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Experimental test of reciprocity relations in quantum thermoelectric transport
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Fundamental symmetries in thermoelectric quantum transport, beyond Onsagers relations, were
predicted two decades ago but have to date not been observed in experiments. Recent works
have predicted the symmetries to be sensitive to energy-dependent, inelastic scattering, raising the
question whether they exist in practice. Here we answer this question affirmatively by experimentally
verifying the thermoelectric reciprocity relations in a four-terminal mesoscopic device where each
terminal can be electrically and thermally biased, individually. The linear response thermoelectric
coefficients are found to be symmetric under simultaneous reversal of magnetic field and exchange
of injection and emission contacts. We also demonstrate a controllable breakdown of the reciprocity
relations by increasing thermal bias, putting in prospect enhanced thermoelectric performance.

PACS numbers:

I. INTRODUCTION

Symmetry relations are manifestations of fundamental
principles and constitute cornerstones of modern physics.
A prominent example is the Onsager relations1 between
coefficients connecting thermodynamic fluxes and forces,
which derive from the principle of microreversibility. In
the quantum transport regime, Onsagers relations for
electrical resistance2 have been observed in multiterminal
mesoscopic systems3,4. In addition to the Onsager rela-
tions, reciprocity relations for thermoelectric (TE) trans-
port coefficients were predicted5,6: reversing the mag-
netic field and simultaneously exchanging the injection
and emission contacts is expected to leave the coefficients
invariant.

In addition to their fundamental interest, the reci-
procity relations are of practical importance. On the
one hand, the existence of symmetry relations could sim-
plify the theory of improved, future TE materials, such
as nanoscale, anisotropic7,8 or hybrid materials9 where
nonlocal effects may play a role. On the other hand,
the absence of symmetries could be equally important:
asymmetric thermopower was recently shown to allow for
improved TE performance10–12 in the maximum power
regime.

However, to date the reciprocity relations have not
been tested experimentally, and the extent to which they
can be observed is unclear. Recent works13–15 theoreti-
cally investigated the robustness of magnetic field sym-
metries in the thermopower, which are directly related
to the thermoelectric reciprocity relations. In contrast to
Onsagers relations16, it was predicted that inelastic elec-
tron scattering (always present at finite temperature),
in combination with a breakdown of the Wiedemann-
Franz law can break the thermopower symmetries. The
Wiedemann-Franz law is known to break down in low-
dimensional structures due to their strongly energy-
dependent density of states17 - the same property that

makes them interesting candidates for TE-materials18.

A fundamental question is thus: can TE reciprocity re-
lations be observed in practice and can they be controlled
in experiment? Such a test of the TE reciprocity relations
requires a multi-terminal normal conductor where each
terminal can be electrically and thermally biased, indi-
vidually, while subjected to an applied magnetic field.
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FIG. 1: (Color online) Scanning electron micrograph of a de-
vice identical to the one measured on here, featuring a junc-
tion of four ballistic micro-channels (terminals) in a cross con-
figuration, with an asymmetric scatterer in the central junc-
tion. The eight surrounding contacts, {A,B,...H}, are used to
apply a thermal or electrical bias. Four probes are used to
measure the terminal voltages: {V1, V2, V3, V4}. The regions
between contact pairs, tinted red, can be electrically heated
to thermally bias the junction. In the configuration shown,
the channel between contacts A and B are heated through two
out-of-phase heating voltages, ν±

H (see Appendix A). (Inset)
Close up image of the central region.

Here we present such an experimental test in a four-
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terminal mesoscopic device (Fig. 1), and establish that
the TE reciprocity relations manifest themselves in real
devices. We also find evidence for a breakdown of the
relations when we increase the thermal bias, indicating
that the symmetries can be experimentally controlled,
either by inelastic scattering or by non-linear thermal
transport, analogous to the symmetry-breakdown in
purely electronic transport at finite voltages in meso-
scopic systems19–26. This motivates further investiga-
tions on the symmetry breaking properties and relative
role of inelastic scattering and non-linear thermal trans-
port.

II. SYSTEM AND METHOD

We first spell out the properties of the four terminal
device. It was defined by patterning the two-dimensional
electron gas (2DEG) formed in an InP/Ga0.23In0.77As
heterostructure by using electron-beam lithography and
shallow wet etching (for details, see Ref.7). The wafer
has a carrier concentration of n = 1.1 × 1012 cm−2 and
an electron mobility of µ = 3.2 × 105 cm2/Vs at 4.2 K.
Moreover, all measurements were made in a He3 cryostat
at a background temperature of θ0 = 240 mK. To cre-
ate a thermal bias, we used heating voltages of typically
VH = 400µV (unless stated otherwise), resulting in heat-
ing currents of less than 400 nA and an estimated electric
heating power of less than 0.1 nW delivered to the heat-
ing area, resulting in an estimated temperature rise θ < 1
K. The stray heating power due to thermal conductance
to neighboring heating pads was negligible. Moreover,
we checked carefully that the electric bias measurements
were in the linear response regime (see Appendix A for
details on device properties).
We proceed by defining the thermoelectric coefficients

and their expected symmetry, and describe how they can
be determined in experiments. The linear response of
the electrical current flowing in the α’th terminal, Iα, of
a multi-terminal, mesoscopic junction is

