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a b s t r a c t

In this paper, a multi-objective project scheduling problem is addressed. This problem considers two con-
flicting, priority optimization objectives for project managers. One of these objectives is to minimize the
project makespan. The other objective is to assign the most effective set of human resources to each
project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is
proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-
objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into
the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search.
To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to
either an exploitation process or an exploration process depending on the state of the evolutionary-based
search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as
to provide solutions with different trade-offs between the optimization objectives to project managers.
The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets,
and is compared with that of the only multi-objective algorithm previously proposed in the literature
for solving the addressed problem. The performance comparison shows that the multi-objective hybrid
algorithm significantly outperforms the previous multi-objective algorithm.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A multi-objective project scheduling problem involves defining
feasible start times and feasible human resource assignments for
project activities so that the different optimization objectives, de-
fined as part of the problem, are reached. Moreover, to define hu-
man resource assignments, it is necessary to have knowledge
about the effectiveness of the available human resources in rela-
tion to different project activities. This is because the development
and the results of an activity depend on the effectiveness of the re-
sources assigned to it (Heerkens, 2002; Wysocki, 2003).

In the literature, many different kinds of multi-objective project
scheduling problems have been formally described and addressed
until now. However, to the best of the authors’ knowledge, only
few multi-objective project scheduling problems have considered

human resources with different levels of effectiveness (Bellenguez
& Néron, 2005; Gutjahr, Katzensteiner, Reiter, Stummer, & Denk,
2008; Hanne & Nickel, 2005; Yannibelli & Amandi, 2012a), a cen-
tral aspect in real multi-objective project scheduling contexts.
These problems state different assumptions about the effective-
ness of the human resources.

The multi-objective project scheduling problems described in
Bellenguez and Néron (2005), Gutjahr et al. (2008), Hanne and
Nickel (2005) assume that each human resource only has one or
several skills, and an effectiveness level in relation to each skill.
Then, the effectiveness of a human resource in a given activity is
determined only on the basis of the effectiveness level of the re-
source in relation to one of the skills required for that activity.
Thus, only the skills of a human resource are considered as deter-
mining factors of their effectiveness. However, other contextual
factors that also determine the effectiveness of a human resource
in a given activity are not considered in the mentioned problems.
Such factors involve the attributes of the activity to which the re-
source is assigned, the other resources with whom the resource in
question must work, as well as the experiences and attributes of
the resource (Barrick, Stewart, Neubert, & Mount, 1998; Heerkens,
2002; Wysocki, 2003).
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Unlike the above-mentioned problems, the multi-objective pro-
ject scheduling problem introduced in Yannibelli and Amandi
(2012a) considers that the effectiveness of a human resource de-
pends on various factors inherent to its work context (i.e., the
activity to which the resource is assigned, the skill to which the re-
source is assigned within the activity, the set of human resources
that has been assigned to the activity, and the attributes of the re-
source). This is a really significant aspect of the multi-objective
project scheduling problem introduced in Yannibelli and Amandi
(2012a). This is because, in real multi-objective project scheduling
problems, the human resources usually have different effective-
ness levels in relation to different work contexts (Barrick et al.,
1998; Heerkens, 2002; Wysocki, 2003) and, therefore, the effec-
tiveness of a human resource needs to be considered in relation
to its work context. To the best of the authors’ knowledge, the
influence of the work context on the effectiveness of the human re-
sources has not been considered in other multi-objective project
scheduling problems. Because of this, it is considered that the mul-
ti-objective project scheduling problem introduced in Yannibelli
and Amandi (2012a) is really valuable in comparison with other
multi-objective project scheduling problems.

In this paper, the multi-objective project scheduling problem
introduced in Yannibelli and Amandi (2012a) is addressed. This
problem considers two conflicting, priority optimization objectives
for project managers. One of the objectives entails minimizing the
project makespan, whereas the other objective involves assigning
the most effective set of human resources to each project activity.
As was previously mentioned, the addressed problem considers
that the effectiveness of a human resource depends on various fac-
tors inherent to its work context.

To solve the addressed problem, a multi-objective hybrid algo-
rithm is proposed. This is a search and optimization algorithm
composed by two search and optimization algorithms: a multi-
objective simulated annealing algorithm and a multi-objective
evolutionary algorithm. The multi-objective simulated annealing
algorithm is integrated into the framework of the multi-objective
evolutionary algorithm. This is meant to improve the performance
of the evolutionary-based search (Coello Coello, Lamont, & Veldhu-
izen, 2007; Corchado, Abraham, & Carvalho, 2010; Corchado,
Graña, & Wozniak, 2012; Deb, 2009; Ishibuchi, Yoshida, & Murata,
2003). Specifically, the multi-objective simulated annealing algo-
rithm serves two purposes. At the early stages of the evolution-
ary-based search, when this search is diverse, the simulated
annealing algorithm behaves like an exploitation process to fine-
tune the solutions reached by the evolutionary-based search. At la-
ter stages of the evolutionary-based search, when this search starts
to converge, the simulated annealing algorithm behaves like an
exploration process to diversify the solutions reached by the evolu-
tionary-based search and thus to allow this search progresses. To
achieve the two mentioned purposes, the behavior of the multi-
objective simulated annealing algorithm is self-adaptive based on
observations from the state of the evolutionary-based search.

The multi-objective hybrid algorithm generates an approxima-
tion to the true Pareto set as a solution to the problem. Thus, the
algorithm can provide a number of solutions (i.e., project sched-
ules) with different trade-offs between the optimization objectives
to project managers.

A multi-objective hybrid algorithm is proposed because of the
following reasons. The problem addressed here can be seen as a
multi-objective case of the RCPSP (Resource Constrained Project
Scheduling Problem) (Blazewicz, Lenstra, & Rinnooy Kan, 1983)
and, therefore, the problem is an NP-Hard problem. In this sense,
the hybridization of multi-objective evolutionary algorithms with
other search and optimization techniques (e.g., simulated anneal-
ing) has been proven to be more effective than the classical mul-
ti-objective evolutionary algorithms in the resolution of a wide

variety of multi-objective NP-Hard problems and, in particular, in
the resolution of different kinds of multi-objective scheduling
problems (Coello Coello et al., 2007; Corchado et al., 2012; Deb,
2009; Ishibuchi et al., 2003, 2010). Thus, it is considered that a
multi-objective hybrid algorithm could outperform the multi-
objective evolutionary algorithm presented in Yannibelli and
Amandi (2012a) for solving the addressed problem. The multi-
objective evolutionary algorithm presented in Yannibelli and
Amandi (2012a) is the only multi-objective algorithm previously
proposed in the literature for solving the addressed problem.

The remainder of the paper is organized as follows. In Section 2,
a brief review of published works that consider the effectiveness of
human resources in the context of multi-objective project schedul-
ing problems is given. In Section 3, the addressed multi-objective
project scheduling problem is described. In Section 4, the multi-
objective hybrid algorithm designed to solve the problem is de-
scribed. In Section 5, the computational experiments developed
to evaluate the performance of the multi-objective hybrid algo-
rithm are presented, and their results are analyzed. Finally, in Sec-
tion 6, the conclusions of the present work are presented.

2. Related works

In the literature, various multi-objective project scheduling
problems have considered the effectiveness of human resources.
These multi-objective project scheduling problems state different
assumptions about the effectiveness of human resources. In this
regard, only few multi-objective project scheduling problems have
considered human resources with different levels of effectiveness
(Bellenguez & Néron, 2005; Gutjahr et al., 2008; Hanne & Nickel,
2005; Yannibelli & Amandi, 2012a), a central aspect in real mul-
ti-objective project scheduling problems. In this section, the atten-
tion is focused on analyzing the way in which the effectiveness of
human resources is considered in multi-objective project schedul-
ing problems reported in the literature.

Li and Womer (2009), Drezet and Billaut (2008) and Bellenguez
(2008) address multi-skill project scheduling problems considering
different optimization objectives. In these problems, each project
activity requires specific skills and a given number of human re-
sources (employees) for each required skill. Each available employ-
ee masters one or several skills, and all the employees that master
a given skill have the same effectiveness level in relation to the
skill (homogeneous levels of effectiveness in relation to each skill).

Bellenguez and Néron (2005) consider a multi-skill project
scheduling problem with hierarchical levels of skills. In this prob-
lem, given a skill, for each employee that masters the skill, an effec-
tiveness level is defined in relation to the skill. Thus, the employees
that master a given skill have different levels of effectiveness in
relation to the skill. Then, each project activity requires one or sev-
eral skills, a minimum effectiveness level for each skill, and a num-
ber of resources for each pair skill-level. This work considers that
all sets of employees that can be assigned to a given activity have
the same effectiveness on the development of the activity. Specif-
ically, with respect to effectiveness, such sets are merely treated as
unary resources with homogeneous levels of effectiveness.

