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a b s t r a c t

This work presents results of numerical simulations along with the development of simple analytical
forms aimed at predicting diffusivity in barrier membranes with randomly dispersed flakes. Simulations
are performed using Boundary Element models of representative volume elements that account for the
barrier microstructures with high level of detail. Microstructural features such as flake aspect ratio (α)
and volume fraction (ϕ) are varied in the range of practical interest ( αϕ≤ ≤0.1 5). Numerical simulations
also address the effects of the flake orientational order. Simulation results are used to develop a new
model that predicts the elements of the diffusivity matrix as a function of flake arrangement. The basic
idea behind the proposed model is to assimilate the parameter proposed by Bharadwaj to describe flake
orientational order into the diffusivity model by Lape, which was originally developed for uniformly
oriented flakes. The model predictions are shown to be consistent with theoretical limiting behaviors and
with those of other models in the literature. The proposed model is among the few ones that accounts for
the disorder in the flake orientation, which is found to have a noticeable impact on diffusivity in the
direction parallel to the flake orientation.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The control of barrier properties is relevant to many technol-
ogies as a key factor to guarantee product preservation or to
protect parts and objects of everyday use from the environment.
Beverage bottling, food packaging, protective coatings of diverse
nature or drug delivery devices are some of the many application
niches that require a fine control of mass transport of gas or liquid
species through the material. A useful approach to produce ma-
terials with enhanced barrier properties is the dispersion of im-
permeable elongated objects in a host matrix. The idea behind is
that the obstacles increase the path length of the penetrating
species so retarding mass transport [1]. This concept has been
implemented in polymer based materials with the inclusion of
elongated obstacles with lateral dimensions in the nanometric
scale (polymer nano-composites). For instance, it has been shown
that the incorporation of small amounts of layered silicates (clays)
or natural fibers such as cellulose into a variety of polymer ma-
trices produces a remarkable improvement in gas barrier
properties.

The prediction of barrier properties like diffusivity, D, or

permeability, P , in composite materials is of obvious interest,
particularly from the point of view of material design. In other
families of barrier materials, such as those composed by multi-
layers, overall permeability is dictated by a simple combination of
properties of the individual layers. In nanocomposites, predictions
of barrier properties are certainly more complex as there are
several structural features that come into play. For instance,
characteristics of the obstacles such as length-to-thickness ratio, α,
volume fraction, ϕ, orientation and state of aggregation are ex-
pected to affect the overall transport behavior of the composite
system. Moreover, in real materials, these variables may not have
spatial homogeneity thus adding another level of complexity in
the problem description. For example, in the production of parts
by injection, extrusion or blown-molding of polymer nano-
composites, shear induced orientation of the nanoclay is un-
avoidable and it leads to fairly complex orientation patterns of the
objects when going from the skin of the part to its core [2].

Some remarkable efforts have been made in the past to un-
derstand the effect of α and ϕ of either regular or randomly placed
diffusion flakes on overall P or D. The upper bound for diffusivity is
predicted by the Voigt's parallel model, which states that for flakes
oriented parallel to the concentration gradient, diffusivity de-
creases, irrespectively of α, in direct proportion with the increase
of ϕ. Any other configuration yields lower diffusivities; in parti-
cular, models that consider flakes oriented perpendicular to the
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concentration gradient predict the minimum diffusivities. These
models idealize the penetrant trajectory as a one-dimensional
path that experiments abrupt changes in direction when it en-
counters an obstacle. Thus, tortuous paths retard the penetrant
diffusion. The barrier performance can be described in terms of the
product αϕ, a measure of the mean overall resistance to the dif-
fusion of the penetrant. Models predict two ranges of barrier
performance. In the diluted limit (αϕ ≪ 1), D scales with the in-
verse of the product αϕ; obstacles essentially behave in-
dependently of each other and the reduction in diffusivity is
mostly due to the tortuosity effect [3]. In the so-called semi-diluted
regime (αϕ close or above 1), D turns out depending on the square
inverse of αϕ [1]. As obstacles come closer to each other, the area
available for diffusion decreases, further reducing diffusivity. The
semi-diluted regime is of practical interest as in most of the ap-
plications ϕ ≈ 0.05 and α > 20, which implies αϕ > 1. Other im-
portant microstructural factors have also been considered. For
instance, Lape et al. [1] assessed the influence of flake aspect-ratio
polydispersity on the permeability for the case of flakes oriented
perpendicular to the concentration gradient. They concluded that
polydisperse flakes have superior barrier properties than mono-
disperse ones.

Flake orientation with respect to the concentration gradient i.e.
aligned or perpendicular, have a profound effect on D. Accordingly,
the dispersion of the flake orientation angles is another important
aspect to be addressed, as the increase in angle dispersion even-
tually leads to microstructures with randomly oriented flakes.
Fredrickson and Bicerano [4] demonstrated that flakes perpendi-
cular to the concentration gradient are three times more effective
in permeability reduction than those with randomly oriented ob-
stacles. Bharadwaj [5] described the dispersion in the orientation
angle (orientational order) through the introduction of the order
parameter S, derived from liquid crystals theory [6]. Bharadwaj's
model predicts that small obstacles are more sensitive to or-
ientational disorder than large ones, although that claim is limited
to the diluted limit used for the author as the base of derivation.

High performance numerical tools such as Boundary Element
(BEM) and Finite Element (FEM) Methods have taken advantage of
the continuous increases in computational power to address the
rigorous modeling of complex material microstructures. BEM can
solve the diffusion of the penetrant through intricate flake ar-
rangements with high level of detail and accuracy. At the same
time, BEM simplifies the problem data preparation and dis-
cretization, which is limited to the model boundary [7]. Results of
numerical simulations are very useful to obtain further insights on
how microstructural features such as flake size, shape and or-
ientation influence on D, beyond the information obtained from
the analysis of idealized simple microstructures. Rigorous com-
puter simulations provide a platform of data generation, compar-
able to those one would obtain from experiments with controlled
and well-defined sample geometries.

