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Abstract Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert
space H we characterize in a complete and explicit way the optimal completions
of F0 obtained by appending a finite sequence of vectors with prescribed norms,
where optimality is measured with respect to majorization (of the eigenvalues of the
frame operators of the completed sequences). Indeed, we construct (in terms of a
fast algorithm) a vector—that depends on the eigenvalues of the frame operator of
the initial sequence F0 and the sequence of prescribed norms—that is a minimum for
majorization among all eigenvalues of frame operators of completions with prescribed
norms. Then, using the eigenspaces of the frame operator of the initial sequence F0
we describe the frame operators of all optimal completions for majorization. Hence,
the concrete optimal completions with prescribed norms can be obtained using recent
algorithmic constructions related with the Schur-Horn theorem.
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1 Introduction

A finite sequence of vectors F = { fi }n
i=1 in a d-dimensional complex Hilbert space

H is a frame for H if the sequence spans H. It is well known that finite frames
provide (stable) linear encoding-decoding schemes. As opposed to bases, frames are
not subject to linear independence; indeed, it turns out that the redundancy allowed
in finite frames can be turned into robustness of the transmission scheme that they
induce, which makes frames a useful device for transmission of signals through noisy
channels (see [4–6,11,21,24,25]).

The frame operator of a given a sequence of vectors F = { fi }n
i=1 in H is the positive

operator on H defined as

SF =
n∑

i=1

fi ⊗ fi ,

where g⊗ f is the linear operator in H given by: g⊗ f (h) = 〈h, f 〉 g for every h ∈ H.
Thus, a sequence F is a frame for H if and only if SF is an invertible operator. When
the frame operator is a multiple of the identity, the frame is called tight. Tight frames
allow for redundant linear representations of vectors that are formally analogous to the
linear representations given by orthonormal basis; this feature makes tight frames a
distinguished class of frames that is of interest for applications. In several applications
we would like to consider tight frames that have some other prescribed properties
leading to what is known in the literature as frame design problems [1,7,8,13–16,23].
It turns out that in some cases it is not possible to find a frame fulfilling the previous
demands.

An alternative approach to deal with the construction of frames with prescribed
parameters and nice associated reconstruction formulas was posed in [2] by Benedetto
and Fickus; they defined a functional, called the frame potential, and showed that
minimizers of the frame potential (within a convenient set of frames) are the natural
substitutes of tight frames with prescribed parameters (see also [10,20,22,27] and
[9,28,29] for related problems in the context of fusion frames). Moreover, in [27] it is
shown that minimizers of the frame potential under suitable restrictions (considered in
the literature) are structural minimizers in the sense that they coincide with minimizers
of more general convex potentials.

Recently, there has been interest in the following optimal frame completion prob-
lem: given an initial sequence F0 in H and a sequence of positive numbers a then,
compute the sequences G in H whose elements have norms given by the sequence a
and such that the completed sequence F = (F0,G) is such that the eigenvalues of
its frame operators are as concentrated as possible: thus, ideally, we would search for
completions G such that F = (F0,G) is a tight frame. Unfortunately, it is well known
that there might not exist such completions (see [16–18,26,30,31]). In this setting, the
initial sequence of vectors can be considered as a checking device for the measure-
ment, and therefore we search for a complementary set of measurements (given by
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vectors with prescribed norms) in such a way that the complete set of measurements
is optimal in some sense. Following [2,10] we could measure optimality in terms
of the frame potential i.e., we could search for completions with prescribed norms
G such that F = (F0,G) minimizes the frame potential among such completions;
alternatively, we could measure optimality in terms of the so-called mean squared
error (MSE) of the completed sequence (see [18]). More generally, we can consider
a natural extension of the previous problems: given a functional defined on the set
of frames, compute the frame completions with prescribed norms that minimize this
functional. Moreover, this last problem raises the question of whether the completions
that minimize these functionals coincide i.e., whether the minimizers are structural in
this setting.

A first step towards the solution of the general version of the completion problem
was made in [30]. There we showed that under certain hypothesis (feasible cases,
see Sect. 2.3), optimal frame completions with prescribed norms are structural (do
not depend on the particular choice of functional), as long as we consider convex
potentials, that contain the MSE and the frame potential. On the other hand, it is easy
to show examples in which the previous result does not apply (non-feasible cases);
in these cases the optimal frame completions with prescribed norms were not known
even for the MSE nor the frame potential.

In [31] we considered the structure of completions that minimize a fixed convex
potential (non feasible case). There, we showed that the eigenvalues of optimal comple-
tions with respect to a fixed convex potential are uniquely determined by the solution
of an optimization problem in a compact convex subset of R

d for a convex objective
function that is associated to the convex potential in a natural way. Then, we showed an
important geometrical feature of optimal completions F = (F0,G) for a fixed convex
potential, namely that the vectors in the completion G are eigenvectors of the frame
operator of the completed sequence F (see Sect. 2.2 for a detailed exposition of these
results). Based on these facts, we developed an algorithm that allowed us to compute
the solutions of the completion problem for small dimensions. In this setting we con-
jectured some properties of the optimal frame completions in the general case, based
on common features of the solutions of several examples obtained by this algorithm
(see Sect. 3 for a detailed description of these conjectures).

In this paper, building on our previous work [30] and [31], we give a complete and
explicit description of the spectral and geometrical structure of optimal completions
with prescribed norms with respect to a convex potential induced by a strictly convex
function. Our approach is constructive and allows to develop a fast and effective
algorithm that computes the spectral structure of optimal completions. As we shall
see, given an initial sequence F0 in H and a sequence of positive numbers a, both the
spectral and geometrical structure of optimal completions depend only on the frame
operator of F0 and a, but they do not depend on the particular choice of the convex
potential. Hence, we show that in the general case the minimizers of convex potentials
(induced by strictly convex functions) are structural.

In order to obtain the previous results, we begin by proving the properties of general
optimal completions conjectured in [31]. These properties (that are structural, in the
sense that they do not depend on the convex potential) are then used to compute
several other structural parameters—that involve the notion of feasibility developed
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in [30]—that completely describe the spectral structure of optimal completions. As
a consequence of this description, we conclude that optimal solutions have the same
eigenvalues and hence, the eigenvalues of optimal completions are minimum for the so-
called majorization preorder. Moreover, all the parameters involved in the description
of the spectral structure of optimal completions can be computed in terms of fast
algorithms. With the spectral data and results from [30] we completely describe the
set positive matrices that correspond to the frame operators of sequences G with
norms prescribed by a and such that F = (F0,G) are optimal. Finally, every optimal
completion G can be computed by using recent results from [7] (see also [14] and
[19]).

The paper is organized as follows. In Secton 2 we describe the context of our main
problem—namely, optimal completions with prescribed norms, where optimality is
described in terms of majorization—and give a detailed account of several related
results that were developed in our previous works [30] and [31] that we shall need
in the sequel, in a way suitable for this note; in particular, we include a new con-
struction of the spectra of optimal completions in the feasible cases. In Sect. 3 we
introduce new structural parameters—that can be efficiently computed in terms of
explicit algorithms—and show how to give a complete description of the spectra of
optimal completions for strictly convex potentials, in terms of these parameters in the
general case. This allows us to show that the spectra of such optimal completions
do not depend on the choice of strictly convex potential, so that minimizers are then
structural. The proofs of the technical results of this section are presented in Sect. 4. In
particular, we settle in the affirmative some features of the structure of optimal com-
pletions for strictly convex potentials that were conjectured in [31]. As a byproduct
we also settle in the affirmative a conjecture on local minimizers of strictly convex
potentials with prescribed norms posed in [27].

2 Optimal Completions with Prescribed Norms

In this section we give a detailed description of the optimal completion problem and
recall some notions and results from our previous work [30,31]. We point out that
the exposition of the results in Sect. 2.3 differs from that of [31], since this new
presentation is better suited for our present purposes.

By now, finite frame theory is a well established area of intensive research. For a
modern introduction to several aspect of this subject see [12]. In what follows we shall
use the following notations and terminology:

Notations and terminology: let F = { fi }n
i=1 be a finite sequence in a complex

d-dimensional Hilbert space H. Then,

1. TF ∈ L(Cn,H) denotes the synthesis operator of F given by TF ((αi )
n
i=1) =∑n

i=1 αi fi .
2. T ∗

F ∈ L(H, C
n) denotes the analysis operator of F and it is given by T ∗

F ( f ) =
(〈 f, fi 〉)n

i=1.
3. SF ∈ L(H) denotes the frame operator of F and it is given by SF = TF T ∗

F .
Hence, S f = ∑n

i=1〈 f, fi 〉 fi = ∑n
i=1 fi ⊗ fi ( f ) for f ∈ H. Notice that SF is

positive by construction.
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4. We say that F is a frame for H if F spans H; equivalently, F is a frame for H if
SF is a positive invertible operator acting on H.

5. In order to check whether F is a frame, we will inspect the spectrum of SF .
Thus, given a positive operator S ∈ L(H), λ(S) = (λi )

d
i=1 ∈ R

d≥0 denotes the
eigenvelues of SF , counting multiplicities and arranged in non-increasing order
i.e. λ1 ≥ . . . ≥ λd ≥ 0.

2.1 Presentation of the Problem

In several applied situations it is desired to construct a sequence G in a complex d-
dimensional Hilbert space H in such a way that the frame operator of G is given by
some positive operator B and the squared norms of the frame elements are prescribed
by a sequence of positive numbers a = (ai )

k
i=1. That is, given a fixed positive operator

B on H and a ∈ R
k
>0, we analyze the existence (and construction) of a sequence

G = {gi }k
i=1 such that SG = B and ‖gi‖2 = ai , for 1 ≤ i ≤ k. This is known as the

classical frame design problem. It has been treated by several research groups (see
for example [1,7,8,13–16,23]). In what follows we recall a solution of the classical
frame design problem in the finite dimensional setting.