Hanne and Nickel (2005) address a multi-skill project schedul-
ing problem considering different optimization objectives. In this
problem, most activities require only one employee with a partic-
ular skill, and each available employee masters different skills. In
addition, the employees that master a given skill have different
levels of effectiveness in relation to the skill. Then, the effective-
ness of an employee in a given activity is defined by considering
only the effectiveness level of the employee in relation to the skill
required for the activity.
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Aickelin, Burke, and Li (2009) and Valls, Pérez, and Quintanilla
(2009) address the skilled workforce project scheduling problem
considering different optimization objectives. In this problem, each
project activity requires only one employee with a particular skill,
and each available employee has different skills. In Valls et al.
(2009), given a skill, for each employee that masters the skill, an
efficiency level is defined (heterogeneous efficiencies in relation
to each skill). In Aickelin et al. (2009), employees with homoge-
neous efficiencies in relation to each skill are considered. The
two works consider employees with homogeneous levels of effec-
tiveness in relation to each skill.

Gutjahr et al. (2008) and Heimerl and Kolisch (2010) address
the problem of scheduling multiple projects taking into account
different optimization objectives. Gutjahr et al. (2008) consider hu-
man resources with different levels of effectiveness and heteroge-
neous efficiencies in relation to each skill. Heimerl and Kolisch
(2010) consider human resources with homogeneous levels of
effectiveness and heterogeneous efficiencies in relation to each
skill.

In contrast with the above-mentioned problems, the multi-
objective project scheduling problem introduced in Yannibelli
and Amandi (2012a) considers that the effectiveness of a human
resource depends on various factors inherent to its work context.
Then, for each human resource, it is possible to define different
effectiveness levels in relation to different work contexts. This is
a very important aspect of the multi-objective project scheduling
problem introduced in Yannibelli and Amandi (2012a). This is be-
cause, in real multi-objective project scheduling problems, the hu-
man resources have different effectiveness levels in relation to
different work contexts (Barrick et al., 1998; Heerkens, 2002; Wy-
socki, 2003). Therefore, the effectiveness of a human resource
needs to be considered in relation to its work context. To the best
of the authors’ knowledge, the influence of the work context on the
effectiveness of the human resources has not been considered in
other multi-objective project scheduling problems. For this reason,
it is considered that the multi-objective project scheduling prob-
lem introduced in Yannibelli and Amandi (2012a) is really valuable
in comparison with other multi-objective project scheduling
problems.

3. Multi-objective project scheduling problem description

In this paper, the multi-objective project scheduling problem
introduced in Yannibelli and Amandi (2012a) is addressed. This
problem is a multi-objective extension of the single-objective pro-
ject scheduling problem described in Yannibelli and Amandi
(2011), Yannibelli and Amandi (2012b).

A description of the multi-objective project scheduling problem
addressed in the current paper is presented below.

A project contains a set A of N activities, A = {1, . . .,N}, that has to
be scheduled (i.e., the starting time and the human resources of
each activity have to be defined). The duration, precedence rela-
tions and resource requirements of each activity are known.

The duration of each activity j is notated as dj. Moreover, it is
considered that pre-emption of activities is not allowed, that is
to say, when an activity starts, it must be developed period by per-
iod until it is completed (i.e., the dj periods of time must be
consecutive).

Among some project activities, there are precedence relations.
The precedence relations establish that each activity j cannot start
until all its immediate predecessors, given by the set Pj, have com-
pletely finished.

Project activities require human resources – employees –
skilled in different knowledge areas. Specifically, each activity re-
quires one or several skills as well as a given number of employees

for each skill. A skill is considered to be a specialization in a knowl-
edge area.

It is considered that companies and organizations have a qual-
ified workforce to develop their projects. This workforce is made
up of a number of employees, and each employee masters one or
several skills.

Considering a given project, set SK represents the K skills re-
quired to develop the project, SK = {1, . . .,K}, and set ARk represents
the available employees with skill k. Then, the term rj,k represents
the number of employees with skill k required for activity j of the
project. The values of the terms rj,k are known for each project
activity.

It is considered that an employee cannot take over more than
one skill within a given activity. In addition, an employee cannot
be assigned more than one activity at the same time.

Based on the previous assumptions, an employee can be as-
signed different activities but not at the same time, can take over
different skills required for an activity but not simultaneously,
and can belong to different possible sets of employees for each
activity.

As a result, different work contexts can be defined for each
available employee. It is considered that the work context of an
employee r, denoted as Cr,j,k,g, is made up of four main components.
The first component refers to the activity j which r is assigned (i.e.,
the complexity of j, its domain, etc.). The second component refers
to the skill k which r is assigned within activity j (i.e., the tasks
associated to k within j). The third component is the set of employ-
ees g that has been assigned j and that includes r (i.e., r must work
in collaboration with the other employees assigned to j). The fourth
component refers to the attributes of r (i.e., his or her experiences,
the labor relations between r and the other employees of g, his or
her knowledge, his or her studies, his or her skills, etc.). It is consid-
ered that the attributes of r could be quantified from available
information about r (e.g., curriculum vitae of r, results of evalua-
tions made to r, information about the participation of r in already
executed projects, etc.).

The four components described above are considered the main
factors that determine the effectiveness level of an employee. For
this reason, it is assumed that the effectiveness of an employee de-
pends on all the components of his or her work context. Then, for
each employee, it is possible to consider different effectiveness lev-
els in relation to different work contexts.

The effectiveness level of an employee r, in relation to a possible
context Cr,j,k,g for r, is notated as erCr,j,k,g. The term erCr,j,k,g represents
how well r can handle, within activity j, the tasks associated to skill
k, considering that r must work in collaboration with the other
employees of set g. The mentioned term erCr,j,k,g takes a real value
over the range [0,1]. The values of the terms erCr,j,k,g inherent to
each employee available for the project are known. It is considered
that these values could be obtained from available information
about the participation of the employees in already executed
projects.

The problem of scheduling a project entails defining feasible
start times (i.e., the precedence relations between the activities
must not be violated) and feasible human resource assignments
(i.e., the human resource requirements must be met) for project
activities in such a way that the optimization objectives are
reached. In this sense, two priority objectives are considered for
project managers at the early stage of the project schedule design.
One objective is that the most effective set of employees be as-
signed each project activity. The other objective is to minimize
the project makespan. The first objective is modeled by Eqs. (1)
and (2), and the second objective is modeled by Eqs. (3) and (4).

Eq. (1) maximizes the effectiveness of the sets of employees as-
signed to the N activities of a given project. In this equation, set S
contains all the feasible schedules for the project in question. The
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term e(s) represents the effectiveness level of the sets of employees
assigned to project activities by schedule s. Then, R(j, s) is the set of
employees assigned to activity j by schedule s, and the term eR(j,s)

represents the effectiveness level corresponding to R(j, s).
Eq. (2) estimates the effectiveness level of the set of employees

R(j, s). This effectiveness level is estimated calculating the mean
effectiveness level of the employees belonging to R(j, s). The mean
effectiveness level is used because of the reasons presented below.
It is considered that the sets of employees are assigned to project
activities with the following properties. First, in the activities con-
sidered here, the effectiveness level of a set of employees depends
on the effectiveness level of each employee belonging to the set.
Second, the higher the sum of the effectiveness levels of those
employees, the higher the effectiveness of the set. In the case of
project activities with the properties mentioned, it is considered
that the mean effectiveness level of the employees of a set is a good
predictor of the effectiveness of the set. This is because the mean
effectiveness level of the employees of a set is directly proportional
to the sum of the effectiveness levels of those employees. Specifi-
cally, the higher the sum of the effectiveness levels of the employ-
ees, the higher the mean effectiveness level. Thus, if the mean
effectiveness level is used as a predictor, the higher the sum of
the effectiveness levels of the employees, the higher the effective-
ness of the set.

max
s2S

eðsÞ ¼
XN

j¼1

eRðj;sÞ

 !
ð1Þ

eRðj;sÞ ¼

XjRðj;sÞj
r¼1

erCr;j;kðr;j;sÞ;Rðj;sÞ

jRðj; sÞj ð2Þ

Eq. (3) minimizes the makespan of a given project. In this equa-
tion, set S contains all the feasible schedules for the project in ques-
tion. The term d(s) represents the makespan of schedule s.