This work presents the results of a systematic 2D BEM homo-
genization analyses for the computation of the overall anisotropic
diffusivity matrix of flake-filled barrier membranes. The analyses
consider microstructures with randomly placed flakes, the size
and aspect ratios of which are within the range αϕ< <0.1 5. The
homogenization analyses address the effects of the variability of
the flake orientation angles, which are characterized via the above
referred orientational order parameter, S. Our primary objective is
to reduce the simulation results to simple and manageable ana-
lytical forms, able to quantitative predict the diffusivity reductions
in terms of α, ϕ and S. The paper is organized as follows: we start
presenting relevant details of BEM implementation and the results
of the numerical simulations. Then, we briefly review some of the
relevant analytical models used to predict diffusivity, which will
serve as a platform for our further developments. In the

subsequent section, we develop a new analytical model that pre-
dicts the overall anisotropic diffusivity matrix of the barrier ma-
terial. The last section discusses some examples that highlight the
capabilities of this new model.

2. Problem description

The analysis addresses the two-dimensional diffusion of a so-
lute through flake-filled membranes, like the ones depicted in
Fig. 1. The matrix material is homogeneous and isotropic, whereas
the flakes are of rectangular shape and they are impermeable to
the diffusing species. Dimensions of the flakes are ×a b2 with

>a b (see Fig. 2a). The membrane microstructure is described in
terms of the flake volume fraction ϕ = = ( × )

×A A/flakes membrane
n a b

L W
2 ,

where n is the number of flakes and L and W are the membrane
length and width, respectively. The flake aspect ratio is defined as
α = a b/ . The flake orientation is described in terms of the mean
orientation angle θ ̅ and its standard normal dispersion σ .

Fick's second law governs the diffusion of the solute through
the membrane matrix. At the steady state, the conservation of the
solute mass implies,

∇∙ = ( )q 0, 1

where q is the diffusion flux. The constitutive equation for the flux
is

φ= − ∇ ( )Dq , 2

where φ is the solute concentration and D is the diffusion coef-
ficient of the neat matrix, which is assumed to be not affected by
the presence of the flakes. The symbol ∇ stands for the gradient
operator. Bold letters indicate vectors and matrices. Vector com-
ponents are indicated with subscripts; for instance q1 and q2 in-
dicate the fluxes in the directions along and across the membrane,
respectively.

Due to the presence of flakes, the membrane is anisotropic in
terms of diffusion properties. The respective diffusivity matrix is

=
( )

⎡
⎣⎢

⎤
⎦⎥+ + +

+ + ,
3

11 12

21 22

where the +ij components are the diffusivities associated to the
flux in the i-direction due to a concentration gradient in the
j-direction.

Matrix + is a second-order tensor, so it can be rotated using
the well-known rotation formula

θ θ
θ θ

θ θ
θ θ′= = ( ) − ( )

( ) ( )
( ) ( )

− ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥+ + + +

+ +R R
cos sin
sin cos

cos sin
sin cos

,
4

T 11 12

21 22

where θ is the rotation angle.

Fig. 1. Geometries of typical models of the membrane microstructures: ϕ = 0.1,
=n 500, α = 25, orientation angle θ ̅= °0 with normal dispersion (a) σ = °0 and (b)

σ = °10 .
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3. Homogenization analysis

The homogenized or effective diffusivities relate the average
flux and concentration fields in the membrane. In Fig. 1, it is ob-
served that the membrane microstructure has inhomogeneous
flake distributions in the regions next to the boundaries. Since
flakes are not allowed to cross the sample boundaries, flake vo-
lume fractions ϕ are smaller in the regions close to the vertical
boundaries; moreover flakes placed next to the horizontal
boundaries have a tendency to be oriented in parallel to the
x1-direction. Consequently, the membrane strips adjacent to the
boundaries are easy diffusion zones that will lead to overestimate
the membrane effective diffusivity if their contributions are di-
rectly included into the homogenization computations. Following
an approach similar to that by Chen and Papathanasiou [9], the
homogenization procedure used in this work excludes the strips
with enhanced diffusion zones from the homogenization compu-
tations. The homogenization procedure distinguishes between two
domains: i) the sample domain of area = ×A L W0 and external
boundary Γ0 that comprises the complete microstructure; ii) the
representative volume element (RVE) domain, of area A and ex-
ternal boundary Γ , which is embedded within the sample domain,
see Fig. 3. The RVE is assumed large enough for the spatial fluc-
tuations of the field variables to be statistically homogeneous [12].

For the homogenization analysis, concentration boundary
conditions on the boundary Γ0 are specified to produce average
fluxes within a homogeneous material of the same size as the
sample. These are

( )φ Γ̅ = − = ( )H x j 1, 2, 5j j0

where φ= −Hj j, are the given concentration gradients. The asso-
ciated average flux in the RVE area is

∫̅= ( )q
A

q dA1 . 6i
A

i

A useful averaging theorem allows expressing ̅q in terms of a
line integral along Γ [9]. Therefore, one has

∫ Γ̅= ∙( ⊗ ) ( )Γ
q n q x

A
d1 , 7

where n is the unit normal vector at the boundary Γ and ⊗ is the
dyad operator.