Proposition 2.1 ([1,26]) Let B be a positive operator on H and let λ(B) = (λi )
d
i=1.

Consider α1 ≥ · · · ≥ αk > 0. Then there exists a sequence G = {gi }k
i=1 in H with

frame operator SG = B such that ‖gi‖2 = αi for every 1 ≤ i ≤ k if and only if

j∑

i=1

αi ≤
j∑

i=1

λi , for 1 ≤ j ≤ min{k, d} and
k∑

i=1

αi =
d∑

i=1

λi . (1)


�
Recently, researchers have made a step forward in the classical frame design problem
and have asked about the structure of optimal frames with prescribed parameters.
In particular, there has been interest in the following problem: let H ∼= C

d and let
F0 = { fi }no

i=1 be a fixed (finite) sequence of vectors in H. Consider a sequence
a = (ai )

k
i=1 of positive numbres such that rk SF0 ≥ d − k and denote by n = no + k.

Then, with this fixed data, the problem is to construct a sequence

G = {gi }k
i=1 with ‖gi‖2 = ai for 1 ≤ i ≤ k,

such that the resulting completed sequence F = (F0,G) - obtained by appending
the sequence G to F0—is a frame such that the eigenvalues of the frame operator
of F = (F0,G) are as concentrated as possible: thus, ideally, we would search for
completions G such that F = (F0,G) is a tight frame. Unfortunately, it is well known
that there might not exist such completions (see [16–18,26,30,31]). In this setting, the
initial sequence of vectors can be considered as a checking device for the measurement,
and therefore we search for a complementary set of measurements (given by vectors
with prescribed norms) in such a way that the complete set of measurements is optimal
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in some sense. We could measure optimality in terms of the frame potential i.e., we
search for a frame F = (F0,G), with ‖gi‖2 = ai for 1 ≤ i ≤ k, and such that its frame
potential FP(F) = tr S2

F is minimal among all possible such completions (indeed,
this problem has been considered before in the particular case in which F0 = ∅ in
[2,10,20,22,27]); alternatively, we could measure optimality in terms of the so-called
mean squared error (MSE) of the completed sequence F i.e. MSE(F) = tr(S−1

F ) (see
[18]). More generally, we can measure robustness of the completed frame F = (F0,G)

in terms of general convex potentials:

Definition 2.2 Let us denote by

Conv(R≥0) = { f : [0,∞) → [0,∞) : f is a convex function}

and Convs(R≥0) = { f ∈ Conv(R≥0) : f is strictly convex}. Following [27] we
consider the (generalized) convex potential Pf associated to any f ∈ Conv(R≥0),
given by

Pf (F) = tr f (SF ) = ∑d
i=1 f (λi (SF )) for F = { fi }n

i=1 ∈ Hn,

where the matrix f (SF ) is defined by means of the usual functional calculus. �
In order to describe the main problems we first fix the notation that we shall use

throughout the paper.

Definition 2.3 Let H be a complex d-dimensional Hilbert space, let F0 = { fi }no
i=1

be a sequence of vectors in H and a = (ai )
k
i=1 be a positive nonincreasing sequence

such that d − rk SF0 ≤ k. Define n = no + k. Then

1. In what follows we say that (F0, a) are initial data for the completion problem
(CP).

2. For these data we consider the set

Ca(F0) = {
(F0,G) ∈ Hn : G = {gi }k

i=1 and ‖gi‖2 = ai for 1 ≤ i ≤ k
}
,

When the initial data (F0, a) are fixed, we shall use the notations S0 = SF0 and
λ = λ(S0)

↑ will denote the eigenvalues of S0 arranged in a non-decreasing order
i.e. λ1 ≤ . . . ≤ λd , where x↑ ∈ R

d denotes the vector obtained from x ∈ R
d by

re-arranging the coordinates of x in non-decreasing order.

Main problems: (Optimal completions with prescribed norms for majorization) Let
(F0, a) be initial data for the CPand let f ∈ Convs(R≥0).

P1. Give an explicit description (both spectral and geometrical) of F ∈ Ca(F0) that
are the minimizers of Pf in Ca(F0).

P2. Construct a fast algorithm that efficiently computes all possible F ∈ Ca(F0) that
are the minimizers of Pf in Ca(F0).

P3. Verify that the set of F ∈ Ca(F0) that are the minimizers of Pf in Ca(F0) is the
same for every f ∈ Convs(R≥0). �
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In previous works we have obtained some results related with the problems above.
Indeed, in [30] we obtained a partial affirmative answer to P3, while in [31] we obtained
some partial results related with P1 and a non-efficient algorithm as in P2 that worked
in small examples (see Sects.2.2 and 2.3 below).

In this paper, building on our previous work, we completely solve the three problems
above in terms of a constructive (algorithmic) approach.

2.2 On the Structure of the Minimizers of Pf on Ca(F0)

In this section we collect results from [31] that we shall use in this paper. Throughout
this section we fix the initial data (F0, a) for the CP. Recall that λ = (λi )

d
i=1 are the

eigenvalues of S0 = SF0 arranged in a non-decreasing order. Therefore we recast
the results from [31] by reversing the ordering used in that work. Also notice that
we are assuming that the sequence a is arranged in non-increasing order, that is,
a1 ≥ a2 ≥ . . . ≥ ak > 0.

In what follows, the notion of majorization will play a fundamental role: recall that
given x, y ∈ R

d we say that x is submajorized by y, and write x ≺w y, if

k∑

i=1

x↓
i ≤

k∑

i=1

y↓
i for every k ∈ Id ,

where x↓ ∈ R
d denotes the vector obtained from x by rearrangement of its entries

in non-increasing order. If x ≺w y and
∑d

i=1 xi = ∑d
i=1 yi , then we say that x is

majorized by y, and write x ≺ y. In particular, Prop. 2.1 states that the eigenvalues
of B majorize the sequence of squared norms (to be precise, we must add zeros to one
of the two vectors if they have different sizes).

Our analysis of the completed frames F = (F0,G) depends on F through SF =
S0 + SG . Hence, the following result plays a central role in our approach.

Proposition 2.4 Let (F0, a) be the initial data for the CP and let S be a positive
operator on H. Then S is the frame operator for some completion F = (F0,G) ∈
Ca(F0) if and only if

S ≥ S0 and a ≺ λ(S − S0) = λ(SG). (2)

Let μ = (μi )
d
i=1 be such that μ1 ≥ μ2 · · · ≥ μd (i.e. μ = μ

↓
). By Proposition 2.4

we get the following partition:

Ca(F0) =
⊔

a≺μ=μ
↓
{F = (F0,G) ∈ Ca(F0) : λ(SG) = μ} (3)

Building on Lidskii’s inequality (see [3, III.4]) we obtained the following result:

Theorem 2.5 Let μ = μ↓ with a ≺ μ. Recall that λ = λ↑ = λ(S0)
↑. Then,

1. The set {λ(SF ) : F = (F0,G) ∈ Ca(F0) : λ(SG) = μ} is convex.
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2. (λ + μ)↓ ≺ λ(SF ) for all F ∈ Ca(F0) such that λ(SF − S0) = μ.
3. If F = (F0,G) is such that λ(SG) = μ and λ(SF ) = (λ + μ)↓ then S0 and SG

commute.


�
Remark 2.6 Fix μ such that a ≺ μ. Consider F = (F0,G) ∈ Ca(F0) such that
the spectrum of SG is μ. Let f ∈ Convs(R≥0) and let Pf be the convex poten-
tial induced by f . By the well known interplay between majorization and mini-
mization of convex functions (see [28]) and Theorem 2.5 we see that Pf (F) ≤
Pf (F ′)for every completion F ′ ∈ Ca(F0) such that λ(SF ′ − S0) = μ if and only
if

λ(SF ) = (λ + μ)↓ = ( λ↑ + μ↓)↓. (4)

That is, if we consider the partition of Ca(F0) described in Eq. (3), then in each slice
defined by μ the minimizers of the potential Pf are characterized by the spectral
condition (4). This shows that in order to search for global minimizers of Pf on
Ca(F0) we can restrict our attention to the set of completions F = (F0,G) ∈ Ca(F0)

such that

λ(SF ) = (
λ + λ(SG)

)↓
. (5)

Indeed, Eqs. (3) and (4) show that if F = (F0,G) is a minimizer of Pf in Ca(F0) then
the eigenvalues of SF are such that λ(SF ) = (λ + λ(SG))↓. Therefore, we analyze
the existence and uniqueness of ≺-minimizers on the set {λ + μ : μ ∈ R

d≥0, μ =
μ↓ and a ≺ μ}.
Theorem 2.7 Let (F0, a) be initial data for the CP. Denote by λ = λ(SF0)

↑. Then

1. The set {λ + μ : μ ∈ R
d≥0, μ = μ↓ and a ≺ μ} is compact and convex.

2. If F = (F0,G) ∈ Ca(F0), with λ(SG) = μ and λ(SF ) = (λ + μ)↓, then there
exists a orthonormal basis of H, {vi }d

i=1 such that

SG =
d∑

i=1

μi · vi ⊗ vi and SF = S0 + SG =
d∑

i=1

(λi + μi ) · vi ⊗ vi .


�
The following result is a reduction of the computation of the spectral structure of the
optimal completions with respect to a fixed convex potential.