In Eq. (4), the finish times defined by schedule s for N project
activities are considered, and d(s) is determined by the maximal
finish time. The term ft(j, s) represents the finish time of activity j
in schedule s, and the term st(j, s) represents the start time of j in
s. Then, ft(j, s) is calculated as st(j, s) plus the duration of j.

min
s2S
ðdðsÞÞ ð3Þ

dðsÞ ¼ max
j¼1to N
ðftðj; sÞ ¼ stðj; sÞ þ djÞ ð4Þ

The two above-described optimization objectives are consid-
ered to be possibly conflicting. When the objective of minimizing
the project makespan is taken into account, the effectiveness levels
of the sets of employees are no considered. Therefore, an optimal
schedule in relation to the project makespan could define sets of
employees having effectiveness levels lower than the optimal lev-
els. On the other hand, when the objective of maximizing the effec-
tiveness of the sets of employees is taken into account, the project
makespan is not considered. Thus, an optimal schedule in relation
to the effectiveness levels of the sets of employees could define a
project makespan longer than the optimal makespan. Based on
the mentioned, there may not be a solution which optimizes all
objectives at the same time. In this respect, the Pareto set, or an
approximation to the Pareto set, is considered as a solution to
the multi-objective problem. The Pareto set is the set of all non-
dominated solutions. The concept of dominance is considered as
follows. Given two solutions, both of which have scores according
to some set of objective values, one solution is considered to dom-
inate the other if its score is better or equal for all objectives, and is
strictly better for at least one. The scores that a solution x gets for n

objectives are represented as a n-dimensional vector �x. Using the �
symbol to indicate domination, the relation x � y is formally pre-
sented in Eq. (5).

x � y() 8i 2 f1; . . . ;ng xi is better than or equal to yi;

and 9i 2 f1; . . . ;ng xi is better than yi:
ð5Þ

For conflicting objectives, there is no single solution dominating
all others, and a solution is considered non-dominated if it is not
dominated by any other. The set of all non-dominated solutions
is considered the Pareto Set.

The Pareto set is formally presented in Eq. (6). In this equation,
the term S represents the set of all feasible solutions.

Pareto Set ¼ fx 2 S : 9y 2 S : y � xg ð6Þ

In the problem addressed here, it is considered that once the
Pareto set is determined, or an approximation to the Pareto set
(i.e., a number of near non-dominated solutions) is calculated,
the project manager can select the solution that he or she prefers
out of the set of solutions obtained. To make this selection, it is
considered that the project manager should define his or her pref-
erences about the trade-off between the optimization objectives,
and then he or she should choose the solution(s) that closely match
the desired trade-off.

For a more detailed discussion of the problem addressed here,
readers are referred to the work (Yannibelli & Amandi, 2012a) that
has introduced this problem. In the mentioned work, the problem
has been introduced and described in detail. Moreover, the men-
tioned work contains a detailed example of the problem and a fea-
sible solution for this example.

4. A multi-objective hybrid algorithm: integrating a multi-
objective simulated annealing algorithm and a multi-objective
evolutionary algorithm

To solve the addressed problem, a multi-objective hybrid algo-
rithm is proposed. This is a search and optimization algorithm
composed by two search and optimization algorithms: a multi-
objective simulated annealing algorithm and a multi-objective
evolutionary algorithm. The multi-objective simulated annealing
algorithm is integrated into the multi-objective evolutionary
algorithm. This is meant to improve the performance of the
evolutionary-based search (Coello Coello et al., 2007; Corchado
et al., 2010, 2012; Deb, 2009; Ishibuchi et al., 2003). Specifically,
the multi-objective simulated annealing algorithm pursues two
aims. At the early stages of the evolutionary-based search, when
the population of the evolutionary algorithm is diverse, the simu-
lated annealing algorithm behaves like an exploitation process to
fine-tune the solutions in the population. At later stages of the evo-
lutionary-based search, when the population of the evolutionary
algorithm starts to converge or when the evolutionary-based
search is stagnated, the simulated annealing algorithm behaves
like an exploration process to introduce diversity in the population
of solutions and thus to prevent the premature convergence of the
evolutionary-based search. To achieve the two mentioned aims,
the behavior of the multi-objective simulated annealing algorithm
is self-adaptive based on the diversity level of the population of the
underlying multi-objective evolutionary algorithm.

4.1. General behavior of the multi-objective hybrid algorithm

Fig. 1 describes the general behavior of the multi-objective hy-
brid algorithm.

As seen in Fig. 1, the multi-objective hybrid algorithm is an iter-
ative process. This process starts from an initial population of solu-
tions. Each solution of this initial population encodes a feasible
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schedule for the project to be scheduled. Moreover, each solution
has a fitness value that represents the quality of the related sche-
dule with respect of the two optimization objectives considered
as part of the multi-objective project scheduling problem. The iter-
ative process ends when a number of generations is reached. After
this happens, the iterative process provides the non-dominated
solution set of the last population or generation as a solution to
the multi-objective project scheduling problem.

In each iteration, the multi-objective hybrid algorithm develops
the following steps. First, a multi-objective simulated annealing
algorithm is applied to each solution of the current population.
This algorithm behaves like either an exploitation process or an
exploration process depending on the diversity level of the current
population. Thus, the algorithm modifies the solutions of the cur-
rent population.

Then, a parent selection process is used to determine which
solutions of the population will compose the mating pool. The
solutions with the greatest fitness values will have more chances
of being selected.

Once the mating pool is composed, the solutions in the mating
pool are paired, and a crossover process is applied to each pair of
solutions with a probability Pc to generate new feasible ones.

Then, a mutation process is applied to each solution generated
by the crossover process. The behavior of the mutation process de-
pends on a probability Pm. The mutation process is applied with the
aim of introducing diversity in the new solutions generated by the
crossover process.

Finally, a survival selection process is used to determine which
solutions from the solutions in the population and the solutions
generated from the mating pool will compose the new population.

4.2. Components of the multi-objective hybrid algorithm

In the next sections, the main components of the multi-objec-
tive hybrid algorithm are described. These components are the
encoding and decoding of solutions, the multi-objective fitness
function, the multi-objective simulated annealing algorithm, and
the parent selection, crossover, mutation and survival selection
processes.

4.2.1. Encoding and decoding of solutions
To encode or represent the solutions of the population, the

encoding described in Yannibelli and Amandi (2012a) for project
schedules was used. Using this encoding, each solution is encoded
by two lists having as many positions as activities in the project to
be scheduled.

The first list is a classical activity list. Each position i on this list
contains a different activity j of the project. Each activity j can ap-
pear on the list in any position higher than the positions of all its
predecessors. Thus, the activity list is a feasible precedence list of
the activities involved in the project.

The second list is an assigned resources list. This list details the
employees assigned to each activity of the project. Specifically, po-
sition j on this list details the employees of every skill k assigned to
activity j.

To build the schedule related to the above-described encoding,
the serial schedule generation method (Kolisch & Hartmann, 1999)
was used. This method incorporates the project activities in the
schedule according to the order given by the activity list. When
an activity must be incorporated in the schedule, the method de-
fines the earliest feasible starting time for this activity. In this re-
spect, the method considers that an activity can start after all the
predecessors of the activity have been completed and when all
the employees assigned to the activity are available. Thus, the
schedule built by the method is always a feasible one.

In relation to the behavior of the above-described serial sche-
dule generation method, note that when this method is applied,
only one schedule can be built from a given encoded solution,
but different encoded solutions could be transformed in the same
schedule (Kolisch & Hartmann, 1999).

In relation to the generation of the encoded solutions of the ini-
tial population, the random-based generation process described in
Yannibelli and Amandi (2012a) was used. By this process, a diverse
initial population is obtained. This is meant to avoid the early stag-
nation of the search developed by the multi-objective hybrid
algorithm.

4.2.2. Multi-objective fitness function
This function is used by different components of the multi-

objective hybrid algorithm (i.e., multi-objective simulated anneal-
ing algorithm, parent selection, survival selection) to determine
the fitness values of the encoded solutions. The fitness value of
an encoded solution represents the quality of the related schedule
with respect of the two optimization objectives considered as part
of the addressed problem. One objective is to minimize the project
makespan, while the other is to maximize the effectiveness level of
the sets of employees assigned to the project activities. Therefore,
the multi-objective fitness function evaluates a given encoded
solution in relation to each one of the two mentioned optimization
objectives and then defines a scalar fitness value for the solution
based on the results obtained by the evaluations.

The detailed behavior of the multi-objective fitness function is
described as follows. Considering a given encoded solution, the

Fig. 1. Description of the multi-objective hybrid algorithm.
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function decodes the schedule s related to the solution by using the
serial method described in Section 4.2.1. Then, the function calcu-
lates the value of the term e(s) corresponding to s (Eqs. (1) and (2)),
and calculates the value of the term d(s) corresponding to s (Eqs.
(3) and (4)).

In order to calculate the value of the term e(s), the function uti-
lizes the values of the terms erCr,j,k,g inherent to s (Eq. (2)). As was
mentioned in Section 3, the values of the terms erCr,j,k,g inherent
to each available employee r are known. Note that the term e(s)
takes a real value over [0, . . .,N].

In order to calculate the value of the term d(s), the fitness func-
tion considers the values of the terms ft(j, s) inherent to s (Eq. (4)).

Once the terms e(s) and d(s) corresponding to schedule s have
been calculated, the fitness function defines a scalar fitness value
for s based on the mentioned terms. To define a scalar fitness value
for s, the fitness function uses the dominance grade approach
(Coello Coello et al., 2007; Deb, 2009).

The dominance grade approach is one of the most used ap-
proaches to define a scalar fitness value on the basis of a set of val-
ues corresponding to different optimization objectives (Coello
Coello et al., 2007; Deb, 2009; Eiben & Smith, 2007). This approach
has been effectively used in previous works that propose multi-
objective evolutionary algorithms to solve multi-objective project
scheduling problems (Hanne & Nickel, 2005; Yannibelli & Amandi,
2012a). It also has been effectively used in previous works that
propose multi-objective evolutionary algorithms to solve other
kinds of multi-objective scheduling problems (Lau et al., 2009).