Similarly, the average concentration gradient H̅ in the RVE can
be written as

∫ φ Γ̅= ∙ ( )Γ
H n

A
d1 . 8

The method for the computation of effective properties in
terms of average fields is first-order asymptotic. The average fluxes
and the concentration gradients within the RVE are related by the
effective diffusivity matrix, +ij, throughout the bilinear form

̅= ̅ ( )+q H . 9i ij j

The concentration and flux fields are solved for two problems
with constant concentration gradients in the x1 and x2 directions,

= − = − ( )
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

W
L

H H1/
0

and
0
1/

,
10

1 2

respectively. The boundary conditions for these problems are set
using Eq. (5).

Finally, the effective diffusivity matrix, +, is computed by sol-
ving the system of equations that results after the specialization of
Eq. (9) for q̅1 and H̅1, and q̅2 and H̅2. Thus,

=
− ̅ ̅ − ̅ ̅

− ̅ ̅ − ̅ ̅ ( )

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥+

q H q H

q H q H

/ /

/ /
.

11

1
1

1
1

1
2

2
2

2
1

1
1

2
2

2
2

4. Numerical implementation

4.1. Boundary element modeling

This work uses the Fast Multipole formulation of the BEM
(FMBEM) to solve the flux and concentration fields for the
homogenization analyses. The FMBEM reduces the computational
cost of the direct BEM from an order of ( )O N3 to a quasi-linear,
where N is the number of degrees of freedom of the problem. This
reduction is achieved by: i) multilevel clustering of the boundary
elements into cells along with the use of the multipole series ex-
pansion for the evaluation of the fundamental solutions in the far
field; ii) the use of an efficient iterative solver. Additionally, the
multipole algorithm leads to important savings in computer

Fig. 2. BEM models of the membrane microstructure: (a) Notation for the di-
mensions and orientation of the flakes; (b) BEM discretization strategy: ! boundary
nodes, + internal points.

Fig. 3. Strategy for the RVE sizing: the RVE domain (gray region) embedded within
the sample domain.
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memory as it involves a matrix-free calculation scheme [8].
In the BEM model, the flakes are assimilated to rectangular

holes with zero-flux boundary condition along their boundaries,
Γfl, like in Chen and Papathanasiou [9] and Dondero et al. [10,20].
The outer model boundary, Γ0, and the flake boundaries, Γfl, are
discretized with constant elements of size equal to that of the flake
thickness (see Fig. 2b). This discretization strategy was devised
based on the results of convergence tests performed in previous
works, see Ref. [10,11].

The FMBEM was implemented in-house, following the tutorial
due to Liu and Nishimura [8]. Integral evaluations are carried out
analytically. The system of equations is solved by a preconditioned
GMRES algorithm from the Slatec public library, available at netlib
(http://www.netlib.org/). The parameters of the algorithm were
set as follows: 12 expansion terms for the FMBEM and 300 ele-
ments per cell. The tolerance for the GMRES convergence was set
10"7. With these settings, the speedup of the FMBEM with respect
to a standard direct BEM was around 14# for 104-element
models.

Given a membrane microstructure, FMBEM models are solved
for the boundary conditions in (10). In the post processing stage, M
internal points are used to define the contour of the RVE, see
Fig. 2b and Fig. 3. Distances between internal points are set equal
to half the element size in order to capture the rapid varying fields
in the proximity of the flakes. Fluxes and concentrations are
computed at internal points using standard BEM procedures.
These results are then used to compute the RVE average flux and
concentration gradients by means of the discrete versions of Eqs.
(7) and (8), assuming a piecewise constant interpolations of the
flux and concentration fields along the contour Γ . Thus,

∑ Γδ̅= ∙( ⊗ )
( )=

q n q x
A
1

12
k k k

k

M

1

and

∑ Γφ δ̅= ∙
( )=

H
A

n1 ,
13

k
k

M

k
1

where ni, qi, φi and xi are the normal vector, the flux and the
concentration at the position of the kth internal point and Γδ is
distance between internal points. Finally, the results for

̅ = ̅ ̅⎡⎣ ⎤⎦q qq
T1

1
1

2
1 , ̅ = ̅ ̅⎡⎣ ⎤⎦q qq

T2
1
2

2
2 , ̅ = ̅ ̅⎡⎣ ⎤⎦H HH

T1
1
1

2
1 and ̅ = ̅ ̅⎡⎣ ⎤⎦H HH

T2
1
2

2
2 .

are replaced into (11) to compute the effective diffusivity ma-
trix +.

4.2. RVE sizing

The strategy for the RVE sizing is depicted in Fig. 3. It consists in
determining the number of flakes, n, the sample aspect ratio, W L/ ,
and the width of the excluded boundary strips, Δ =W r aw and
Δ =L r aL , that result in size-independent diffusivity properties for
the RVE. This was done by means of convergence analyses for
successive larger samples and by increasing values for the para-
meters rw and rL.

Multiple criteria were devised and tested. The resultant one is
illustrated and discussed next for the microstructure shown in
Fig. 1a, which has flake volume fraction ϕ = 0.1, flake aspect ratio
α = 25 and monodisperse flake orientation angle θ = °0 . This is a
very good exemplary case because, being in the concentrated re-
gime (αϕ = 2.5), the effects of the excluded zones are significant.
Besides, other authors have solved this case and so their results
can be used to verify our results.

Fig. 4 presents the results of the convergence analyses for the
RVE flake volume fraction and the normalized concentration gra-
dient as functions of the sample size for =r 2w and =r 0. 5L . Every

point in the plots is the average of 10 results computed for dif-
ferent random microstructures. Error bars indicate standard de-
viations. Point labels in Fig. 4a indicate the number of flakes in the
samples. BEM discretizations range from 32,000 to 118,000
elements.