Theorem 2.8 Let (F0, a) be initial data for the CPand let f ∈ Convs(R≥0). Denote
by λ = λ(SF0)

↑. Then, there exists a vector μ f (λ, a) = μ = μ↓ ∈ R
d≥0 such that

a ≺ μ and:

1. F = (F0,G) ∈ Ca(F0) is a global minimizer of Pf ⇐⇒ λ(SF ) = (λ + μ)↓
and λ(SG) = μ.
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2. μ f (λ, a) is uniquely determined by the conditions: μ = μ↓ ∈ R
d≥0, a ≺ μ, and

d∑

i=1

f (λi + μi )= min

{
d∑

i=1

f (λi + γi ) : γ=γ ↓=(γi )
d
i=1 ∈ R

d≥0 and a ≺ γ

}
.

(6)


�
Denote by ν f (λ, a)

def= λ+μ f (λ, a), the optimal spectrum as in item 1 of Theorem
2.8 above.

Theorem 2.9 Let f ∈ Convs(R≥0) and assume that F = (F0,G) is a global
minimizer of Pf on the set of completions F ′ = (F0,G′) ∈ Ca(F0) such that
λ(SF ′) = (λ + λ(SG′))↓. Then, there exists a partition {Ji }p

i=1 of {1, . . . , k} and
c1 > . . . > cp > 0 such that

1. The subfamilies Gi = {g j } j∈Ji (for 1 ≤ i ≤ p ) are mutually orthogonal, i.e.
SG = ⊕p

i=1SGi .
2. The frame operators SGi and SF0 commute, for every 1 ≤ i ≤ p.
3. We have that SF g j = ci g j , for every j ∈ Ji and every 1 ≤ i ≤ p.

The statement is still valid if we assume that F is just a local minimizer, but if we also
assume as a hypothesis that F satisfies item 2 (for example if SF0 = 0). 
�

2.3 The Feasible Case of the CP

In this section we recall the results from [30] that we shall need in the sequel. Through-
out this section we keep the notation used previously. That is, given the initial data
(F0, a) for the CP, we denote by S0 = SF0 , λ = λ(S0)

↑. Let t = tr S0 + tr a =∑d
i=1 λi + ∑k

i=1 ai . Let L(H)+ denote the convex cone of positive (semidefinite)
operators acting on H. In [30] we introduced the following set

Ut (S0, k) = {S0 + B : B ∈ L(H)+, rk B ≤ k, tr (S0 + B) = t} ⊆ L(H)+.

In [30, Theorem 3.12] it is shown that there exist ≺-minimizers in Ut (S0, k). Indeed,
there exists μ(λ, a) = μ(λ, a)↓ ∈ R

d≥0—that can be effectively computed by a fast

algorithm—such that, if ν(λ, a)
def= λ+μ(λ, a) then ν(λ, a) ∈ R

d
>0 and S ∈ Ut (S0, k)

is a ≺-minimizer if and only if λ(S) = ν(λ, a)↓.
Notice that by construction ν(λ, a) is not necessarily an ordered vector (nor decreas-

ing, nor increasing); yet, in terms of the terminology from [30], we have that νλ,m(t) =
ν(λ, a)↓. Thus, we have reversed the order of the vector μ(λ, a)—accordingly with
reversing the order of λ = λ(SF0)

↑—and we have changed the description of the
vector ν(λ, a)—while preserving all of their majorization properties—with respect to
[30]. Nevertheless, we point out that the ordering of the entries of the vector ν(λ, a)

presented here plays a crucial role in simplifying the exposition of the results herein,
as it guaranties that μ(λ, a) = ν(λ, a) − λ.



1120 J Fourier Anal Appl (2014) 20:1111–1140

The following definition and remark show the relevance of the notions introduced
above for the computation of the spectral structure of solutions for the optimal com-
pletion problem.

Definition 2.10 With the previous notations, we say that the pair (λ, a) is feasible if
μ(λ, a) satisfies that a ≺ μ(λ, a). �
Remark 2.11 With the previous notations, assume that the pair (λ, a) is feasible and
denote μ = μ(λ, a). In this case (see [30]) for any S which is a ≺-minimizer in
Ut (S0, k) it holds that λ(S − S0) = μ and hence, by Proposition 2.4, we conclude
that S is the frame operator for some completion in Ca(F0). Moreover, Proposition 2.4
also shows that the frame operators of completions in Ca(F0) are in Ut (S0, k). Then S
is also a ≺-minimizer in the set of frame operators of sequences in Ca(F0). Therefore,
since x ≺ y implies

∑d
i=1 f (xi ) ≤ ∑d

i=1 f (yi ) for every f ∈ Conv(R≥0) (see [28]
for a detailed account of these facts), any completion F = (F0,G) ∈ Ca(F0) such
that SF = S is a minimizer of Pf for every f ∈ Conv(R≥0).

On the other hand, as a consequence of the geometrical structure of S = SF as
above (see [30,31]), we conclude that there exists c > 0 such that SF gi = c gi for
every 1 ≤ i ≤ k. That is, in this case the structure of the completing sequence G given
in Theorem 2.9 is trivial: the partition of {1, . . . ≤ k} has only one member and there
exists a unique constant c = c1. �

It is worth pointing out that it is easy to construct examples of initial data (F0, a)

for the CP such that the pair (λ, a) is not feasible (see [30]), so that comments in
Remark 2.11 do not apply in these cases.

Definition 2.12 Let (F0, a) be initial data for the CP. For every r ∈ Id we denote by

Qr
def= 1

r

[
tr a +

r∑

i=1

λi

]

�
Remark 2.13 Let (F0, a) be initial data for the CPwith k ≥ d, recall the notations
λ = λ(SF0)

↑ and t = tr a + tr λ = d Qd . As shown in [30] we can explicitly
compute the vector ν(λ, a) previously defined according to the following two cases:

1. Since λ = λ↑ then λd = max
i∈Id

λi . If

Qd = t

d
= tr a + tr λ

d
≥ λd then ν(λ, a) = Qd 1d = t

d
1d , (7)

where 1d ∈ R
d is the vector with all its entries equal to one.

2. If λd > Qd = t
d then there exists s ∈ Id−1 such that

λs ≤ Qs < λs+1 and ν(λ, a) = (Qs 1s, λs+1, . . . , λd). (8)

Moreover, λ � ν(λ, a) = ν(λ, a)↑ and tr ν(λ, a)
2.12= tr a + tr λ = t.
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These properties of the vector ν(λ, a) are proved in [30], modulo a reordenation. If
Qd < λd , an alternative proof of them is to take s = max { r ∈ Id : Qr ≥ λr }
and define ν = ν(λ, a) = (Qs 1s, λs+1, . . . , λd). Direct computations show that
λs ≤ Qs < λs+1, so that λ � ν = ν↑ with tr ν = t . This also implies, using [30,
Lemma 5.11], that ν ≺ λ(S) for every S ∈ Ut (S0, k).

In what follows we obtain another explicit description of the vector ν(λ, a) in case
d ≤ k and Qd < λd . That is, we compute the parameter s of Eq. (8). The way in
which it is found is the key for the developments of Sect. 3. Our present techniques
differ substantially from those introduced in [30]. We begin by showing that the vector
ν(λ, a) above is unique. Then, we show that the computation of ν(λ, a) for k < d can
be reduced to the case when k = d. First we need to state a technical result: �
Lemma 2.14 Let (F0, a) be initial data for the CPwith k ≥ d and let r ∈ Id . Then

1. If r < d and Qr < λr+1 then Qr < Q j , for every j such that r < j ≤ d.
2. If r < d and Qr ≤ λr+1 then Qr ≤ Q j , for every j such that r < j ≤ d.
3. If λr ≤ Qr then Qr ≤ Q j , for every j such that 1 ≤ j < r .

Proof Denote by c = Qr for a fixed r < d. Recall that λ = λ↑. If j > r then

c < λr+1 �⇒ Q j = 1

j

⎛

⎝ tr a +
r∑

i=1

λi +
j∑

i=r+1

λi

⎞

⎠ >
1

j
( r c + ( j − r) c ) = c.

The proof of item 2 is identical. On the other side, if j < r then

λr ≤ c �⇒ Q j = 1

j

⎛

⎝ tr a +
r∑

i=1

λi −
r∑

i= j+1

λi

⎞

⎠ ≥ 1

j
( r c − (r − j) c ) = c.


�
Proposition 2.15 Let (F0, a) be initial data for the CPwith k ≥ d and suppose also
that Qd = 1

d [ tr a + tr λ ] < λd . Then

1. There exists a unique index s ∈ Id−1 such that λs ≤ Qs < λs+1, and in this case

s= max{w ∈ Id−1 : Qw= min
j∈Id

Q j } and ν(λ, a) = (Qs1s, λs+1, . . . , λd)

(9)

2. If another index r ≤ d − 1 satisfies that λr ≤ Qr ≤ λr+1, then
(a) Qr = min

j∈Id

Q j = Qs and r ≤ s.

(b) If r < s, then Qr = λr+1 = λs and also ν(λ, a) = (Qr 1r , λr+1, . . . , λd).
3. Given ρ = (c 1r , λr+1, . . . , λd) (or ρ = c 1d ) such that λ � ρ = ρ↑ and tr ρ =

tr ν(λ, a) then ρ = ν(λ, a).
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Proof The existence of an index s such as in item 1 is guaranteed by the properties of
ν(λ, a) stated in [30] or in Remark 2.13. The formula given in Eq. (9), which shows
the uniqueness of the index s, is a direct consequence of Lemma 2.14. Assume that
λr ≤ Qr ≤ λr+1. Then Qr = min

1≤ j≤d
Q j = Qs and r ≤ s by Lemma 2.14. If r < s,

then Qs = 1
s (r Qr +∑s

i=r+1 λi ) = Qr . This clearly implies all the equalities of item
(b). Finally, observe that item 2 �⇒ item 3. 
�
Remark 2.16 (Reduction of the computation of ν(λ, a) to the case k ≥ d) Let (F0, a)

be initial data for the CPwith d > k. Then if

λ̃ = (λ1, . . . , λk) ∈ (Rk)↑ then ν(λ, a) = (ν( λ̃, a), λk+1, . . . , λd), (10)

and ν( λ̃, a) is constructed as in Proposition 2.15 (notice that in this case λ̃ ∈ R
d̃ with

d̃ = k).
The proof is direct by observing that, extracting the entries λk+1, . . . , λd of the

vector ν(λ, a) as described in [30, Def. 4.13], the vector that one obtains (with the
reverse order) satisfies the conditions of item 3 of Proposition 2.15 relative to the pair
( λ̃, a). �

The following result is in a sense a converse to Remark 2.11. It establishes that if
there exists f ∈ Convs(R≥0) and a minimizer F = (F0,G) of Pf in Ca(F0) such that
the structure of the completing sequence G as described in Theorem 2.9 is trivial, then
the underlying pair (λ, a) is feasible. Recall the notation ν f (λ, a) given in Theorem
2.8.