The dominance grade approach defines a scalar fitness value on
the basis of information about the dominance of the given solution.
This information is used with the aim of discovering the non-dom-
inated solutions. Specifically, the dominance grade approach as-
signs to each solution a fitness value equal to the solution’s
dominance grade (Coello Coello et al., 2007; Deb, 2009; Konak,
Coit, & Smith, 2006).

The dominance grade of a solution refers to the number of solu-
tions that it dominates. Formally, the dominance grade of a solu-
tion x is given by Eq. (7). In this equation, the term P represents
the population on which the dominance grade is calculated. The
value of the term P depends on the process that calls the fitness
function. In this respect, the multi-objective hybrid algorithm has
three processes that call the fitness function and use the values re-
turned by this function.

The first of the three above-mentioned processes is the multi-
objective simulated annealing algorithm. The second process is
the parent selection. The third process is the survival selection.
The multi-objective simulated annealing algorithm is applied to
the solutions of the current population. Thus, in this case, the term
P is equal to the current population. The parent selection is devel-
oped on the population obtained by the multi-objective simulated
annealing stage. Therefore, in this case, the term P is equal to the
population obtained by the multi-objective simulated annealing
stage. The survival selection is developed on the population ob-
tained by the multi-objective simulated annealing stage and on
the solution set generated from the mating pool. Thus, in this case,
the term P is equal to the set composed of the solutions obtained
by the multi-objective simulated annealing stage and the solutions
generated from the mating pool.

domgradeðxÞ ¼ jfy 2 P : x � ygj ð7Þ

4.2.3. Multi-objective simulated annealing algorithm
In each iteration of the multi-objective hybrid algorithm, a

multi-objective simulated annealing stage is applied to the current
population. Specifically, a multi-objective simulated annealing
algorithm is applied to each solution of the current population.
This algorithm behaves like either an exploitation process or an
exploration process depending on the diversity level of the current
population. Thus, the multi-objective simulated annealing algo-
rithm modifies the solutions of the current population according
the diversity of this population.

Fig. 2 describes the multi-objective simulated annealing stage
of the multi-objective hybrid algorithm. Fig. 3 describes the gen-
eral behavior of the multi-objective simulated annealing
algorithm.

As seen in Fig. 3, the behavior of the multi-objective simulated
annealing algorithm is adapted to either an exploitation or explo-
ration behavior by the temperature parameter. The temperature
determines the probability of accepting new solutions that are
worse than the current solution. If the temperature is high, the
acceptance probability is also high, and vice versa. In the algo-
rithm, the temperature is inversely proportional to the diversity
of the current population. Such diversity is represented by the
spread of fitnesses within the current population. Based on the
mentioned, when the diversity of the current population

Fig. 2. Description of the multi-objective simulated annealing stage of the multi-objective hybrid algorithm.
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converges, the temperature rises and then the probability of
accepting adverse moves also rises. A consequence of this is that
the algorithm will be able to move away from the solution to
which it is applied, exploring different basins of attraction of the
search space. Eventually, the diversity of the current population
will increase lowering the temperature of this population.

Note that a new solution generated from the current solution is
worse than the current solution when the fitness of the new solu-
tion is lower than the fitness of the current solution. To determine
the fitness of a given solution, the algorithm uses the multi-
objective fitness function described in Section 4.2.2. Thus, the
fitness of a given solution is determined in respect of the two opti-
mization objectives considered as part of the addressed problem.

In relation to the generation of a new solution from the current
solution, the algorithm uses a move operator specially designed.
This move operator works as follows. Considering a given solution,
a move operation for activity lists is applied to the activity list of
the given solution. The result of this operation consists of a new
activity list. Then, a move operation for assigned resources lists is
applied to the assigned resources list of the given solution. The re-
sult of this operation consists of a new assigned resources list.
Thus, the move operator generates the components of a new solu-
tion from the given solution.

In relation to the move operation for activity lists, the simple
shift operation for activity lists described in Kolisch and Hartmann
(1999) is used. Given an activity list, this operation randomly se-
lects only one activity in the list and moves it from its position
to a new feasible position selected randomly.

In relation to the move operation for assigned resources lists, a
move operation that is a special case of the classical random reset-
ting (Eiben & Smith, 2007) is used. Given an assigned resources list,
this operation randomly selects only one position of the list and re-
places the resource assignment on this position by a new feasible
resource assignment selected randomly.

4.2.4. Parent selection process
The parent selection process is used to determine which solu-

tions of the population will compose the mating pool. This process
is really relevant because the solutions in the mating pool, called
parent solutions, will be used by the crossover process in order
to generate new solutions, called offspring solutions.

In this work, the parent selection process called tournament
selection (Eiben & Smith, 2007) with a tournament size equal to
two was applied. By using this process, the solutions with the
greatest fitness values within the population will have more
chances of being incorporated in the mating pool.

The tournament selection process, with a tournament size equal
to two, works as follows. Two solutions are randomly selected from
the population and compete for being incorporated in the mating
pool. The better one (i.e., the solution with the highest fitness va-
lue) is incorporated into the mating pool. Then, both solutions
are returned to the population. This operation is repeated until a
number M of solutions is incorporated in the mating pool, where
M is the population size.

4.2.5. Crossover process
The solutions in the mating pool are paired considering the or-

der in which they were incorporated in the mating pool. Then, a
crossover operation is applied to each of these pairs of solutions
with a predefined probability Pc to generate new solutions. Specif-
ically, the crossover operation applied to a pair of solutions, called
parent solutions, combines the characteristics of these solutions
and generates two new solutions, called offspring solutions. Thus,
the crossover operation has the possibility of combining the best
characteristics of the parent solutions so that new, better solutions
can be defined (Eiben & Smith, 2007; Goldberg, 2007). The behav-
ior of the crossover operation used in this work is described below.

Given two parent solutions (parent 1 and parent 2) that must be
recombined, the crossover operation works as follows. First, a
crossover operation for activity lists is applied to the activity lists
of the parent solutions. The result of this operation consists of
two new activity lists. The first one is assigned to the first offspring
(offspring 1) and the second one is assigned to the second offspring
(offspring 2). Then, a crossover operation for assigned resources
lists is applied to the assigned resources lists of the parent solu-
tions. The result of this operation consists of two new assigned re-
sources lists. The first one is assigned to the first offspring while
the second one is assigned to the second offspring. Thus, two
new solutions (offspring 1 and offspring 2) are generated from
the two parent solutions (parent 1 and parent 2).

In relation to the crossover operation for activity lists, this oper-
ation works as follows. Given the activity lists of parent 1 and par-
ent 2, the operation defines two random crossover points c1 and
c2, considering 1 6 c1 < c2 < N. Then, the first c1 activities on the
list of parent 1 are positioned in the first c1 positions on the list
of offspring 1, in the same order. Subsequently, the operation goes
through the activity list of parent 2 and selects the first (c2 � c1)
activities not included in the list of offspring 1. Then, the operation
copies these activities in the positions [c1 + 1,c2] of the list of off-
spring 1. The activities are copied considering the order in which
they appear in the list of parent 2. Finally, the activities not yet in-
cluded in the list of offspring 1 are positioned in the empty posi-
tions of this list. These activities are positioned taking into
account the order in which they appear in the list of parent 1.
The activity list generated for offspring 1 is a precedence feasible
list.

The generation of the activity list for offspring 2 is similar to the
generation of the list for offspring 1. However, the roles of the par-
ents are inverted to generate the list of offspring 2.

The above-described crossover operation for activity lists corre-
sponds to the two-point crossover developed by Hartmann (1998)
for activity lists.

In relation to the crossover operation for assigned resources
lists, this operation works as follows. Given the assigned resources
lists of parent 1 and parent 2, the operation generates a string V of
N random values from a uniform distribution over [0,1], V =
hv1, . . .,vp, . . .,vNi. Then, for all positions p = 1, . . .,N, if vp 6 0.5, the

Fig. 3. Description of the multi-objective simulated annealing algorithm.
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resource assignment for position p in the list of offspring 1 (in the
list of offspring 2) is inherited from parent 1 (from parent 2). On
the other hand, if vp > 0.5, the resource assignment for position p
in the list of offspring 1 (in the list of offspring 2) is inherited from
parent 2 (from parent 1). This operation always leads to new feasi-
ble assigned resources lists.

The above-described crossover operation for assigned resources
lists corresponds to the standard uniform crossover (Eiben &
Smith, 2007).

4.2.6. Mutation process
The previously described crossover process generates a new set

of solutions from the mating pool. Subsequently, a mutation oper-
ation is applied to each solution of this new set in order to ran-
domly modify one or more characteristics of some of these
solutions and thus to introduce genetic diversity in the set (Eiben
& Smith, 2007; Goldberg, 2007). The behavior of the mutation
operation used in this work is described below.