The variation of the RVE flake volume fraction ϕ with the
sample size in Fig. 4a is due to the effect of excluding the boundary
strips. Since the strips have less flakes than the central part, ϕ in
the RVE is larger than the nominal value used to generate the
sample microstructure. As it is expected, ϕ converges towards the
nominal value as the sample size increases and the area of the
excluded strips covers a smaller fraction of the sample area; the
mean value of the discrepancy between the RVE and the sample
(nominal) flake volume fractions diminishes from 22% for =W L/ 1
(100 flakes) to 3% for =W L/ 5 (500 flakes) and to less than 1% for

=W L/ 11 (1100 flakes). In the same way, the standard deviation for
ϕ diminishes with sample size, from approximately 4–1% over the
analysis range. Similar results were obtained for microstructures
with ϕ≤ ≤0.02 0.1, flake aspect ratios α≤ ≤5 50 and orientation
angles with a normal variability up to σ = ∘20 . For =W L/ 5, the
discrepancy in ϕ never exceeded 5% and the dispersions for ϕ were
always less than 2%. It is worth to mention that although the
consistent overestimation of ϕ, RVEs and their associated results
will be always identified in the text by their nominal ϕ. However,
all the computations and plots will be produced using the actual ϕ
values.

Fig. 4b plots the effect of the sample size on the RVE con-
centration gradients, φ,1 and φ,2. Concentration gradient results are

Fig. 4. Convergence analyses for the RVE (a) flake volume fraction and
(b) normalized concentration gradient as functions of the normalized sample size
for =r 2w and =r 0. 5L . Error bars indicate standard deviations. Point labels in
(a) indicate the number of flakes in the sample.
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normalized with respect to the values for the boundary conditions
in Eq. (10). It can be observed that both concentration gradients
converge towards their prescribed values. Gradient φ,1 is less
sensitive to the sample size than φ,2. Even for the smallest sample
size, =W L/ 1, φ,1 presents a deviation less than 2%, which reduces to
less than 0.5% for >W L/ 5. On the other hand, the discrepancy of φ,2
reduces from around 30% for =W L/ 1 to less than 2% for >W L/ 5.
Standard deviations of φ,1 are negligible over the complete range of
sample sizes, whereas those for φ,2 reduces from 6% to less than 2%.
The analysis of other microstructures led to similar results. In
every case, the same levels of accuracy were found for the mean
values of φj, , but standard deviations were larger for micro-
structures with high aspect ratios and orientational order. Stan-
dard deviations for microstructures with α = 50 and σ = ∘20 were
found to be as large as 12% for =W L/ 5.

Finally, the results for the convergence of the effective diffu-
sivity are presented in Fig. 5. There are also plot in the figure the
reference values for the Voigt's (parallel) model [18] for compar-
ison with the +11 computations,

ϕ= − = − = ( )
+
D

1 1 0. 1 0. 9, 14
11

and the numerical result by Chen and Papathanasiou [9],
=+ D/ 0.0976622 , for comparison with the +22 computations. It can

be observed that both, +11and +22, converge to the reference
values. For ≥W L/ 5, +11 matches that of Voigt's model with a dis-
crepancy less than 0.5%, whereas the difference between +22 and
the results by Chen and Papathanasiou [9] is within 1.5%. Standard
deviations are 1.5% for +11 and less than 5% for +22. The analyses
of the diffusivities for other microstructures showed similar be-
haviors, but, as it was reported before for the concentration gra-
dient, standard deviations increase for microstructures with high
aspect ratios and orientational order. Standard deviations for mi-
crostructures with α = 50 and σ = ∘20 were found to be as large as
15%.

Based on the above results, and considering a balance between
accuracy and computational cost, the RVE size is designed to
contain 500 flakes, aspect ratio =W L/ 5 and excluded strips of
width Δ =W a2 and Δ =L a0.5 .

5. BEM results

The above procedures were used to study the effects of the
flake volume fraction, aspect ratio and orientational order on the
membrane effective diffusivity. BEM models were solved for
combinations of ϕ = [ ]0.02,0.05,0.1 and α = [ ]5,10,25,50 . Three

cases were considered for the orientational order, σ = [ ]∘ ∘ ∘0 ,10 , 20 .
The average flake orientation was always θ ̅= ∘0 . That made a total
of 36 different analysis cases. Those with σ = ∘0 and ∘10 were
solved for 10 different RVEs; a single one was solved for σ = ∘20 .
RVEs were generated randomly, by successive addition of non-
overlapping flakes with uniform probability distribution for the
position and normal (Gaussian) distribution for the orientation
angle [13]. The resultant diffusivity matrices are labeled as σ+ 0,

σ+ 10 and σ+ 20.
Fig. 6 depicts the results for the normalized + D/22 in terms of

ϕα for the three values of σ . Symbols correspond to BEM results
whereas lines represent predictions of analytical models that will
be discussed in the next section. Error bars, hidden behind the
symbols in most of the cases, indicate the normal dispersion of the
BEM results. Dispersion in abscissas are due to the variations of ϕ
(see Section 4.2). It can be observed that the three sets of results
have same general behavior. As it was expected, diffusivity across
the membrane decreases with the increments of flake volume
fraction and aspect ratio. Besides, orientational disorder has a
weak effect, only producing small increments in diffusivity.