Lemma 2.17 Let (F0, a) be initial data for the CP, with k ≥ d and let f ∈
Convs(R≥0). Let F = (F0,G) be a minimum for Pf on Ca(F0) such that λ(SF ) =
(λ + λ(SG))↓. Suppose that, for some c > 0,

W = R(SG) �= H and SF
∣∣
W ∈ L(W ) = c IW .

Let μ = μ↓ = λ(SG) and s
def= dim W = max{i : μi �= 0}. Then

λs < c ≤ λs+1 so that (λ, a) is feasible and ν f (λ, a) = ν(λ, a).

The same final conclusion trivially holds if s = dim W = d and SF = c I .

Proof Suppose that s < d. By hypothesis ν f (λ, a) = λ↑ + μ↓ = (
c 1s, λs+1, . . . ,

λd
)

and it satisfies that λ(SF ) = ν f (λ, a)↓. Since a ≺ μ = μ↓ then tr μ = tr a >∑s
i=1 ai , because s < d ≤ k. Suppose now that c > λs+1. For small t > 0 consider

the vector

γ (t) = (
c 1s−1, (c − t), λs+1 + t, λs+2, . . . , λd

) ∈ R
d with tr γ (t) = tr SF .

Let μ(t) = γ (t) − λ. For every t we have that tr μ(t) = tr μ. On the other hand, if

t <
μs

2
�⇒ μ(t) = (μ1, . . . , μs−1, μs − t, t, 01d−s−1) = μ(t)↓ ∈ (Rd≥0)

↓.
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It is easy to see that if also t <
∑k

i=s+1 ai then still a ≺ μ(t). So there exists
F ′ ∈ Ca(F0) such that λ(SF ′) = γ (t)↓. Notice that, since (c−t, λs+1+t) ≺ (c, λs+1)

strictly, then Pf (F ′) = tr f (γ (t) ) < tr f (ν f (λ, a) ) = Pf (F), a contradiction.
Hence c ≤ λs+1.

The condition λs < c follows from the fact that c − λs = μs > 0. These facts
show that λ = λ↑ � ν f (λ, a) = ν f (λ, a)↑ �⇒ ν f (λ, a) = ν(λ, a) (by item 3 of
Proposition 2.15). In particular, a ≺ λ(SG) = μ = ν(λ, a) − λ = μ(λ, a) so that
(λ, a) is feasible. 
�

3 Uniqueness and Characterization of the Minimum

In this section we shall state the main results of the paper. For the sake of clarity of
the exposition, we postpone the more technical proofs until Sect. 4.

3.1 (Fixed data, notations and terminology) Until Theorem 3.8, we fix f ∈
Convs(R≥0) and F = (F0,G) ∈ Ca(F0) a minimizer of Pf on Ca(F0).

1. By Theorem 2.8, λ(SF ) = (λ + λ(SG))↓ and λ(SG) = μ f (λ, a) = ν f (λ, a) − λ.
Then, by Theorem 2.7 there exists an ONB {vi }d

i=1 such that

SG =
d∑

i=1

μi · vi ⊗ vi and SF = SF0 + SG =
d∑

i=1

(λi + μi ) vi ⊗ vi . (11)

2. Let sF = max {i ≤ d : μi �= 0} = rk SG . Denote by W = R(SG), which reduces
SF .

3. Let S = SF
∣∣
W ∈ L(W ) and σ(S) = {c1, . . . , cp} (where c1 > c2 > · · · > cp >

0).
4. Let K j = {i ≤ sF : λi + μi = c j } and J j = {i ≤ k : S gi = c j gi }. By Theorem

2.9,

{1, . . . , sF } =
p⊔

j=1
K j and {1, . . . , k} =

p⊔
j=1

J j .

5. Since R(SG) = span{gi : 1 ≤ i ≤ k} = W = ⊕p
i=1 ker (S −ci IW ) then for every

1 ≤ j ≤ p,

W j
def= span{gi : i ∈ J j } = ker (S − c j IW ) = span{vi : i ∈ K j }, (12)

because gi ∈ ker (S − c j IW ) for every i ∈ J j . Note that, by Theorem 2.9, each
W j reduces both SF0 and SG .

6. If p = 1 then J1 = {1, . . . , k} and S = c1 IW . Hence the minimum F satisfies
the hypothesis of Lemma 2.17, so that the pair (λ, a) is feasible.
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7. We denote by hi = λi + ai for every 1 ≤ i ≤ d. Given j ≤ r ≤ d, let

Pj,r = 1

r − j + 1

r∑

i= j

hi = 1

r − j + 1

r∑

i= j

λi + ai ,

be the initial averages. We abbreviate P1,r = Pr .

�
Remark 3.2 (A reduction procedure) Consider the data, notations and terminology
fixed in 3.1. For any j ≤ p − 1 denote by

I j = {1, . . . , d} \
⋃

i≤ j

Ki , L j = {1, . . . , k} \
⋃

i≤ j

Ji , λ
I j

= (λi )i∈I j ,G j = (gi )i∈L j , aL j = (ai )i∈L j

and take some sequence F ( j)
0 in H j = [⊕

i≤ j Wi
]⊥ such that SF ( j)

0
= S0|H j (notice

that, by construction, H j reduces S0).

Then, it is straightforward to show that F j = (F ( j)
0 ,G j ) is a (global) mini-

mizer of Pf on Ca j (F ( j)
0 ) in H j , i.e. an optimal completion for the reduced prob-

lem. Indeed, recall that the minimality is computed in terms of the map tr f (γ ) =∑d
i=1 f (γi ), for γ ∈ R

d≥0, which works independently in each entry of λ(SF ) =
ν f (λ, a)↓.

The importance of the previous remarks lies in the fact that they provide a powerful
reduction method to compute the structure of the sets Gi , Ki and Ji for 1 ≤ i ≤ p
as well as the set of constants c1 > · · · > cp > 0. Indeed, assume that we are able
to describe the sets G1, K1, J1 and the constant c1 in some structural sense, using the
fact that these sets are extremal (e.g. these sets are built on c1 > c j for 2 ≤ j ≤ p).

Then, in principle, we could apply these structural arguments to find G2, K2, J2
and the constant c2, using the fact that these are now extremal sets of F1, which is a
Pf minimizer of the reduced CP for (F (1)

0 , aL1). On the other hand, the minimality of
the final reduction Fp−1 produces a pair (λIp−1, aL p−1) which is feasible by item 6 of
3.1, because it has a unique constant cp associated to the unique set K p. As we shall
see, this strategy can be implemented to obtain (inductively) a precise description of
the sets above. �
Remark 3.3 Let (F0, a) be initial data for the CPwith d ≤ k, fix f ∈ Convs(R≥0)

and let F = (F0,G) ∈ Ca(F0) be a global minimum for Pf on Ca(F0). In Sect. 4.1
we shall prove the following properties of the sets J j and K j defined in item 4. of 3.1
describing μ f (λ, a) and ν f (λ, a):

1. Each set J j and K j consists of consecutive indices, for 1 ≤ j ≤ p.
2. The sets K j and J j have the same number of elements, for 1 ≤ j ≤ p − 1.
3. Moreover, J1 < · · · < Jp (i.e. if l ∈ Ji and h ∈ J j with i < j ⇒ l < h) and

K1 < · · · < K p. In particular, by items 1 and 2 above, K j = J j for 1 ≤ j ≤ p−1.
�
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We state the properties of the sets J j and K j , 1 ≤ j ≤ p described in Remark 3.3 in
the following:

Theorem 3.4 With the notations of Remark 3.3 (so that, in particular, d ≤ k) then

1. There exist 0 = s0 < s1 < s2 < · · · < sp−1 < sp = sF such that

K j = J j = {s j−1 + 1, . . . , s j }, for 1 ≤ j ≤ p − 1,

K p = {sp−1 + 1, . . . , sp}, Jp = {sp−1 + 1, . . . , k}.

2. The vector ν f (λ, a) = (
c1 1s1 , . . . , cp 1sp−sp−1 , λsp+1, . . . , λd

)
, where

cr = 1

sr − sr−1

sr∑

i=sr−1+1

hi = Psr−1+1,sr for 1 ≤ r ≤ p − 1,

or also cr = λ j + μ j for every j ∈ Kr = Jr for 1 ≤ r ≤ p − 1 .
3. The constant cp (and the index sp) is determined by the identity

(
cp 1sp−sp−1 , λsp+1, . . . , λd

) = ν(λIp−1 , aL p−1), (13)

where, with the notations in Remark 3.2 (notice that Ip−1 = {sp−1 + 1, . . . , d}
and L p−1 = {sp−1 + 1, . . . , k} according to item 1 above)

λIp−1 = (λi )
d
i=sp−1+1 ∈ R

dp , caL p−1 = (ai )
k
i=sp−1+1 ∈ R

kp (with dp ≤ kp)

and ν(λIp−1 , aL p−1) is computed as in Remark 2.13.