Given a solution that must be mutated, the mutation operation
works as follows. First, a mutation operation for activity lists is ap-
plied to the activity list of the given solution. The result of this
operation consists of a new activity list. Then, a mutation operation
for assigned resources lists is applied to the assigned resources list
of the given solution. The result of this operation consists of a new
assigned resources list. Thus, a mutated solution is generated from
the given solution.

In relation to the mutation operation for activity lists, the muta-
tion operation proposed by Hartmann (1998) for activity lists was
used. Given an activity list, this operation works as follows. For all
positions p = 1, . . .,N�1, the activities on positions p and p + 1 are
exchanged with probability Pm if both activities are not precedence
related. By this operation, only precedence feasible lists are
generated.

In relation to the mutation operation for assigned resources
lists, the mutation operation called random resetting (Eiben &
Smith, 2007) was used. Given an assigned resources list, this oper-
ation works as follows. For each position of the assigned resources
list, a new feasible resource assignment is randomly defined with a
probability of Pm. The described mutation operation always leads
to new feasible assigned resources lists.

4.2.7. Survival selection process
The survival selection process is applied in order to determine

which solutions from the solutions in the population (i.e., popula-
tion obtained by the multi-objective simulated annealing stage)
and the solutions generated from the mating pool will compose
the new population.

In this work, a survival selection process called steady state (Ei-
ben & Smith, 2007) was used. By this process, the best solutions
obtained by the multi-objective hybrid algorithm are preserved.

In the steady state process, the best (M � k) solutions of the
population and the best k solutions generated from the mating
pool are selected to compose the new population, where M is the
population size. To develop this process, the parameter k was set
to a value of M/2. This value is one of the most used for the param-
eter k (Deb, 2009; Eiben & Smith, 2007).

5. Computational experiments to evaluate the multi-objective
hybrid algorithm

In this section, the computational experiments developed to
evaluate the performance of the multi-objective hybrid algorithm
are described. After that, the results obtained are presented and
analyzed. Finally, the performance of the multi-objective hybrid
algorithm is compared with that of the multi-objective evolution-

ary algorithm presented in Yannibelli and Amandi (2012a) for solv-
ing the addressed problem. The algorithm presented in Yannibelli
and Amandi (2012a) is the only multi-objective algorithm previ-
ously proposed in the literature for solving the addressed problem.

To develop the computational experiments, the nine instance
sets presented in Yannibelli and Amandi (2012a) were used. Table 1
shows the main characteristics of these instance sets. The name of
each instance set contains two numbers: the first one indicates the
number of activities to be planned in each instance and the second
one indicates the maximal number of possible sets of employees
per activity. Each set contains 40 instances. Moreover, the sets
have no instances in common.

Each of the instances contains information about a number of
activities to be planned. For each activity, the instance details the
duration, the precedence relations, the required skills, and the
number of employees required for each required skill.

Moreover, each instance contains information about the skills
available to develop the activities and the employees available
for each of these skills. In this respect, each instance considers four
available skills and assumes that each available employee masters
only one of the four possible skills. Each instance also contains
information about the effectiveness level of each available employ-
ee r in relation to each of the possible work contexts for r in the in-
stance. Specifically, each instance contains all the terms erCr,j,k,g

inherent to each employee r of the instance and a random value
over [0,1] for each of the mentioned terms.

Each instance of the nine instance sets has a known optimal
solution in respect to the project makespan and a known optimal
solution in respect to the effectiveness level of the sets of employ-
ees assigned to the project activities (i.e., the project effectiveness
level). These optimal solutions are considered here as references.

The multi-objective hybrid algorithm has been run 20 times on
each of the instances of the nine instance sets. As a result of each
run, the multi-objective hybrid algorithm provided the non-domi-
nated solution set of the last population or generation.

The parameter setting used for the above-mentioned experi-
ments is presented in Table 2. This parameter setting was chosen
based on preliminary experiments. In this respect, various param-
eter settings were examined on each instance 10 times and then
the parameter setting presented in Table 2 was chosen because
this setting reached the best and most stable results.

In order to evaluate the performance of the multi-objective hy-
brid algorithm, some aspects of the quality of the non-dominated
solution sets obtained by the experiments were analyzed and the
computation times required by the algorithm were also analyzed.

Firstly, the spread and distribution of the solutions in the ob-
tained sets were analyzed. In order to analyze the two mentioned
aspects, the spread measure described in Wu and Azarm (2001)
and the distribution measure described in Lee, Von Allmen, Fink,
Petropoulos and Terrile (2005) were utilized. Based on the devel-
oped analysis, the solutions in the obtained sets have a good

Table 1
Characteristics of instance sets.

Instance
set

Number of activities to be
planned in each instance

Number of possible
sets of employees per
activity

Number
of
instances

j30_5 30 1–5 40
j30_10 30 1–10 40
j30_15 30 1–15 40
j60_5 60 1–5 40
j60_10 60 1–10 40
j60_15 60 1–15 40
j120_5 120 1–5 40
j120_10 120 1–10 40
j120_15 120 1–15 40
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distribution on the trade-off front of the objective space (i.e., the
range of values covered by the non-dominated solutions for each
optimization objective is varied) and have a good spread on the
objective space (i.e., the range of values covered by the non-dom-
inated solutions for each optimization objective is wide). This
means that the obtained sets contain solutions with diverse
trade-offs between the two optimization objectives.

The accuracy of the solutions in the obtained sets was also ana-
lyzed. To analyze this aspect, the accuracy measure utilized in
Hanne and Nickel (2005) and Yannibelli and Amandi (2012a) was
applied. This measure does not require knowledge of the true
non-dominated solution sets of the instances, which are unknown
in the current case. The measure only requires a reference value for
each optimization objective. In this respect, each instance consid-
ered here has a known optimal value for each objective. For each
instance, the measure selects the non-dominated solution with
the minimal project makespan of each obtained set, and calculates
the average percentage deviation of these solutions from the opti-
mal project makespan. Then, the measure selects the non-
dominated solution with the maximal project effectiveness level
of each obtained set, and calculates the average percentage devia-
tion of these solutions from the optimal project effectiveness level.
Finally, for each set of instances, the measure calculates the aver-
age value of the average percentage deviations for each optimiza-
tion objective.

Table 3 presents the average percentage deviation Av. Dev. (%)
obtained for each instance set in respect of each optimization
objective. The second column presents the Av. Dev. (%) obtained
in respect of the maximization of the project effectiveness level.
The third column presents the Av. Dev. (%) obtained in respect of
the minimization of the project makespan.

In relation to the maximization of the project effectiveness le-
vel, the Av. Dev. (%) obtained by the multi-objective hybrid algo-
rithm for j30_5, j30_10, j30_15 and j60_5 is 0%. These results
indicate that the algorithm has found non-dominated solutions
with the optimal project effectiveness level for each instance of
each set.

The Av. Dev. (%) obtained by the multi-objective hybrid algo-
rithm for j60_10, j60_15, j120_5, j120_10 and j120_15 is greater
than 0%. Taking into account that the instances of j60_10 and

j60_15, and the instances of j120_5, j120_10 and j120_15 have a
known optimal project effectiveness level equal to 60 and 120
respectively, the meaning of the average deviation obtained for
each one of these sets was analyzed. In the case of j60_10 and
j60_15, average deviations equal to 0.11% and 1.4% indicate that
the average level of the non-dominated solutions selected from
the sets obtained by the algorithm (i.e., non-dominated solutions
with the maximal project effectiveness level) is 59.934 and 59.16
respectively. In the case of j120_5, j120_10 and j120_15, average
deviations equal to 0.74%, 0.92% and 2.2% indicate that the average
level of the non-dominated solutions selected from the obtained
sets is 119.112, 118.896 and 117.36 respectively. Based on the men-
tioned, it may be stated that the algorithm has obtained non-dom-
inated solutions with very high project effectiveness levels for the
instances of j60_10, j60_15, j120_5, j120_10 and j120_15.

In relation to the minimization of the project makespan, the Av.
Dev. (%) value obtained for j30_15 is equal to 0%. This result indi-
cate that, for each instance of j30_15, the average project make-
span of the non-dominated solutions selected from the sets
obtained by the algorithm (i.e., non-dominated solutions with
the minimal project makespan) is equal to the optimal project
makespan. Therefore, it may be stated that the algorithm has ob-
tained non-dominated solutions with optimal makespans for the
instances of the set.

The Av. Dev. (%) values obtained for j120_5, j120_10, j120_15,
j60_5, j60_10, j60_15, j30_5 and j30_10 are lower than 0.24%.
These results indicate that, for each instance of the mentioned sets,
the average project makespan of the non-dominated solutions se-
lected from the sets obtained by the algorithm is near to the opti-
mal project makespan. Thus, it may be stated that the algorithm
has obtained non-dominated solutions with near-optimal make-
spans for the instances of each mentioned set.