Fig. 7 shows results for + D/11 ; BEM results are represented by
symbols whereas lines correspond to model predictions that will
be discussed later. It is observed that results for σ = 0 converge
towards the Voigt's limit value, ϕ= −+ D/ 111 , as flake aspect
ratios increase. On the other hand, flake misalignments σ( = ∘10

σ= )∘and 20 lead to reductions in the diffusivity; this effect is more
marked as flake volume fraction, aspect ratio and dispersion in the
orientation increase. Before further discussing on the results, it is
important to comment on the orientational disorder of the mi-
crostructures. Geometrical restrictions imposed by the condition
of not overlapping flakes yield samples with values of normal
dispersions in flake orientation that are smaller than the target
value. This effect is more marked with the increment of the flake
volume fraction and aspect ratio, as the flakes need to be “more
ordered” to attain the prescribed volume fractions. Results com-
puted using samples with normal dispersions in the flake or-
ientation angles that deviate more than 15% from their target va-
lues are marked with circles in Fig. 7. For instance, the actual
dispersion for the data point labeled ϕ = 0.05, α = 50 and σ = ∘20
in Fig. 7b is σ = ∘16.8 ; while in Fig. 7c, the actual dispersion values
are σ = ∘ ∘ ∘16.5 , 15.6 and 13.5 for α = 10,25 and 50, respectively. This
behavior shows the practical threshold for the random dis-
orientation of the flakes.

We can quantify the reduction of +11 due to the orientational
disorder from the results in Fig. 7. For example, for ϕ = 0.02 and

Fig. 5. Convergence analyses for the effective diffusivities +11and +22 as functions
of the normalized sample size for =r 2w and =r 0. 5L .

Fig. 6. BEM and analytical-model results for diffusivity +22 for flakes with average
orientation θ ̅= ∘0 .
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α = 50, the reduction in the diffusivity with respect to the case of
perfectly oriented flakes are =σ σ+ +/ 0.9511

10
11

0 and =σ σ+ +/ 0.9011
20

11
0 ,

while for ϕ = 0.05 they are =σ σ+ +/ 0.9111
10

11
0 and ≈σ+ D/ 0.7211

20 . For
ϕ = 0.1 the reduction in the diffusivity is =σ σ+ +/ 0.7011

10
11

0 and
≈σ σ+ +/ 0.511

20
11

0 . Values reported as approximated are expected to be
lower, as they resulted from models with σ values lower than
those nominally prescribed.

In terms of cross-diffusivities, + ,ij BEM results yielded values of
+12 and +21 that were, at most, about 1% of those for +11.
Therefore, = =+ + 012 21 are assumed for all the cases.

6. Models for the prediction of the diffusivity of flake-filled
membranes

This section reviews some models for the prediction of the
diffusivity of the flake-filled membranes. The review does not at-
tempt to be exhaustive, but it focuses on those approaches that
will be used later for the development of the new model.

Most of the models are focused on the prediction of diffusivity
across membranes with flakes oriented in the direction perpen-
dicular to the concentration gradient, the configuration that
maximizes the barrier effect. Among these models, there are those
proposed by Lape et al. [1] and Minelli et al. [14]. Lape's [1] model
accounts for two effects resulting from impermeable flakes re-
placing the permeable matrix material: the increment in the tor-
tuosity of the diffusion path and the reduction of the area available
for diffusion. As result, the reduction in diffusivity is given in terms
of α and ϕ as follows:

( )
ϕ
ϕ

= −
+ α ( )

⎜ ⎟⎛
⎝

⎞
⎠

+
D

1

1
.

15

22

Lape 2
3

2

The model by Minelli is based on the fundamental work by Aris
[15], to assess the effects of tortuosity, and on FEM results, to as-
sess the resistance of the solute to pass through the gaps between
flakes. The model distinguishes between two regimes, which are
fully described in terms of α and ϕ:

ϕ ϕ
ϕ

ϕ

ϕ

ϕ ϕ

ϕ
ϕ

=

≤ α (α + ) + (α + )
α − α (α + )

+ πα (α + )

π
α

(α + ) −

> + (α + ) + πα (α + ) π (α + )

= (α − (α + ))
(α + ) ( )

−

−
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22

2
2 4

2
2

1

2
1

2

Among the great number of available models, the only ones
that account for the effect of flake orientation are those by Bhar-
adwaj [5], Greco and Maffezzoli [16] and Greco [17]. Bhardwaj's
model strives to predict the diffusivity strictly based on tortuosity
arguments. It invokes the pioneer model by Nielsen [3] for reg-
ularly spaced flakes, which is modified to consider the dependence
of the tortuosity factor with the flake orientational order via the
parameter

θ= − ( )S 1
2

3 cos 1 . 17
2

The angular brackets in (17) denote averaging over all the flakes
in the system. The order parameter ranges from =S 1 for θ = 0,
this is, all the flakes are perfectly oriented in the membrane
longitudinal direction, to = −S 1/2 for θ = ∘90 , this is, all the flakes
are perfectly oriented in the direction of the membrane thickness.
The value =S 0 indicates a random orientation of the flakes. The
reader is referred to Fisch and Kumar [6] for the details on the
definition of S. The expression of Bharadwaj's model is given by

( )
ϕ

ϕ
= −

+ α + ( )
⎜ ⎟⎛
⎝

⎞
⎠

+
D S

1

1
.