Proof See Sect. 4.2. 
�
Let (F0, a) be initial data for the CP. Assume that ν f (λ, a) = (

c1 1s1 , . . . , λs1+1,

. . . , λd
)

i.e. with p = 1, in the notations of Theorem 3.4. Then, by Lemma 2.17, the
pair (λ, a) is feasible and ν f (λ, a) = ν(λ, a).

In what follows we shall need the following notion, that allow us to show feasibility
in the more general case in which, in the notations of Theorem 3.4, p > 1.

Definition 3.5 Let λ = λ↑ ∈ R
d and a = a↓ ∈ R

k
>0, with d ≤ k.

1. Given s ≤ d − 1 denote by

λs = (λs+1, . . . , λd) ∈ R
d−s and as = (as+1, . . . , ak) ∈ R

k−s,

the truncations of the original vectors λ and a.
2. We say that the index s is feasible if the pair (λs, as) is feasible (see Definition

2.10) i.e. if ν(λs, as) − λs ≺ as .
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3. If s ≤ d − 1 is feasible then, since d − s ≤ k − s, we define

νs
def= ν(λs, as)

(9)= (
c 1r−s, λr+1, . . . , λd

)
where c = Qs,r

for the unique r > s such that λr ≤ c < λr+1 (or νs = Qs,d 1d−s if λd ≤ Qs,d ).
Notice that (λs)i ≤ (νs)i for 1 ≤ i ≤ d − s and νs = ν

↑
s . �

Proposition 3.6 Let (F0, a) be initial data for the CP. With the notations of Theorem
3.4, the global minimum ν f (λ, a) satisfies that

1. The index sp−1 (where the feasible part begins) is determined by

sp−1 = min{s ≤ d : s is feasible},

and the index sp is determined by Eq. (13) and Remark 2.13.
2. The following recursive method allows to describe the vector ν f (λ, a) as in The-

orem 3.4:
(a) The index s1 = max

{
j ≤ sp−1 : P1, j = max

i≤sp−1
P1,i

}
, and c1 = P1,s1 .

(b) If the index s j is already computed and s j < sp−1, then

s j+1 = max
{
s j < r ≤ sp−1 : Ps j +1, j = max

s j <i≤sp−1
Ps j +1,i

}
and c j+1

= Ps j +1,s j+1 .

Proof See Propositions 4.16 and 4.12. 
�
The following are the main results of the paper. In order to state them, we introduce

the spectral picture of the completions with prescribed norms, given by

�(Ca(F0) )
def= {λ(SF ) : F ∈ Ca(F0)}.

Theorem 3.7 Let (F0, a) be initial data for the CP with d ≤ k. Then the vector
ν = ν f (λ, a) is the same for every f ∈ Convs(R≥0). Therefore,

ν↓ ∈ �(Ca(F0)) and ν↓ ≺ γ for every γ ∈ �(Ca(F0)). (14)

Proof By Proposition 3.6, the minima ν = ν f (λ, a) are completely characterized by
the data (λ, a) without interference of the map f . Therefore, given any γ ∈ �(Ca(F0)),

tr f (ν) ≤ tr f (γ ) for every f ∈ Convs(R≥0) �⇒ ν ≺ γ.


�
The following result shows that the structure of optimal completions in Ca(F0) in case
d > k can be obtained from the case in which k = d.
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Theorem 3.8 Let (F0, a) be initial data for the CPwith d > k. If we let

λ′ = (λ1, . . . , λk) ∈ (Rk≥0)
↑ then ν f (λ, a) = (ν f (λ

′, a), λk+1, . . . , λd),

where ν f (λ
′, a) is constructed as in Proposition 3.6 (since d ′ = k, by construction of

λ′ ∈ (Rd ′
≥0)

↑). In this case the vector ν f (λ, a) is the same for every f ∈ Convs(R≥0)

and also satisfies Eq. (14).

Proof It is clear that any δ = δ↓ ∈ R
d≥0 such that a ≺ δ must have δk+1 = · · · =

δd = 0. It is easy to see that this fact implies that

{λ↑ + δ↓ : δ ∈ R
d≥0 and a ≺ δ}

= {(γ, λk+1, . . . , λd) : γi = λi + δ
↓
i , 1 ≤ i ≤ k}. (15)

We know that ν f (λ, a) − λ = μ = μ↓ and that a ≺ μ �⇒ μk+1 = . . . = μd = 0.
Therefore

ν f (λ, a) = μ↓ + λ↑ �⇒ ν f (λ, a)=(ρ, λk+1, . . . , λd), (16)

for ρ ∈ �(Ca(F ′
0)) for some F ′

0 such that λ(SF ′
0
)↑ = λ′. Then

∑d
i=1 f (ν f (λ, a)i ) =

∑d
i=1 f (ρi ) +∑d

i=k+1 f (λi ). By Eq. (6) and Eq. (15),

d∑

i=1

f (ν f (λ, a)i ) = min
{ d∑

i=1

f (λi + γi ) : γ = γ ↓ ∈ R
d≥0, sa ≺ γ

}

=
[

min
{ k∑

i=1

f (λ′
i+γi ) :γ=γ ↓ ∈ R

k≥0, a ≺ γ
}]

+
d∑

i=k+1

f (λi ).

Using Eq. (6) again we deduce that ρ = ν f (λ
′, a). Since ν f (λ

′, a) is constructed as
in Proposition 3.6, then it is the same vector for every strictly convex map f ; hence,
ν f (λ, a) is the same vector for every strictly convex map f , so that ν f (λ, a)↓ is a
minimum for majorization on �(Ca(F0) ). 
�
Remark 3.9 The construction of the minimum ν f (λ, a) given by Proposition 3.6
is algorithmic, an it can be easily implemented in MATLAB. It only depends on
an -already available, see [30] - routine for checking feasibility, which is fast and
efficient. �

4 Proofs of Some Technical Results

In this section we present detailed proofs of several statements in Sect. 3. All these
results assume that the initial data (F0, a) for the CP satisfies that k ≥ d. As seen in
Theorem 3.8, the general case can be reduced to this situation.
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4.1 Description of the Sets Ki and Ji .

4.1 We begin by recalling the notations of 3.1: Let (F0, a) be initial data for the CP,
with k ≥ d. Fix a convex map f ∈ Convs(R≥0). We consider the following objects:

1. Let F = (F0,G) ∈ Ca be a global minimum for Pf on Ca(F0) (or a local minimum
if F0 = ∅). Therefore,

F ∈ Cop
a (F0)

def= {F = (F0,G) : λ(SF ) = (λ + λ(SG))↓}.

2. By Theorem 2.7 there exists an orthonormal basis of H {vi }d
i=1 such that

SG =
d∑

i=1

μi · vi ⊗ vi and SF = SF0 + SG =
d∑

i=1

(λi + μi ) vi ⊗ vi .

3. Let sF = max{1 ≤ i ≤ d : μi �= 0} = rk SG . Denote by W = R(SG), which
reduces SF .

4. Let S = SF
∣∣
W ∈ L(W ) and σ(S) = {c1, . . . , cp} (where c1 > c2 > · · · > cp).

5. Let K j = {1 ≤ i ≤ s : λi + μi = c j } and J j = {1 ≤ i ≤ k : S gi = c j gi }. Then

{1, . . . , sF } = D⋃
1≤ j≤p

K j and {1, . . . , k} = D⋃
1≤k≤p

Jk .

We remark that, if F0 = ∅, these facts are still valid for local minima by Theorem
2.9. �

The next three Propositions give a complete proof of Theorem 3.4. The first of them
justifies the convention that λ = λ(SF0)

↑.

Remark 4.2 In what follows we shall need the following elementary property of
majorization (see [3]): if x1, y1 ∈ R

r and x2, y2 ∈ R
s are such that

xi ≺ yi for i = 1, 2 �⇒ x = (x1, x2) ≺ y = (y1, y2) in R
r+s . (17)

�
Proposition 4.3 Let (F0, a) be initial data for the CPwith λ = λ(SF0)

↑, and consider
the notations of 4.1. If p > 1, then

i ∈ K1 �⇒ i < j ( �⇒ λi ≤ λ j ) for every j ∈ ⋃
r>1

Kr = {1, . . . , sF } \ K1.

Inductively, by means of Remark 3.2, we deduce that all sets K j consist on consecutive
indices, and that Ki < K j (in terms of their elements) if i < j .
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Proof Suppose that there are i ∈ K1 and j ∈ Kr (for some r > 1) such that j < i .
Then λ j ≤ λi and μi ≤ μ j . For t > 0 very small, let μi (t) = μi − t > 0 and
μ j (t) = μ j + t . Consider the vector μ(t) obtained by changing in μ the entries μi by
μi (t) and μ j by μ j (t). Observe that not necessarily μ(t) = μ(t)↓, but we are indeed
sure that c1 > cr .

Nevertheless, by Remark 4.2, (μi , μ j ) ≺ (μi (t), μ j (t)) �⇒ a ≺ μ ≺ μ(t).
Therefore there exists F ′ = (F0,G′) ∈ Ca(F0) such that, using the ONB of Eq. (11),

SG′ =∑d
h=1 μh(t) · vh ⊗ vh and SF ′=SF0 + SG′ = ∑d

h=1 (λh + μh(t) ) vh ⊗ vh .

