Voicu, Q.L. Le, F. Craciun, S.C. Qin, A specialization

calculus for pruning disjunctive predicates to support verification in CAV’11, 2011.
8. M. Frias, J. Galeotti, C. López Pombo and N. Aguirre, DynAlloy: Upgrading Alloy

with Actions, in Proc. of ICSE 2005, 2005.
9. J.P. Galeotti, N. Rosner, C. Lopez Pombo, M. Frias, Analysis of Invariants for

E�cient Bounded Verification in ISSTA 10, 2010.
10. J.P. Galeotti, N. Rosner, C. Lopez Pombo, M. Frias, TACO: E�cient SAT-Based

Bounded Verification Using Symmetry Breaking and Tight Bounds, IEEE Trans.
Soft. Eng., IEEE Computer Society, 2013.

11. Geldenhuys J., Aguirre N., Frias M., Visser W., Bounded Lazy Initialization, in
Proc. of Nasa Formal Methods Symposium, LNCS, Springer, 2013.

12. R. Iosif. Symmetry Reduction Criteria for Software Model Checking in SPIN’02,
2002.

13. F. Ivancic, Z. Yang, M.K. Ganai, A. Gupta, I. Shlyakhter, P. Ashar. F-Soft: Soft-
ware Verification Platform in CAV05, 2005.

14. D. Jackson, Software Abstractions MIT Press, 2006.
15. S. Magill, M.H. Tsai, P. Lee, Y.K. Tsay. Automatic numeric abstractions for heap-

manipulating programs in POPL’10, 2010.
16. H. Nguyen, C. David, S. Qin, W. Chin, Automated Verification of Shape and Size

Properties via Separation Logic in VMCAI’07, 2007.
17. H. Nguyen, W. Chin, Enhancing program verification with lemmas, in CAV’08,

2008.
18. B. Parrino, J.P. Galeotti, D. Garbervetsky, M. Frias. A Dataflow Analysis to Im-

prove SAT-Based Bounded Program Verification in SEFM’11, 2011.
19. J. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures in

Proceedings of LICS’02, 2002.
20. E. Torlak, D. Jackson, Kodkod: A Relational Model Finder in TACAS’07, 2007.
21. W. Visser, C.S. Pasareanu, R. Pelanek. Test Input Generation for Java Containers

using State Matching in ISSTA’06, 2006.
22. Y. Xie, A. Aiken. Saturn: A scalable framework for error detection using Boolean

satisfiability in ACM TOPLAS, 29(3), 2007.