18

22

Bharadwaj 2
3

1
2

It is worthwhile emphasizing here that Bharadwaj's model does
not aim to account for the effects of the mean flake orientation
angle, θ ̅ , but for effects of their orientational order. The mean

Fig. 7. BEM results for +11 for flakes oriented θ ̅= ∘0 : (a) ϕ = 0.02, (b) ϕ = 0.05 and
(c) ϕ = 0.1.
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orientation angle in Bharadwaj's model is always θ ̅=0.
By contrast, the models by Greco and Maffezzoli [16] and Greco

[17] aim to predict the effect of the overall mean flake orientation,
which is given by the θ angle, assumed to be the same for all the
flakes. These models were derived from the probability of collision
of diffusing particles on the flakes. The expressions for the models
by Greco and Maffezzoli [16] and Greco [17] are

π ϕ α θ θ= + ( − )
( )

−
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

+
D

1
3 3. 62 2

cos 1 sin
19Maffizzoli

22

Greco &

4

and

( )
ϕ

ϕ θ
= −

+ − ( )
α

⎜ ⎟⎛
⎝

⎞
⎠ ⎡

⎣⎢
⎤
⎦⎥

+
D

1

1 2 1 cos
,

20

22

Greco 2
2 2

2
4

respectively.
Fig. 6 compares the BEM and model predictions for + D/22 . It is

found that models by Lape and Minelli are those that better pre-
dict the general behavior of BEM results over the complete range
of ϕα. Lape's and Minelli's predictions deviate 4% from the BEM
results for σ = ∘0 in the dilute regime, this is ϕα ≲ 0.25. Maximum
deviations are for the concentrated regime, ϕα≳5, with differences
of around 30% and 80% with respect to the BEM results for Lape's
and Minelli's models, respectively. Models by Greco and Maffezzoli
and by Greco behave similarly to those of Lape or Minelli for dilute
and concentrated regimes, but they have worse performances in
the medium ϕα-range. Differences between Greco's model pre-
dictions and BEM results nearly triple those of Lape's and Minelli's
models for ϕα ≈ 1. 3.

For the evaluation of Bharadwaj's model, we propose to express
the order parameter (17) in terms of the flake orientation disper-
sion σ as follows

( )σ= = ∙ − ( )S S 1
2

3 cos 1 , 2122
2

such that =S 1 for σ = ∘0 , =S 0.955 for σ = ∘10 and =S 0.825 for
σ = ∘20 . It is worth to note that values for S computed using (21)
differ less than 1% with respect to those computed using (17) for
the individual flakes.

From Fig. 6, we observe that Bharadwaj's model presents a
good agreement with BEM results in the dilute regime, but it
consistently draws away from those as ϕα increases. Discrepancies
between Bharadwaj's predictions and BEM results can be as large
as 300% in the concentrated regime. Although this poor perfor-
mance in the concentrated regime, Bharadwaj's model shows the
capability to assess the effect of the orientational order on the
diffusivity. Note from Fig. 6 that increments in diffusivity predicted
by Bharadwaj's model are of the same relative magnitude of those
predicted by the BEM analyses.

We now address the comparison between the BEM results and
the model predictions for + D/11 . Lape's model [1] can be adapted
to compute + D/11 by simply substituting α by its reciprocal in (15):

( )
ϕ= −

+ ( )
ϕ
α

⎜ ⎟⎛
⎝

⎞
⎠

+
D

1

1
.

22

11

Lape 2
3

2

It is interesting to note the limiting behaviors of expression
(22). Diffusivity values predicted by (22) converges to Voigt's
limiting values for α→∞, whereas they rapidly diminish as α→0.
This last result is consistent with the fact that as α→0 the flake
dimension ≫b a, and so, the barrier effect in the membrane
longitudinal direction increases. In this condition, the problem can
be tackled using Lape's model in (15) for the membrane rotated

∘90 . Lape's model predictions are compared to BEM results for
σ = ∘0 in Fig. 7. An excellent agreement is observed between the

two sets of results, with Lape's predictions always lying within the
normal dispersion of the BEM results, even for small values of α.

On the other hand, Minelli's model [14] cannot be easily
adapted to compute + D/11 . The simple substitution of α by its
reciprocal in (16) in not possible as with the Lape's model. Due to
its complex formulation, Minelli's model requires a deeper ana-
lysis to be adapted or extended for the computation of + D/11 .

The computations of + D/11 by means of the models by Greco
and Maffezzoli and Greco are straightforward as they only require
for the specialization of (Eqs. (19) and 20), respectively, for θ = ∘90 .
Greco and Maffezzoli's [16] model is problematic since it violates
the bound due to the Voigt's parallel model; note that Eq. (19)
with θ = ∘90 predicts + D/11 ¼1 irrespectively of ϕ and α. On the
other hand, Eq. (20) of Greco's model reduces to Voigt's parallel
model, which is a function of ϕ only.

To compute + D/11 with Bharadwaj's [5] model, the definition of
the order parameter in (21) is adapted to make the orientation
dispersion compatible with the mean flake orientation:

( )σ= = ∙ + − ( )
∘⎡⎣ ⎤⎦S S 1

2
3 cos 90 1 ; 2311

2

such that = −S 0.5 for σ = 0, = −S 0.455 for σ = ∘10 and
= −S 0.325 for σ = ∘20 . Bharadwaj's model predictions are shown

in Fig. 7. Note that Bharadwaj's model reduces to the Voigt's par-
allel model for = −S 0.5, this is, it predicts constant diffusivity
values irrespectively of α, and so, it overestimates diffusivities for
small flake aspect ratios. On the other hand, Bharadwaj's model is
successful to account for the decrements in the diffusivity due to
the orientational disorder; nevertheless, its predictions result in
consistent overestimations of BEM results. Discrepancies between
BEM results and model predictions increase with α, ϕ and S. For
ϕ = 0.02, α = 50 and = −S 0.455 the discrepancy is only 2%, but it
increases up to around 70% for ϕ = 0.1, α = 50 and = −S 0.325.

7. A new model for the prediction of the diffusivity tensor

It is introduced here a new model for the prediction of the full
diffusivity tensor in terms of flake volume fraction, aspect ratio
and orientational order. The new model combines the models by
Lape et al. and Bharadwaj, which are conveniently adjusted and
adapted for consistency, while seeking to maintain the simplicity
of the equations.