Denote by V = span{vi , v j }, which reduces both SF and SF ′ . Also SF ′ |V ⊥ = SF |V ⊥ .
Considering the restrictions to V as operators in L(V ) ∼= M2(C) we get that

λ(SF ′ |V ) = (λi + μi (t), λ j + μ j (t) )

= (c1 − t, cr + t) ≺ (c1, cr ) = λ(SF |V ) strictly,

for t small enough in such a way that c1 − t > cr + t , so that (c1 − t, cr + t) =
(c1 − t, cr + t)↓. Then

f (c1 − t) + f (cr + t) < f (c1) + f (cr ) �⇒ Pf (F ′)
= F

(
λ(SF ′)

)
< F(λ(SF ) ) = Pf (F),

a contradiction. The inductive argument follows from Remark 3.2. 
�
4.4 In the following two statements we assume that, for some f ∈ Convs(R≥0),

the sequence F = (F0,G) ∈ Cop
a (F0) is a global minimum for Pf , or it is a local

minimum if SF0 = 0 and λ = 0. In both cases 4.1 applies. �
Proposition 4.5 Let (F0, a) be initial data for the CP, and let F = (F0,G) ∈ Cop

a (F0)

as in 4.1 and 4.4. Suppose that p > 1. Given h ∈ Ji and l ∈ Jr then

i < r �⇒ ah − al ≥ ci − cr > 0.

In particular, the sets Ji consist of consecutive indices, and J1 < J2 < · · · < Jp (in
terms of their elements). 
�
Proof Let us assume that i < r ≤ p, h ∈ Ji and l ∈ Jr , but l < h (even less: that
al ≥ ah ). Then

gl ⊗ gl ≤ SG ≤ SF and SF gl = cr gl �⇒ ah = ‖gh‖2 ≤ ‖gl‖2 = al ≤ cr < ci .

We also know that 〈gl , gh〉 = 0. Denote by wh = gh
‖gh‖ = a−1/2

h gh and wl = gl
‖gl‖ =

a−1/2
l gl . Let

gh(t) = cos(t) gh + sin(t)‖gh‖ wl and

gl(t) = cos(γ t) gl + sin(γ t)‖gl‖ wh for t ∈ R
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for some convenient γ > 0 that we shall find later. Let Fγ (t) be the sequence obtained
by changing in F the vectors gh by gh(t) and gl by gl(t), for every t ∈ R. Notice
that ‖gh(t)‖2 = ah and ‖gl(t)‖2 = al for every t ∈ R, so that all the sequences
Fγ (t) ∈ Ca(F0).
Let W = span{wh, wl}, a subspace which reduces SF and SFγ (t). Note that
gh(t), gl(t) ∈ W . In the matrix representation with respect to this basis of W we
get that

gh ⊗ gh =
[

ah 0
0 0

]
wh

wl
, gh(t) ⊗ gh(t) = ah

[
cos2(t) cos(t) sin(t)

cos(t) sin(t) sin2(t)

]
wh

wl
,

gl ⊗ gl =
[

0 0
0 al

]
wh

wl
and gl(t) ⊗ gl(t) = al

[
sin2(γ t) cos(t) sin(t)

cos(t) sin(t) cos2(γ t)

]
wh

wl

If we denote by S(t) = SFγ (t), we get that

S(t) = SF − gh ⊗ gh − gl ⊗ gl + gh(t) ⊗ gh(t) + gl(t) ⊗ gl(t).

Therefore S(t)|W⊥ = SF |W⊥ . On the other hand, SF |W =
[

ci 0
0 cr

]
. Then

S(t)|W =
[

ci + ah (cos2(t) − 1) + al sin2(γ t) ah cos(t) sin(t) + al cos(γ t) sin(γ t)
ah cos(t) sin(t) + al cos(γ t) sin(γ t) cr + ah sin2(t) + a2

l (cos2(γ t) − 1)

]
def= Aγ (t).

Note that tr Aγ (t) = ci + cr for every t ∈ R. Therefore λ(Aγ (t) ) ≺ (ci , cr ) strictly
⇐⇒ ‖Aγ (t)‖2

2
< c2

i + c2
r . Hence we consider the map mγ : R → R given by

mγ (t) = ‖Aγ (t)‖2
2

= tr (Aγ (t)2) for every t ∈ R.

Note that S(0) = SF �⇒ mγ (0) = c2
i + c2

r . We shall see that, for a convenient
choice of γ , it holds that m′

γ (0) = 0 but m′′
γ (0) < 0. This will contradict the (local)

minimality of F , because mγ would have in this case a maximum at t = 0, so that

λ(Aγ (t) ) ≺ (ci , cr ) strictly
(19)�⇒ λ(SFγ (t)) ≺ λ(SF ) strictly �⇒ Pf (Fγ (t) ) <

Pf (F) for every t near 0.
Indeed, we first compute the derivatives of the entries ai j of Aγ (t):

a′
11 = −ah sin(2t) + γ al sin(2γ t)

a′
12 = ah cos(2t) + γ al cos(2γ t)

a′
22 = ah sin(2t) − γ al sin(2γ t)

and
a′′

11 = 2 [−ah cos(2t) + γ 2 al cos(2γ t)]
a′′

22 = 2 [ah cos(2t) − γ 2al cos(2γ t)] .

So a′
11(0) = 0, a′

22(0) = 0 and a12(0) = 0. Then, for i, j ∈ {1, 2} we have that

(a2
i j )

′(0) = 2 ai j (0) a′
i j (0) = 0 and (a2

i j )
′′(0) = 2

(
(a′

i j )
2(0) + ai j (0) a′′

i j (0)
)
.
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Therefore (a2
11)

′′(0) = 4ci (−ah +γ 2 al), (a2
12)

′′(0) = 2 (ah +γ al)
2 and (a2

22)
′′(0) =

−4cr (−ah + γ 2 al). We conclude that m′
γ (0) = 0 (for every γ ∈ R) and that

m′′
γ (0) = 4

[
ci (−ah + γ 2 al) + (ah + γ al)

2 − cr (−ah + γ 2 al)
]
,

which is quadratic polynomial on γ with discriminant (if we drop the factor 4) given
by

D = ah al

[
ah al − (

al + (ci − cr )) (ah − (ci − cr )
)]

.

As we are assuming that al ≥ ah then D > 0, because

(
al + (ci − cr )) (ah − (ci − cr )

) = al ah − (ci − cr )(al − ah) − (ci − cr )
2 < al ah .

Hence there exists γ ∈ R such that m′′
γ (0) < 0. Observe that as long as 0 < (ci −

cr )(al −ah)+(ci −cr )
2 ( ⇐⇒ ah −al < ci −cr ) we arrive at the same contradiction.


�
The following result is inspired on some ideas from [10].

Proposition 4.6 Let (F0, a) be initial data for the CP, and let F = (F0,G) ∈ Cop
a (F0)

as in 4.1 and 4.4. For every j < p, the subsequence {gi }i∈J j of G is linearly indepen-
dent.

Proof Suppose that there exists 1 ≤ j ≤ p−1 such that {gi }i∈J j is linearly dependent.
Hence there exists coefficients zl ∈ C, l ∈ J j (not all zero) such that |zl | ≤ 1/2 and

∑

l∈J j

zl al gl = 0. (18)

Let I j ⊆ J j be given by I j = {l ∈ J j : zl �= 0} and let h ∈ H such that ‖h‖ = 1 and
SF h = cp h. For t ∈ (−1, 1) let F(t) = (F0,G(t)) where G(t) = {gi (t)}i∈Ik is given
by

gl(t) =
{

(1 − t2 |zl |2)1/2gl + t zl alh ifl ∈ I j

gl if1 ≤ l ≤ k \ I j .

Fix l ∈ I j . Let Re(A) = A+A∗
2 denote the real part of each A ∈ L(H). Then

gl(t) ⊗ gl(t) = (1 − t2 |zl |2) gl ⊗ gl + t2 |zl |2 a2
l h ⊗ h

+ 2 (1 − t2 |zl |2)1/2 t Re(h ⊗ al zl gl)

Let S(t) denote the frame operator of F(t) and notice that S(0) = SF . Note that

S(t) = SF + t2
∑

l∈I j

|zl |2
(
−gl ⊗ gl + a2

l h ⊗ h
)

+ R(t)
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where R(t) = 2
∑

l∈I j

(1− t2 |zl |2)1/2 t Re(h ⊗al zl gl). Then R(t) is a smooth function

such that

R(0) = 0, R′(0) =
∑

l∈I j

Re(h ⊗ al zl gl) = Re(h ⊗
∑

l∈I j

al zl gl) = 0,

and such that R′′(0) = 0. Therefore lim
t→0

t−2 R(t) = 0. We now consider

W = span
( {gl : l ∈ I j } ∪ {h} ) = span

{
gl : l ∈ I j

} ⊥ C · h.

Then dim W = s + 1, for s = dim span{gl : l ∈ I j } ≥ 1. By construction, the
subspace W reduces SF and S(t) for t ∈ R, in such a way that S(t)|W⊥ = SF |W⊥ for
t ∈ R. On the other hand

S(t)|W = SF |W + t2
∑

l∈I j

|zl |2
(−gl ⊗ gl + a2

l h ⊗ h
)+ R(t) = A(t) + R(t) ∈ L(W ), (19)

where we use the fact that the ranges of the selfadjoint operators in the second and third
term in the formula above clearly lie in W . Then λ

(
SF |W

) = (
c j 1s, cp

) ∈ (Rs+1
>0 )↓

and

λ
( ∑

l∈I j
|zl |2gl ⊗ gl

)
= (γ1, . . . , γs, 0) ∈ (Rs+1

≥0 )↓ with γs > 0,

where we have used the definition of s and the fact that |zl | > 0 for l ∈ I j . Hence, for
sufficiently small t , the spectrum of the operator A(t) ∈ L(W ) defined in (19) is

λ
(

A(t)
) = (

c j − t2 γs, . . . , c j − t2 γ1, cp + t2 ∑
l∈I j

a2
l |zl |2

) ∈ (Rs+1
≥0 )↓,

where we have used the fact that 〈gl , h〉 = 0 for every l ∈ I j . Let us now consider

λ
(

R(t)
) = (

δ1(t), . . . , δs+1(t)
) ∈ (Rs+1

≥0 )↓ for t ∈ R.