Based on the previous analysis of the average deviations pre-
sented in Table 3, the following may be pointed out. For the in-
stances of j30_15, the algorithm has obtained non-dominated
solution sets in which: the solution with the maximal project effec-
tiveness level of the set has an optimal project effectiveness level,
and the solution with the minimal project makespan of the set has
an optimal makespan. For the instances of j30_5, j30_10 and j60_5,
the algorithm has obtained non-dominated solution sets in which:
the solution with the maximal project effectiveness level of the set
has an optimal project effectiveness level, and the solution with
the minimal project makespan of the set has a near-optimal make-
span. For the instances of j60_10, j60_15, j120_5, j120_10 and
j120_15, the algorithm has obtained non-dominated solution sets
in which: the solution with the maximal project effectiveness level
of the set has a very high project effectiveness level, and the solu-
tion with the minimal project makespan of the set has a near-
optimal makespan.

The computation times required by the multi-objective hybrid
algorithm were also analyzed. Table 4 reports the average compu-
tation time in seconds obtained for each instance set. The experi-
ments have been performed on a personal computer Intel Core 2
Duo at 3.00 GHz and 3 GB RAM under Windows XP Professional
Version 2002.

In relation to the average computation times presented in Ta-
ble 4, the following points may be mentioned. For j30_5, j30_10
and j30_15, the average time required by the algorithm was lower
than 13s. For j60_5, j60_10 and j60_15, the average time required
by the algorithm was higher than 27s and lower than 37s. Then,
for j120_5, j120_10 and j120_15, the average time required by
the algorithm was higher than 99s and lower than 156s. Consider-
ing the complexity of the instance sets used, in particular the com-
plexity of the instances of j120_5, j120_10 and j120_15, it may be
stated that the average computation times obtained by the multi-
objective hybrid algorithm are acceptable.

Table 2
Parameter setting used for the multi-objective hybrid algorithm.

Parameter Value

Population Size 50
Number of generations 300
Multi-objective simulated annealing algorithm

Number of iterations 30
a (cooling factor) 0.9

Crossover process
Crossover Probability Pc 0.8

Mutation process
Mutation Probability Pm 0.01

Table 3
Av. Dev. (%) obtained by the multi-objective hybrid algorithm for each instance set in
respect of each optimization objective.

Instance set max (e) min (d)

j30_5 0 0.012
j30_10 0 0.008
j30_15 0 0
j60_5 0 0.146
j60_10 0.11 0.07
j60_15 1.4 0.045
j120_5 0.74 0.23
j120_10 0.92 0.17
j120_15 2.2 0.15
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5.1. Comparison with the multi-objective algorithm previously
proposed in the literature for the addressed problem

In this section, the performance of the multi-objective hybrid
algorithm is compared with that of the multi-objective evolution-
ary algorithm presented in Yannibelli and Amandi (2012a) for solv-
ing the addressed problem. The algorithm presented in Yannibelli
and Amandi (2012a) is the only multi-objective algorithm previ-
ously proposed in the literature for solving the addressed problem.

For sake of simplicity, the multi-objective evolutionary algo-
rithm presented in Yannibelli and Amandi (2012a) will be referred
as algorithm PREA. In contrast with the multi-objective hybrid
algorithm, the algorithm PREA is not a hybrid algorithm. In this re-
spect, the framework of the algorithm PREA corresponds to a clas-
sical multi-objective evolutionary framework. Thus, the framework
of the algorithm PREA only includes the classical evolutionary
stages (i.e., parent selection, crossover, mutation, and survival
selection).

In Yannibelli and Amandi (2012a), the algorithm PREA was eval-
uated on the instances of the nine sets previously showed in Table 1
(i.e., sets j30_5, j30_10, j30_15, j60_5, j60_10, j60_15, j120_5,
j120_10 and j120_15). Specifically, the algorithm PREA was run
20 times on each of the instances of the nine instance sets. After
each run, the algorithm provided the non-dominated solution set
of the last population or generation. The 20 non-dominated solu-
tion sets obtained by the algorithm PREA for each instance are con-
sidered here in order to develop the performance comparison
between this algorithm and the multi-objective hybrid algorithm.
These sets were provided by the authors of Yannibelli and Amandi
(2012a). Moreover, the average percentage deviation Av. Dev. (%)
obtained by PREA for each instance set in respect of each optimiza-
tion objective and the average computation time obtained by PREA
for each instance set are considered here as detailed in Yannibelli
and Amandi (2012a). It is necessary to mention that, as described
in Yannibelli and Amandi (2012a), the algorithm PREA was evalu-
ated on a personal computer Intel Core 2 Duo at 3.00 GHz and 3 GB
RAM under Windows XP Professional Version 2002. Note that the
computer used to evaluate the algorithm PREA has the same char-
acteristics than the computer used here to evaluate the multi-
objective hybrid algorithm.

To compare the performance of the multi-objective hybrid algo-
rithm with that of the algorithm PREA, different aspects of the
quality of the non-dominated solution sets obtained by the algo-
rithms for each instance set are analyzed and compared in this sec-
tion. Moreover, the average computation times required by the
algorithms for each instance set are analyzed and compared in this
section.

In relation to the quality of the non-dominated solution sets ob-
tained by the algorithms for each instance set, the aspects of qual-
ity analyzed in this section refer to the size, ratio of non-dominated
solutions, accuracy, spread and distribution of the non-dominated
solution sets. To analyze these aspects, different performance mea-

sures are considered. In this respect, to analyze the accuracy of the
non-dominated solution sets, the average percentage deviation Av.
Dev. (%) for each instance set in respect of each optimization objec-
tive is considered. To analyze the other mentioned aspects of the
non-dominated solution sets, the measures described below are
considered. In the first two of these measures, the term a refers
to the multi-objective hybrid algorithm and the term b refers to
the algorithm PREA.

To analyze the performance of the algorithms in relation to the
size of the obtained non-dominated solution sets (considering that
the size of a non-dominated solution set refers to the number of
solutions in the set), the following measure is considered. This
measure will be referred as L(a,b). For a given instance set, the
measure L(a,b) calculates the percentage of instances for which
the sizes of the 20 non-dominated solution sets obtained by the
algorithm a are larger than the sizes of the 20 sets obtained by
the algorithm b. The measure gives a real value over the range
[0,100]. L(a,b) = 100 means that, for all the instances of the given
instance set, the sizes of the 20 non-dominated solution sets ob-
tained by the algorithm a are larger than the sizes of the 20 sets ob-
tained by the algorithm b. The opposite L(a,b) = 0 means that, for
none of the instances of the given instance set, the sizes of the
20 non-dominated solution sets obtained by the algorithm a are
larger than the sizes of the 20 sets obtained by the algorithm b.
Note that L(a,b) does not have to be equal to 1 � L(b,a). Thus, both
L(a,b) and L(b,a) are considered here. If L(a,b) > L(b,a), this means
that the performance of the algorithm a is better than the perfor-
mance of the algorithm b in relation to the size of the non-domi-
nated solution sets obtained for the given instance set.

To analyze the ratio of solutions in the sets obtained by the
algorithm a that are not dominated by any other solutions in the
sets obtained by the algorithm b, the measure described in Ishibu-
chi et al. (2003) is considered. This measure will be referred as
RNDS(a,b). For each instance of a given instance set, the measure
RNDS(a,b) considers the 20 non-dominated solution sets obtained
by the algorithm a, Sta (t = 1, . . .,20), and considers the 20 non-dom-
inated solution sets obtained by the algorithm b, Stb. Then, for each
of the sets Sta, the measure calculates the ratio of solutions in Sta

that are not dominated by any other solutions in the set Stb (Eq.
(8)). The higher the ratio is, the better the set Sta is. Then, the mea-
sure calculates the average value of the ratios obtained for the sets
Sta. Thus, the measure obtains an average ratio value for the in-
stance. Finally, for the given instance set, the measure calculates
the average value of the ratio values obtained for the instances of
the set. The described measure RNDS(a,b) gives a real value over
the range [0,1]. RNDS(a,b) = 0 means that, for all the instances of
the given instance set, the solutions in the sets obtained by the
algorithm a were dominated by solutions in the sets obtained by
the algorithm b. In contrast, RNDS(a,b) = 1 means that, for all the
instances of the given instance set, the solutions in the sets ob-
tained by the algorithm a were not dominated by any other solu-
tions in the sets obtained by the algorithm b. Note that
RNDS(a,b) does not have to be equal to 1 � RNDS(b,a). Thus, both
RNDS(a,b) and RNDS(b,a) are considered. If RNDS(a,b) > RNDS(b,a),
this means that the performance of the algorithm a is better than
the performance of the algorithm b in relation to the ratio of
non-dominated solutions.

RNDSðStaÞ ¼
jSta � fx 2 Sta : 9y 2 Stb : y � xgj

jStaj
ð8Þ

To analyze the distribution of the solutions in the sets obtained
by each algorithm, the non-uniformity measure described in Lee
et al. (2005) is considered. This measure will be referred as NU.
For each instance of a given instance set, the measure NU considers
the 20 non-dominated solution sets obtained by the algorithm in

Table 4
Average computation time (in seconds) obtained by the multi-objective hybrid
algorithm for each instance set.