It has been shown in the previous section that Lape's model
provides the best predictions for D11 and D22 when flakes are or-
iented with θ = ∘0 and σ = ∘0 . At the same time, Bharadwaj's model
is the only one that accounts for the effects of the flake orienta-
tional order. This motivates to use Bharadwaj's approach to extend
Lape's model to account the effect of the orientational disorder in a
more general approach. To this end, we retrieve Eq. (15) and we
modify its denominator to make it function of the order parameter
S. This results in

( )
ϕ

ϕ
= −

+ α + ( )

⎜ ⎟⎛
⎝

⎞
⎠ ⎡⎣⎢ ⎤⎦⎥

+
D S

1

1
.

24

22

2
3

2
3

1
2

2

Note that the above expression reduces to Lape's model in (15)
when =S 1, and, like Bharadwaj's model, it converges to the
Voigt's parallel model when = −S 0.5.

Consistently with Lape's model, + D/22 predictions by Eq. (24)
can deviate up to 30% from the numerical results, see Section 5. In
order to improve this performance, we introduce an empirical
correction to (24) that consists in adding a coefficient C to the
second summand in its denominator:
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The coefficient C is calculated to best fit of the BEM results for
=S 1, which yields =C 5/4. The coefficient C can be assimilated to

an empirical 25% increment to the first of 2/3-factors in (25),
which accounts for the effect of the random distribution of flakes
in Lape's tortuosity model [1]. Then, the resultant expression for
the estimation of + D/22 is

( )
ϕ

ϕ
= −

+ α + ( )

⎜ ⎟⎛
⎝

⎞
⎠ ⎡⎣⎢ ⎤⎦⎥

+
D S

1

1
.

26

22

5
9

1
2

2

Fig. 8 compares the predictions by Eq. (26) to BEM results. A
very good agreement between the two sets of results can be ob-
served. Model predictions deviate less than 5% from BEM results in
the dilute and intermediate regimes. Maximum discrepancies are
in the concentrated regime, with differences of up to 12% for ϕα≳2.

Like Bharadwaj's model in Section 5, Eq. (26) can be used to
compute + D/11 when S is calculated using Eq. (23). The results are
plot in Fig. 9 using dashed lines. When compared to results in
Fig. 7, it can be observed that the performance of the new model
improves with respect to those of Bharadwaj's [5]. Discrepancies
for ϕ=0. 02 do not exceed 1%, while for ϕ=0. 05 the maximum
discrepancy is 7% for = −S 0. 455 and α=50. For ϕ=0. 1, the dis-
crepancies are more important. The maximum difference for

= −S 0. 455 is 14%. Discrepancies of about 15% are found for
= −S 0. 325; however, it is worth to remember that BEM results for

this last case are not accurate, being , most likely, underestimated
(see Section 4).

Fig. 9 shows that, consistently with Bharadwaj's model, Eq. (26)
reduces to the Voigt's parallel model when specialized for

= −S 0. 5, therefore, it predicts constant + D/11 values irrespec-
tively of the flake aspect ratios. It might be desirable for the model
to account for the decrease in diffusivity for low aspect ratios, as
Lape's model does. To this end, the following expression is pro-
posed for the computation of + D/11 , which combines Lape's model
in (22) with the denominator of expression (26):

( )
( )

ϕ
=

+ α + ( )

ϕ−

+ ϕ
α⎜ ⎟⎛

⎝
⎞
⎠ ⎡⎣⎢ ⎤⎦⎥

+
D S1

.

27

11

1

1

5
9

1
2

2

2
3

2

The above expression yields the Lape's model in (22) when
= −S 0.5 and the Voigt's parallel model for α → ∞.

The predictions computed with (27) are plot in Fig. 9 using
solid lines. It is observed that the improved model succeeds in
accounting for the decrease in the diffusivity for low flake aspect
ratios, whereas it behaves as the model described by (26) for high
aspect ratios.

8. Discussion

The new model in the previous section introduces two ap-
proaches for the computation of diffusivities in the longitudinal
and through-the-thickness membrane directions. The first

Fig. 8. Comparison of the model predictions and BEM results for D22.

Fig. 9. Model and BEM results for D11: (a) ϕ = 0.02, (b) ϕ = 0.05 and (c) ϕ = 0.10.
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approach uses a single expression, Eq. (26), to compute both dif-
fusivities; consequently, the model has a continuous behavior over
the complete S-range. The second approach uses two expressions:
Eq. (26) for the computation of + D/22 and Eq. (27) for the com-
putation of + D/11 , which is better suited to deal with low aspect-
ratio flakes.

In what follows we check the consistency between Eqs. (26)
and (27), which should produce identical predictions for randomly
oriented high aspect-ratio flakes. To predict diffusivities for ran-
domly oriented flakes we make =S 0 in Eq. (26) to compute =+S

22
0,

and in Eq. (27) to compute =+S
11

0. In Fig. 10, we compare the two
results by plotting the ratio η = = =+ +/S S

11
0

22
0 as a function of α for

different values of ϕ. It is observed that η < 1, this is, diffusivities
predicted by Eq. (26) are consistently larger than those predicted
by Eq. (27). For low aspect-ratio flakes, the difference between the
two predictions augments markedly with the increase of ϕ. On the
other hand, the two equations show the desired consistent beha-
vior for large aspect-ratio flakes, as η → 1 when α increases. For
α > 10, the two predictions differ by less than 1% for ϕ ≤ 0.05 and
by less than 2.5% for ϕ ≤ 0.1. For α > 50, they differ by less than
0.1% irrespectively of ϕ.