Recall that in this case lim
t→0

t−2δ j (t) = 0 for 1 ≤ j ≤ s + 1. Using Weyl’s inequality

on Eq. (19), we now see that λ
(

S(t)|W
) ≺ λ

(
A(t)

)+λ
(

R(t)
) def= ρ(t) ∈ (Rs+1

≥0 )↓.
We know that

ρ(t) = (
c j − t2 γs + δ1(t), . . . , c j − t2 γ1 + δs(t), cp + t2 ∑

l∈I j
a2

l |zl |2 + δs+1(t)
)

=
(

c j − t2 (γs − δ1(t)
t2 ), . . . , c j − t2 (γ1 − δs (t)

t2 ), cp + t2 (
∑

l∈I j
a2

l |zl |2 + δs+1(t)
t2 )

)
.

A direct test shows that, for small t , this ρ(t) ≺ λ(SF |W ) = (
c j 1s, cp

)
strictly.

Then, since f is strictly convex, for every sufficiently small t we have that

Pf
(F(t)

) ≤ tr f
(
λ(SF |W⊥)

)+ tr f
(
ρ(t)

)

< tr f
(
λ(SF |W⊥)

)+ tr f
(
λ( SF |W )

) = Pf (F).
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This last fact contradicts the assumption that F is a local minimizer of Pf in Cop
a (F0).


�

Remark 4.7 Proposition 4.6 allows to show that in case F0 = ∅ then local and global
minimizers of a convex potential Pf , induced by f ∈ Convs(R≥0), on Ca(F0)—
endowed with the product topology—coincide, as conjectured in [27].

Recall that a local minimizer F is a juxtaposition of tight frame sequences {Fi }p
i=1

which generate pairwise orthogonal subspaces of H. Notice that by [31, Lemma 4.9]
F is a frame for H. Moreover, by Proposition 4.5, it is constructed using a partition
of a with consecutive indices.

Now by inspection of the proof of Proposition 4.6 we see that only one of such
frame sequences can be a linearly dependent set: that with the smallest tight constant
cp. This forces that the (ordered) spectrum ν of a local minimizer must be either
ν = c1d or

ν = (a1, a2, · · · , ar , c, . . . , c), where ar > c ≥ ar+1,

and c is the constant of the unique tight subframe constructed with a linear dependent
sequence of vectors with norms given by {ai }k

i=r+1 (notice that this forces c ≥ ar+1).
But it is not difficult to see that this vector can be constructed in a unique way, that is,
there is only one r such that

ar+1 ≤ c = 1

d

(
tr(a) −

r∑

i=1

ai

)
< ar .

That is, the spectrum of local minimizers is unique and therefore local and global
minimizers of Pf coincide, for every potential Pf as above. �

4.2 Several Proofs

Let (F0, a) be initial data for the CPwith λ = λ(SF0)
↑, a = a↓ and d ≤ k. Recall that

we denote by hi = λi + ai for every 1 ≤ i ≤ d and, given j ≤ r ≤ d, we denote by

Pj,r = 1
r− j+1

r∑
i= j

hi = 1
r− j+1

r∑
i= j

λi + ai .

We shall abbreviate P1,r = Pr .

4.8 (Proof of Theorem 3.4) We rewrite its statement: Let (F0, a) be initial data for
the CPwith d ≥ k. Let F = (F0,G) ∈ Cop

a (F0) be a global minimum for Pf on
Cop

a (F0). Using the notations of 3.1, assume that λ = λ(SF0)
↑, μ = μ↓ = μ f (λ, a)

and a = a↓. Then



1134 J Fourier Anal Appl (2014) 20:1111–1140

1. There exist indices 0 = s0 < s1 < · · · < sp−1 < sp = sF = max{1 ≤ j ≤ d :
μ j �= 0} such that

K j = J j = {s j−1 + 1, . . . , s j }, for j ∈ Ip−1,

K p = {sp−1 + 1, . . . , sp}, Jp = {sp−1 + 1, . . . , k}.
(20)

2. The vector ν f (λ, a) = (
c1 1s1 , . . . , cp 1sp−sp−1 , λsp+1, . . . , λd

)
, where

cr = 1

sr − sr−1

sr∑

i=sr−1+1

hi = Psr−1+1,sr for r ∈ Ip−1, (21)

or also cr = λ j + μ j for every j ∈ Kr = Jr for r ∈ Ip−1.
3. The constant cp (and the index sp) is determined by the identity

(
cp 1sp−sp−1 , λsp+1, . . . , λd

) = ν(λIp−1 , aL p−1),

where, with the notations in Remark 3.2 (notice that Ip−1 = {sp−1 + 1, . . . , d}
and L p−1 = {sp−1 + 1, . . . , k} according to item 1 above)

λIp−1 = (λi )
d
i=sp−1+1 ∈ R

dp , aL p−1 = (ai )
k
i=sp−1+1 ∈ R

kp ( with dp ≤ kp)

and ν(λIp−1 , aL p−1) is computed as in Remark 2.13.

Proof Recall from Eq. (12) that for every 1 ≤ j ≤ p − 1

W j
def= ker (S − c j IW ) = span{vi : i ∈ K j } = span{gi : i ∈ J j }

By Proposition 4.6 |J j | = dim W j = |K j | for j < p. Using now Propositions 4.3
and 4.5, we deduce that there exist indices 0 = s0 < s1 < s2 < · · · < sp−1 < sp =
sF = max{1 ≤ j ≤ d : μ j �= 0} such that the sets K j and J j satisfy Eq. (20). Using
Eq. (12) again,

SG |W j = ∑
i∈J j

gi ⊗ gi �⇒ tr SG |W j = ∑
i∈K j

μi = ∑
i∈J j

ai . (22)

Therefore (s j − s j−1) c j = tr S|W j = tr SF0 |Wi + tr SG |Wi = ∑
i∈K j

hi , for every

j < p. Then the vector ν f (λ, a) = (
c1 1s1 , . . . , cp 1sp−sp−1 , λsp+1, . . . , λd

)
, where

the constants cr are given by Eq. (21) for r < p. Item 3 follows from Remark 3.2 and
Lemma 2.17. 
�
Lemma 4.9 Let (F0, a) be initial data for the CPwith k ≥ d. Given 1 ≤ m ≤ d,

(a j )
m
j=1 ≺ (Pm − λ j )

m
j=1 ⇐⇒ Pm ≥ Pi for every 1 ≤ i ≤ m ⇐⇒ P1,m = max

1≤i≤m
{P1,i }.

Proof Straightforward. 
�
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Remark 4.10 Let (F0, a) be initial data for the CPwith k ≥ d and recall the description
of a minimum ν f (λ, a) given in Theorem 3.4. As in Lemma 4.9 (or by an inductive
argument using Remark 3.2) we can assure that for every r ≤ p − 1, the constants

cr = Psr−1+1,sr ≥ Psr−1+1, j for every j such that sr−1 + 1 ≤ j ≤ sr . (23)

It uses that (a j )
sr
j=sr−1+1 ≺ (μ j )

sr
j=sr−1+1 = (cr − λ j )

sr
j=sr−1+1, a consequence of Eq.

(22). �
Lemma 4.11 Let (F0, a) be initial data for the CP. With the notations of Theorem
3.4, the global minimum ν f (λ, a), its constants c j and the indices s j (for 1 ≤ j ≤ p)
satisfy the following properties:

1. Suppose that p > 1. For every 1 ≤ j ≤ p − 1 such that j > 1, the constant c j

satisfies that

c j = Ps j−1+1,s j = 1

s j − s j−1

s j∑

i=s j−1+1

hi <
1

s j

s j∑

i=1

hi = P1,s j . (24)

2. Fix 1 ≤ j ≤ p − 1 such that j > 1. Then

P1,t < P1,s j−1 for every s j−1 < t ≤ sp−1. (25)

3. In particular the averages P1,s j = 1

s j

s j∑

i=1

hi <
1

s j−1

s j−1∑

i=1

hi = P1,s j−1 for 2 ≤
j ≤ p − 1.

Proof The inequality of item 1 follows since

∑s j
i=1 hi = ∑s1

i=1 hi +∑s2
i=s1+1 hi + · · · +∑s j

i=s j−1+1 hi

= s1 c1 + (s2 − s1) c2 + · · · + (s j − s j−1) c j > s j c j .

Now we prove the inequality of Eq. (25): Given an index t such that s j−1 < t ≤ s j ,

t P1,t = s j−1 P1,s j−1 +∑t
i=s j−1+1 hi

= s j−1 P1,s j−1 + (t − s j−1)
1

(t−s j−1)

∑t
i=s j−1+1 hi

(25)≤ s j−1 P1,s j−1 + (t − s j−1) c j

< s j−1 P1,s j−1 + (t − s j−1) c j−1

≤ s j−1 P1,s j−1 + (t − s j−1) P1,s j−1 = t P1,s j−1 ,

where we used the fact that c j−1 ≤ P1,s j−1 for 1 ≤ j − 1 ≤ p − 1, which follows
from item 1. In particular we have proved item 3, and this also proves that Eq. (25)
holds for s j < t ≤ sp−1. 
�
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Proposition 4.12 With the notations of Theorem 3.4, the global minimum ν =
ν f (λ, a), its constants c j and the indices s j (for 1 ≤ j ≤ p) satisfy the follow-
ing properties: suppose we know the index sp−1, and that p > 1. Then we have a
recursive method to reconstruct ν:

1. The index s1 = max
{

j ≤ sp−1 : P1, j = max
i≤sp−1

P1,i
}
, and c1 = P1,s1 .