Instance set Average time (s)

j30_5 8.44
j30_10 10.5
j30_15 12.67
j60_5 27.4
j60_10 31.8
j60_15 36.4
j120_5 99.7
j120_10 121.8
j120_15 155.01
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question, St (t = 1, . . .,20). For each of the sets St, the measure calcu-
lates the non-uniformity of the distribution of the solutions on the
trade-off front in the objective space. This is calculated by Eq. (9). In
this equation, disti is the Euclidean distance between consecutive
solutions in St, i = 1, . . ., (|St| � 1), and distu is the average of all dis-
tances disti. Thus, Eq. (9) obtains the standard deviation of the dis-
tances disti normalized by the average distance distu. D(St) = 0
means that the distribution of the solutions on the trade-off front
is uniform. The higher the value of D(St), the more non-uniform
the distribution of the solutions on the trade-off front. Then, the
measure NU calculates the average value of the non-uniformity val-
ues obtained for the sets St. Thus, the measure obtains an average
non-uniformity value for the instance. Finally, for the given in-
stance set, the measure calculates the average value of the non-
uniformity values obtained for the instances of the set. The
described measure NU gives a real value greater than or equal to
0. NU = 0 means that, for the instances of the given instance set,
the solutions in the obtained sets have a uniform distribution on
the trade-off front. In contrast, NU > 0 means that, for at least one
of the instances of the given instance set, the solutions in at least
one of the obtained sets have a non-uniform distribution on the
trade-off front. The higher the value of NU, the worst the perfor-
mance of the algorithm in relation to the distribution of the solu-
tions in the obtained sets. Therefore, a lower value of NU is desired.

DðStÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXjSt j�1

i¼1

ðdisti=distu � 1Þ2

jStj � 1

vuuuut
ð9Þ

To analyze the spread of the solutions in the sets obtained by
each algorithm, the measure Overall Pareto Spread (OS) described
in Wu and Azarm (2001) is considered. For each instance of a given
instance set, the measure OS considers the 20 non-dominated solu-
tion sets obtained by the algorithm in question, St (t = 1, . . .,20). For
each of the sets St, the measure calculates the ratio between the
area of coverage of St and the objective space (note that the objec-
tive space has two dimensions: the project effectiveness level and
the project makespan). This ratio is calculated by Eq. (10). In this
equation, the reference solutions PG and PB are used to define the
size of the objective space. PG is a good (utopian) solution (i.e., a
solution with an optimal project effectiveness level and an optimal
project makespan) and PB is a bad solution (i.e., a solution with a
project effectiveness level equal to 0 and a project makespan equal
to the sum of the makespans of the project activities). The term M
is the number of dimensions of the objective space (i.e., number of
objective axes). In the present case, M = 2. Eq. (11) calculates, for
each objective axis, the ratio between the width of the range of val-
ues covered by St and the width of the range of values of the objec-
tive space. In this equation, fm(s) refers to the value of solution s in
relation to the objective axis m. Note that the higher the value gi-
ven by Eq. (10), the more wide the spread of St. Then, the measure
OS calculates the average value of the ratios obtained for the sets St.
Thus, the measure obtains an average ratio for the instance. Finally,
for the given instance set, the measure calculates the average value
of the ratios obtained for the instances of the set. The described
measure OS gives a real value over [0,1]. In this respect, the higher
the value of the measure OS, the more wide the spread of the non-
dominated solution sets obtained by the algorithm for the given in-
stance set and the better the performance of the algorithm in rela-
tion to the spread of the obtained sets.

OSðSt ; PG; PBÞ ¼
YM
m¼1

OSmðSt; PG; PBÞ ð10Þ

OSmðSt ; PG; PBÞ ¼
jmax

s2St
fmðsÞ �min

s2St
fmðsÞj

jfmðPBÞ � fmðPGÞj
ð11Þ

Tables 5–9 report the performance of the multi-objective hybrid
algorithm and the performance of the algorithm PREA in relation to
the measures L(�), RNDS(�), NU, OS and Av. Dev. (%), respectively.

Table 5 reports the value obtained by each of the two algo-
rithms in relation to the measure L(�) for each instance set. The
lowest value obtained by the multi-objective hybrid algorithm is
70% for j120_15, whereas the value obtained by the algorithm
PREA for each instance set is 0%. These values indicate that for at
least 70% of the instances of each instance set, the sizes of the 20
non-dominated solution sets obtained by the multi-objective hy-
brid algorithm are larger than the sizes of the 20 sets obtained
by the algorithm PREA. In contrast, for none of the used instances,
the sizes of the 20 non-dominated solution sets obtained by the
algorithm PREA are larger than the sizes of the 20 sets obtained
by the multi-objective hybrid algorithm. Therefore, the multi-
objective hybrid algorithm outperformed the algorithm PREA in
relation to the size of the obtained non-dominated solution sets.

Table 6 reports the value obtained by each of the two algo-
rithms in relation to the measure RNDS(�) for each instance set.
The lowest value obtained by the multi-objective hybrid algorithm
is 0.61 for j120_15, whereas the highest value obtained by the
algorithm PREA is 0.3 for j30_10. These values indicate that, for
the instances of each instance set, at least 61% of the solutions in
the sets obtained by the multi-objective hybrid algorithm are not
dominated by any other solutions in the sets obtained by the algo-
rithm PREA. In contrast, for the instances of each instance set, at
most 30% of the solutions in the sets obtained by the algorithm
PREA are not dominated by any other solutions in the sets obtained
by the multi-objective hybrid algorithm. Thus, the multi-objective
hybrid algorithm outperformed the algorithm PREA in relation to
the ratio of non-dominated solutions.

Table 7 reports the value obtained by each of the two algo-
rithms in relation to the measure NU for each instance set. For all
instance sets, the value obtained by the multi-objective hybrid
algorithm is much lower than the value obtained by the algorithm
PREA. This means that the distribution of the solutions in the sets
obtained by the multi-objective hybrid algorithm on the trade-off

Table 5
Performance of the multi-objective hybrid algorithm and performance of the
algorithm PREA in relation to the measure L(�).

Instance set L(Hybrid,PREA) L(PREA,Hybrid)

j30_5 97.5 0
j30_10 95 0
j30_15 95 0
j60_5 90 0
j60_10 85 0
j60_15 82.5 0
j120_5 77.5 0
j120_10 72.5 0
j120_15 70 0

Table 6
Performance of the multi-objective hybrid algorithm and performance of the
algorithm PREA in relation to the measure RNDS(�).

Instance set RNDS(Hybrid,PREA) RNDS(PREA,Hybrid)

j30_5 0.86 0.25
j30_10 0.87 0.3
j30_15 0.83 0.28
j60_5 0.74 0.14
j60_10 0.76 0.2
j60_15 0.72 0.18
j120_5 0.62 0.11
j120_10 0.64 0.13
j120_15 0.61 0.1
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front in the objective space is more uniform than the distribution
of the solutions in the sets obtained by the algorithm PREA. Specif-
ically, for each dimension of the objective space, the ranges of val-
ues covered by the solution sets obtained by the multi-objective
hybrid algorithm are more varied than those covered by the solu-
tion sets obtained by the algorithm PREA. Therefore, the multi-
objective hybrid algorithm outperformed the algorithm PREA in
relation to the distribution of the solutions in the obtained sets.

Table 8 reports the value obtained by each of the two algorithms
in relation to the measure OS for each instance set. For all instance
sets, the value obtained by the multi-objective hybrid algorithm is
higher than the value obtained by the algorithm PREA. This means
that the spread of the non-dominated solution sets obtained by the
multi-objective hybrid algorithm is wider than the spread of the
non-dominated solution sets obtained by the algorithm PREA. Spe-
cifically, for each dimension of the objective space, the ranges of
values covered by the solution sets obtained by the multi-objective
hybrid algorithm are wider than those covered by the solution sets
obtained by the algorithm PREA. Therefore, the multi-objective hy-
brid algorithm outperformed the algorithm PREA in relation to the
spread of the obtained non-dominated solution sets.

Table 9 reports the average percentage deviation Av. Dev. (%)
obtained by each of the algorithms for each instance set in respect
of each optimization objective. Columns 2 and 4 present the Av.
Dev. (%) obtained for each instance set in respect of the maximiza-
tion of the project effectiveness level, and columns 3 and 5 present
the Av. Dev. (%) obtained for each instance set in respect of the min-
imization of the project makespan. For each instance set, the Av.
Dev. (%) obtained by the multi-objective hybrid algorithm in re-
spect of the maximization of the project effectiveness level (the
minimization of the project makespan) is lower than the Av. Dev.
(%) obtained by the algorithm PREA in respect of the maximization
of the project effectiveness level (the minimization of the project
makespan). This means that, compared with the algorithm PREA,
the multi-objective hybrid algorithm was more effective to reach
non-dominated solutions with an optimal or near-optimal project
makespan and non-dominated solutions with an optimal or near-
optimal project effectiveness level.