A second consistency test is the comparison with the analytical
result by Fredrickson and Bicerano [4], which states that the ratio

χ = −
− ( )

=

=
+
+

D
D

1 /
1 / 28

S

S
22

0

22
1

should asymptotically approach χ = 1/3 as ϕα → 0 for high aspect-
ratio flakes.

We evaluate the numerator of (28) following two approaches:
using =+S

22
0 from Eq. (26) and using =+S

11
0 from Eq. (27). Like in Lusti

et al. [19], we check the limit behavior of (28) empirically, by
plotting χ as a function of α → ∞ for values of ϕ → 0. Fig. 11 shows
the two sets of results, which are labeled χ11 and χ22 for =+S

11
0 and

=+S
22

0, respectively. It can be observed that both curves behave
accordingly with the theoretical limit; for example, for ϕα = 0.001
and α = 1000 they deviate less than 0.1% from the theoretical value
of 1/3.

We show next the use of the model to estimate the diffusivity
of membrane with arbitrarily oriented flakes. Let's say that we
have a membrane with ϕ = 0.03, α = 50, and flakes oriented with
mean angle θ ̅= ∘25 with normal dispersion σ = ∘20 . We first com-
pute σ= ∘+22

20 and σ= ∘+11
20 using Eqs. (26) and (27) with the order

parameters associated to the normal dispersions around θ = ∘0 and
θ = ∘90 , respectively. These are =S 0.82522 and = −S 0.32511 .

Diffusivities σ= ∘+12
20 ¼ σ= ∘+21

20 are set equal to zero. These results
allow us to write the diffusivity matrix in the reference config-
uration, θ = ∘0 :

=
( )∘

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

+
D

0.740 0
0 0.221

.
290

It is worth to mention that, for this example, there is no
practical difference in estimating ( ) ∘+ D/11 0 either with Eq. (26) or
Eq. (27), since for high aspect-ratio flakes, α = 50, the two pre-
dictions are coincident (see Fig. 9). On the other hand, if Voigt's
model had been used, ( ) = ( ) =∘+ +D D/ / 0.97Voigt11 0 11 would had been
overestimated in nearly 30% with respect to that of Eq. (27). In
turn, this difference would have led to the systematic over-
estimation of every diffusivity component when the flake mean
orientation angle is accounted for via Eq. (4) . This is illustrated in
Fig. 12, which shows the evolution of the diffusivity matrix ele-
ments with θ ̅: black curves are for ( ) ∘+ D/11 0 given by (27) and red
curves are for ( )+ D/ Voigt11 .

Finally, for our case, θ ̅= ∘25 , the diffusivity matrix estimated by
the proposed model (black curves in Fig. 12) is

=
( )∘

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

+
D

0. 647 0. 198
0. 198 0. 314

.
3025

9. Conclusions

A new analytical model for the prediction of the complete

Fig. 10. Consistency between the model predictions for randomly oriented mi-
crostructures, as calculated from Eq. (26) for + D/22 and Eq. (27) for + D/11 . η is
defined as = =+ +/S S

11
0

22
0.

Fig. 11. Asymptotic behavior of the models for randomly-distributed high aspect
ratio flakes as ϕα → 0.

Fig. 12. Evolution of the diffusivity matrix coefficients as functions of the flake
mean orientation angle. Values are for the case ϕ = 0.03, α = 50 and orientation
dispersion σ = ∘20 .
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diffusivity matrix of flake-filled membranes is introduced in this
work. The model accounts for the effects of flake volume fraction,
aspect ratio, orientation and orientational order.

The model results after the assimilation of the order parameter
proposed by Bharadwaj into the model by Lape et al. Results from
rigorous Boundary Element homogenization analyses are used to
assess the performance and to tune the proposed model for flake
volume fractions ϕ ≤ 0.1, aspect ratios α≤ ≤5 50 and standard
normal dispersion in the orientation angle σ ≤ ∘20 . The model
consists of a single equation for the prediction of the longitudinal
and the through-the-thickness diffusivities. Complementary, it is
provided a specific expression for the computation of the long-
itudinal diffusivities that improves the accuracy of the model for
low aspect ratio flakes.

The model has been analyzed for consistency and accuracy.
Model predictions for the longitudinal diffusivity are consistent to
Voigt's limit for high-aspect-ratio perfectly-ordered flakes. For
randomly oriented high-aspect-ratio flakes in the dilute regime,
the formulas converge towards the theoretical limit by Fredrickson
and Bicerano [4].

Model predictions are in very good agreement with the
Boundary Element results. Predictions for through-the-thickness
diffusivities deviate less than 5% from numerical results in the
dilute and the intermediate regimes. Maximum discrepancies are
in the concentrated regime, with differences of up to 12% for ϕα≳2.
For the longitudinal diffusivity, discrepancies for ϕ = 0. 02 do not
exceed 1%, while maximum discrepancies for ϕ = 0. 05 and
ϕ = 0. 1 are 7% and 15%, respectively. They occur for the maximum
flake aspect ratio and orientational disorder.

The proposed model is a versatile and useful tool for the ana-
lytical estimation of the diffusivity matrix of flake-filled mem-
branes. The model is among the few ones that accounts for the
disorder in the flake orientation, which was found to have a no-
torious impact on the diffusivity in the direction parallel to the
flake orientation, and in turn, on the estimation of the complete
diffusivity matrix when rotated at any arbitrary angle. Being ana-
lytical, the model is efficient for the implementation of optimiza-
tion procedures for the multi-scale design of functionally graded
materials in which flake volume fraction, aspect ratio, orientation
and orientational order can be adjusted locally.
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