2. If we already compute the index s j and s j < sp−1, then

s j+1 = max
{
s j < r ≤ sp−1 : Ps j +1,r = max

s j <i≤sp−1
Ps j +1,i

}

and c j+1 = Ps j +1,s j+1 .

Proof The formula P1,s1 = max
i≤sp−1

P1,i follows from Lemma 4.9 and Eq. (25) of

Lemma 4.11, which also implies that s1 must be the greater index (before sp−1)
satisfying this property.

The iterative program works by applying the last fact to the successive truncations
of ν which are still minima in their neighborhood, by Remark 3.2. 
�
Definition 4.13 Let (F0, a) be initial data for the CP. Assume that d ≤ k. We denote
by

λ = λ(SF0)
↑ and hi = λi + ai for every 1 ≤ i ≤ d.

Given j, r ∈ {0, 1, . . . , d} such that j < r , by Q j,r we denote the final averages:

Q j,r = 1

r − j

[ r∑

i= j+1

hi +
k∑

i=r+1

ai

]
= 1

r − j

[ k∑

i= j+1

ai +
r∑

i= j+1

λi

]
. (26)

Notice that the numbers Qr defined in 2.12 satisfy Qr = Q0,r . �
Recall the notion of feasible indices given in Definition 3.5: given 1 ≤ s ≤ d − 1

denote by λs = (λs+1, . . . , λd) ∈ R
d−s and as = (as+1, . . . , ak), the truncations of

the original vectors λ and a. Recall that the index s is feasible if the pair (λs, as) is
feasible for the CP. In any case we denote by

νs = ν(λs, as) = (
c 1r−s, λr+1, . . . , λd

)
where c = Qs,r

for the unique r > s such that λr ≤ c < λr+1. This means that λs � νs ∈ (Rd−s
>0

)↑
and that tr νs = tr λs + tr as .

Lemma 4.14 Fix an index 0 ≤ s ≤ d − 1. Then

1. The index r associated to νs as in the previous notations is given by

r = max{1 ≤ w ≤ d : w > s and Qs,w = min
j>s

Qs, j }.
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In other words, r is the unique index which satisfies: Given j > s,

Qs,r < Qs, j if j > r and Qs,r ≤ Qs, j if j < r. (27)

2. Given an index 1 ≤ l ≤ d − 1,

l > s and Qs,l < λ l+1 �⇒ l ≥ r, (28)

where r is the index associated to νs of item 1.

Proof Item 1 follows from Proposition 2.15 applied to λs and as .
Item 2 : Assume that l < l + 1 ≤ r . Then Qs,l < λ l+1 ≤ λr ≤ Qs,r . In this case

tr λs + tr as (28)= (l − s) Qs,l +
d∑

i=l+1
λi

= (l − s) Qs,l + ∑
l+1≤i≤r

λi +
d∑

i=r+1
λi

< (r − s) Qs,r +
d∑

i=r+1
λi

(28)= tr λs + tr as,

a contradiction. Hence l ≥ r . 
�
Proposition 4.15 Let (F0, a) be initial data for the CPwhich is not feasible, with
k ≥ d. Let

s∗ = min{1 ≤ s ≤ d : s is feasible}.

Let ν∗ be constructed using the recursive method of Proposition 4.12, by using s∗
instead of sp−1 (which can always be done). Then if we get the constants c1 > . . . >

cq−1, and we define cq as the feasibility constant of λs∗
and as∗

, then cq−1 > cq .

Proof For simplicity of the notations, by working with the pair (λsq−2 , asq−2), we can
assume that q = 2. Denote by s1 = s∗ < s2 and c1, c2 the indices and constants given
by:

c1 = 1

s1

s1∑

i=1

hi = P1,s1 and c2 = Qs1,s2 = 1

s2 − s1

⎛

⎝
s2∑

i=s1+1

hi +
k∑

i=s2+1

ai

⎞

⎠ ,

(29)

and we must show that c1 > c2. Recall that hi = λi + ai . We can assume that:

• By Proposition 4.12, c1 ≥ 1
p

p∑
i=1

hi = P1,p for every 1 ≤ p ≤ s1.
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• c2 ≥ 1
p−s1

p∑
i=s1+1

hi = Ps1+1,p for every s1 + 1 ≤ p ≤ s2.

• λs2 ≤ c2 < λs2+1,

where the second item follows by the feasibility of s∗ and the last item states that c2
is the feasible constant for the second block.

Suppose that c1 ≤ c2 and we will arrive to a contradiction by showing that, in such
case, the pair (λ, a) would be feasible (that is, s∗ = 0 or sq−2). In order to do that, let

1 ≤ t ≤ d and b
def= Qt = 1

t

(
sumt

i=1hi +∑k
i=t+1 ai

)

be the unique constant such that λt ≤ b < λt+1, which appears in ν(λ, a). Then

c
def= Qs2 = 1

s2

(
s2∑

i=1
hi +

k∑
i=s2+1

ai

)
= 1

s2
(s1 c1 + (s2 − s1) c2) ≤ c2 < λs2+1.

By Eq. (28) we can deduce that t ≤ s2. Moreover, by item 1 of Lemma 4.14 we know
that

b = Qt = 1
t

(
t∑

i=1
hi +

k∑
i=t+1

ai

)
≤ 1

p

(
p∑

i=1
hi +

k∑
i=p+1

ai

)

= Q p for every 1 ≤ p ≤ d. (30)

In particular, b ≤ c ≤ c2. On the other side, c1 ≤ b. Indeed, if ν = ν(λ, a) then

λ � ν∗ and t = tr ν∗ = tr ν �⇒ ν ≺ ν∗ �⇒ b = ν1 ≥ ν∗
1 = c1,

because c1 ≤ c2 �⇒ ν∗ = (ν∗)↑ and since ν = ν↑ is the ≺-minimum of the set

{λ(S)↑ : SF0 ≤ S and tr S = t} = {ρ = ρ↑ : λ � ρ and tr ρ = t},

by the remarks at the beginning of Sect. 2.3 and Proposition 2.15.
To show the feasibility, by Lemma 4.9 we must show that b ≥ P1,p for every p ∈ It .

First, if we are in the case t ≤ s1, this is clear since b ≥ c1 ≥ P1,p for every p ≤ s1.
Finally, suppose that t ≥ s1 +1. As before, b ≥ c1 implies b ≥ P1,p for every p ≤ s1.
On the other hand, if s1 < p ≤ t then Lemma 4.14 applied to νs1 (whose “r” is s2 )
assures that

c2 < Qs1,t �⇒ (t − s1) c2 ≤
t∑

i=s1+1
hi +

k∑
i=t+1

ai
(31)= t b − s1 c1.

Since p ≤ t and b ≤ c2, this implies that (p − s1) c2 ≤ p b − s1 c1. Therefore

p P1,p = s1 c1 + (p − s1) Ps1+1,p ≤ s1 c1 + (p − s1) c2 ≤ p b.


�
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Proposition 4.16 Let (F0, a) be initial data for the CP. With the notations of Theorem
3.4, the global minimum ν f (λ, a) satisfies that

sp−1 = min{1 ≤ s ≤ d : sis feasible}.

Proof Denote by s∗ the minimum of the statement. Since sp−1 is feasible (recall the
remark after Definition 3.5), then s∗ ≤ sp−1. On the other hand, let us construct the
vector ν∗ of Proposition 4.15, using the iterative method of Proposition 4.12 with
respect to the index s = s∗, and the solution for the feasible pair (λs∗

, as∗
) after s∗.

Write ν∗ = (ν∗
1 , . . . , ν∗

s , c 1r−s, λr+1, . . . , λd), where c is the constant of the feasible
part of ν∗. Observe that Proposition 4.15 assures that c < min{ν∗

i : 1 ≤ i ≤ s}.
Using this fact and Proposition 4.12 it is easy to see that the vector μ = ν∗ − λ↑

satisfies that μ = μ↓. On the other hand Lemma 4.9 and Remark 4.10 assure that
a ≺ μ (using the majorization in each block and the fact that a = a↓). Then ν∗ ∈
{λ + μ↓ : μ ∈ R

d≥0 and a ≺ μ}. Moreover, in each step of the construction of the
minimum ν = ν f (λ, a) we have to get the same index s j = s j (ν

∗) of ν∗ or there exists
a step where the maximum which determines s j (for ν f (λ, a)) satisfies that s j > s∗
(in the eventual case in which sp−1 > s∗).

In both cases, we get that ν∗
i ≤ νi for every index 1 ≤ i ≤ s∗. Consider the subvector

of ν∗ given by ρ = (ν∗
1 , . . . , ν∗

s , λr+1, . . . , λd) ∈ R
s+d−r , and the respective part of

ν f (λ, a) given by ξ = (ν1, . . . , νs, νr+1, . . . νd). Since tr ν∗ = tr ν, the previous
remarks show that

ρ � ξ �⇒ ρ ≺w ξ �⇒ (ρ, c1r−s) ≺ (ξ, νs+1, . . . , νr ),

where the final majorization follows using Lemma 4.6 of [30], which can be used since
the constant c < min{ν∗

i : 1 ≤ i ≤ s} by Proposition 4.15 (and because c < λr+1).
Since majorization is invariant under rearrangements, we deduce that ν∗ ≺ ν.

Finally, using Theorem 2.8 we know that ν = ν f (λ, a) is the unique minimum
for the map tr f (·) in the set {λ + μ↓ : μ ∈ R

d≥0 and a ≺ μ}. This implies that
ν∗ = ν, and therefore sp−1 = s∗. 
�
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