From the analysis of the results presented in Tables 5–9, it may
be stated that the quality (i.e., size, ratio of non-dominated solu-
tions, spread, distribution and accuracy) of the non-dominated
solution sets obtained by the multi-objective hybrid algorithm is
better than the quality of the non-dominated solution sets ob-
tained by the algorithm PREA. In addition, as Table 10 reports,
the average computation time required by the multi-objective hy-
brid algorithm for each instance set is lower than that required by
the algorithm PREA. Thus, the multi-objective hybrid algorithm not
only found better non-dominated solution sets, but also found
them faster. This is mainly because, unlike the algorithm PREA,
the multi-objective hybrid algorithm integrates a multi-objective
simulated annealing algorithm into the evolutionary framework.
At the early evolutionary cycles, the multi-objective simulated
annealing algorithm fine-tunes the solutions obtained by the evo-
lutionary search. At later evolutionary cycles, the multi-objective
simulated annealing algorithm diversifies the solutions obtained
by the evolutionary search to allow this search progresses. Thus,
the multi-objective hybrid algorithm can reach better non-domi-
nated solution sets in much less generations than the algorithm
PREA for the considered instance sets. In this sense, the multi-
objective hybrid algorithm required 300 generations from an initial
population with 50 solutions to obtain the reported results, as was
mentioned in Table 2, whereas the algorithm PREA required 500
generations from an initial population with 50 solutions, as men-
tioned in Yannibelli and Amandi (2012a). Thus, although the com-
putation time required by one generation of the multi-objective
hybrid algorithm is slightly higher than that required by one gen-
eration of the algorithm PREA mainly because of the incorporation
of the multi-objective simulated annealing algorithm, the total
computation time required by the multi-objective hybrid algo-
rithm is lower than that required by the algorithm PREA.

Based on the above-mentioned, the multi-objective hybrid algo-
rithm may be considered to obtain higher-quality non-dominated
solution sets than the algorithm PREA.

6. Conclusions and future work

In this paper, the multi-objective project scheduling problem
introduced in Yannibelli and Amandi (2012a) was addressed. This
multi-objective project scheduling problem considers two conflict-
ing, priority optimization objectives for managers. One of the
objectives entails minimizing the project makespan, whereas the
other objective involves assigning the most effective set of human
resources to each project activity. This multi-objective project
scheduling problem considers that the effectiveness of a human re-
source depends on various factors inherent to its work context.
This is a very important aspect because, in real multi-objective pro-

Table 7
Performance of the multi-objective hybrid algorithm and performance of the
algorithm PREA in relation to the measure NU.

Instance set Hybrid algorithm Algorithm PREA

j30_5 0.056 0.279
j30_10 0.062 0.301
j30_15 0.068 0.293
j60_5 0.081 0.32
j60_10 0.078 0.35
j60_15 0.089 0.386
j120_5 0.09 0.401
j120_10 0.101 0.42
j120_15 0.098 0.418

Table 8
Performance of the multi-objective hybrid algorithm and performance of the
algorithm PREA in relation to the measure OS.

Instance set Hybrid algorithm Algorithm PREA

j30_5 0.53 0.39
j30_10 0.56 0.42
j30_15 0.59 0.45
j60_5 0.5 0.37
j60_10 0.47 0.33
j60_15 0.456 0.3
j120_5 0.42 0.28
j120_10 0.39 0.267
j120_15 0.401 0.25

Table 9
Av. Dev (%) obtained by each of the two algorithms (the multi-objective hybrid
algorithm and the algorithm PREA) for each instance set in respect of each
optimization objective.

Instance set Hybrid algorithm Algorithm PREA

max (e) min (d) max (e) min (d)

j30_5 0 0.012 0 0.02
j30_10 0 0.008 0 0.012
j30_15 0 0 0.2 0.009
j60_5 0 0.146 0 0.17
j60_10 0.11 0.07 0.4 0.09
j60_15 1.4 0.045 1.8 0.07
j120_5 0.74 0.23 1.1 0.25
j120_10 0.92 0.17 1.25 0.19
j120_15 2.2 0.15 2.7 0.18
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ject scheduling problems, the human resources usually have differ-
ent effectiveness levels in relation to different work contexts (Bar-
rick et al., 1998; Heerkens, 2002; Wysocki, 2003). Therefore, the
effectiveness of a human resource needs to be considered in rela-
tion to its work context. To the best of the authors’ knowledge,
the influence of the work context on the effectiveness of the hu-
man resources has not been considered in other multi-objective
project scheduling problems reported in the literature.

To solve the addressed problem, a multi-objective hybrid algo-
rithm was proposed. This is a search and optimization algorithm
composed by two search and optimization algorithms: a multi-
objective simulated annealing algorithm and a multi-objective
evolutionary algorithm. The multi-objective simulated annealing
algorithm is integrated into the framework of the multi-objective
evolutionary algorithm. This is meant to improve the performance
of the evolutionary-based search. Specifically, the multi-objective
simulated annealing algorithm serves two purposes. At the early
stages of the evolutionary-based search, when this search is di-
verse, the simulated annealing algorithm behaves like an exploita-
tion process to fine-tune the solutions reached by the
evolutionary-based search. At later stages of the evolutionary-
based search, when this search starts to converge, the simulated
annealing algorithm behaves like an exploration process to diver-
sify the solutions reached by the evolutionary-based search and
thus to allow this search progresses. To achieve the two mentioned
purposes, the behavior of the multi-objective simulated annealing
algorithm is self-adaptive based on observations from the state of
the evolutionary-based search.

The multi-objective hybrid algorithm generates an approxima-
tion to the true Pareto set as a solution to the problem. Specifically,
the algorithm provides a set of near non-dominated solutions (i.e.,
project schedules) as a solution to the problem.

To evaluate the performance of the multi-objective hybrid algo-
rithm, the nine instance sets described in Yannibelli and Amandi
(2012a) were considered, and the computational experiments
developed on these nine instance sets were presented. Then, the
performance of the multi-objective hybrid algorithm on the men-
tioned instance sets was compared with that of the multi-objective
evolutionary algorithm previously proposed in Yannibelli and
Amandi (2012a) for solving the addressed problem.

In the developed experiments, the multi-objective hybrid algo-
rithm was tested many times on each of the instances of the nine
instance sets, and after each one of the runs, the algorithm pro-
vided the non-dominated solution set of the last population or gen-
eration. To evaluate the performance of the multi-objective hybrid
algorithm on each instance set, different aspects of the quality (i.e.,
spread, distribution and accuracy) of the non-dominated solution
sets obtained for each instance set were analyzed. Moreover, the
average computation time required by the algorithm for each in-
stance set was analyzed. Based on the developed analysis, it may
be stated that the multi-objective hybrid algorithm has obtained

non-dominated solution sets with a wide spread, a good distribu-
tion and a high accuracy in an acceptable computation time for
each instance set.

In order to compare the performance of the multi-objective hy-
brid algorithm on the nine instance sets with that of the multi-
objective evolutionary algorithm previously proposed in Yannibelli
and Amandi (2012a), different aspects of the quality (i.e., size, ratio
of non-dominated solutions, spread, distribution and accuracy) of
the non-dominated solution sets obtained by the algorithms for
each instance set were analyzed and compared. Moreover, the
average computation times required by the algorithms for each in-
stance set were analyzed and compared. As a result of the compar-
ative analysis conducted, it may be stated that the quality of the
non-dominated solution sets obtained by the multi-objective hy-
brid algorithm is better than the quality of the non-dominated
solution sets obtained by the algorithm proposed in Yannibelli
and Amandi (2012a). Specifically, the multi-objective hybrid algo-
rithm has obtained non-dominated solution sets with a better size,
ratio of non-dominated solutions, spread, distribution and accu-
racy for each instance set. Moreover, the average computation time
required by the multi-objective hybrid algorithm for each instance
set is lower than that required by the algorithm proposed in Yan-
nibelli and Amandi (2012a). Thus, the multi-objective hybrid algo-
rithm has been shown to be more effective and efficient than the
algorithm proposed in Yannibelli and Amandi (2012a) on the nine
instance sets considered here.

Based on the above-mentioned, it is considered that the multi-
objective hybrid algorithm proposed in this paper may be used to
obtain higher-quality non-dominated solution sets than the algo-
rithm proposed in Yannibelli and Amandi (2012a). Specifically, it
is considered that a project manager may obtain a higher number
of solutions (i.e., project schedules) with more varied, better trade-
offs between the optimization objectives by using the multi-objec-
tive hybrid algorithm proposed in this paper.

In the multi-objective hybrid algorithm proposed in this paper,
a multi-objective simulated annealing algorithm was integrated
like a local exploitation/exploration process within a multi-objec-
tive evolutionary algorithm. In future works, the integration of
other local exploitation/exploration processes (e.g., multi-objective
tabu search and multi-objective hill climbing) within the multi-
objective evolutionary algorithm will be investigated. Moreover,
other crossover and mutation processes will be evaluated for the
encoding of solutions used in the multi-objective hybrid algorithm.
In addition, other survival selection processes proposed in the lit-
erature (e.g., deterministic crowding) will be examined.
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