Iα =
∑

β 6=α

[Gαβ(Vα − Vβ) + Lαβ(θα − θβ)] , (1)

where Vα and θα are the voltage and temperature, respec-
tively, at terminal α, and Gαβ and Lαβ are the electrical
conductance and thermoelectric coefficients, respectively,
between terminals α and β. The Lαβ are directly re-
lated to the thermopower, or Seebeck coefficients Sαβ ≡
(Vα − Vβ)/(θα − θβ)|I=0, through Lαβ = −

∑

γ GαγSγβ,

where the sum runs over all terminals5.
The transport properties in open mesoscopic systems

can conveniently be described by the scattering approach.
The conductance coefficients, see Eq. (1), are given by2

Gαβ(B) =
2e2

h

∫

dE

(

−
df(E)

dE

)

Tαβ(E,B) , (2)

for α 6= β, where Tαβ(E,B) is the transmission func-
tion describing scattering of particles at energy E from

terminal β to α, B is the magnetic field, and f(E) is
the equilibrium Fermi distribution function. Correspond-
ingly, the thermoelectric coefficients are given by5

Lαβ(B) =
2e

hθ0

∫

dEE

(

−
df(E)

dE

)

Tαβ(E,B), (3)

where we have set the background chemical potential to
zero.
Microreversibility demands that the transmission func-

tion obeys the magnetic-field symmetry Tαβ(E,B) =
Tβα(E,−B). The resulting symmetry for the conduc-
tance, Gαβ(B) = Gβα(−B), has been thoroughly inves-
tigated over the last few decades2–4. Since the thermo-
electric coefficients depend directly on the transmission
function, Lαβ should obey the same symmetry proper-
ties as Gαβ . This gives, writing out the diagonal and
off-diagonal relations separately,

Lαα(B) = Lαα(−B), Lαβ(B) = Lβα(−B) . (4)

To experimentally test these symmetries, we first de-
termine Gαβ through electric bias measurements with no
thermal bias (∆θαβ = 0) (see Appendix B). Thereafter,
the thermoelectric coefficients are investigated by ther-
mally biasing the system under zero-electric-current con-
ditions (with floating terminals), measuring the resulting
potentials in all reservoirs, and using Eq. (1) as explained
in the following.
The induced temperature increase at terminal α can

be written as a Fourier sum, ∆θα(t) ≡ θα(t) − θ0 =
∑

n=0 ∆θ
(n)
α sin(nωt), where ω is the frequency of the

heating current. This allows us to write the different
Fourier components of the linear response current ex-
pression in Eq. (1) as

0 =
∑

β

[

GαβV
(n)
αβ + Lαβθ

(n)
αβ

]

, (5)

where V
(n)
αβ ≡ V

(n)
α − V

(n)
β , and θ

(n)
αβ ≡ θ

(n)
α − θ

(n)
β =

∆θ
(n)
α −∆θ

(n)
β . When using Joule heating (quadratic in

heating current), one expects the second harmonic to give
the strongest contribution to the thermoelectric response.
Indeed, in our experiment we find that n = 2 gives the
largest signal and provides the clearest data to determine
the range of the linear response regime; in the following,
we only consider the second harmonics in Eq. (5). Heat-
ing the γ’th terminal, and making the assumption that
the unheated terminals remain cold, we can make use of
the relation

∑

α Lαβ =
∑

β Lαβ = 0, which follows from

the unitarity of the scattering matrix5, and write

Lαγ∆θ(2)γ =
∑

β

GαβV
(2)
αβ . (6)

Here, V
(2)
αβ represents the measured values when heating

terminal γ. Since the Gαβ elements depend weakly on
magnetic field up to B ∼ 50 mT (see Appendix B), we
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can use Eq. (6) and Gαβ to test the magnetic-field sym-

metries of Lαγ∆θ
(2)
γ directly by analysing the B-field de-

pendence of the measured V
(2)
αβ . In the following, we also

assume that ∆θ
(2)
γ is independent of B, so that all of the

B-field dependence in Lαγ∆θ
(2)
γ comes from Lαγ .

III. THERMOELECTRIC RECIPROCITY

RELATIONS

The symmetry relations predicted by Eq. (4) are
clearly visible in the representative magnetic field traces

for Lαγ∆θ
(2)
γ presented in Fig. 2b),c). We also find that

there is no significant symmetry relation between Lαβ(B)
and Lγδ(−B) for αβ 6= γδ (see Fig. 2d) for an example).

The Lαγ∆θ
(2)
γ typically oscillate around zero, a signature

of quantum interference effects27–29.
To quantify the degree of symmetry, we make use of the

correlation coefficient30 between Lαβ(B) and Lγδ(−B)
(see Appendix C). We first introduce the normalized
thermoelectric coefficients

Lαβ(B) ≡
Lαβ(B)− 〈Lαβ(B)〉

√

〈[Lαβ(B)]2〉 − 〈Lαβ(B)〉2
, (7)

where 〈...〉 denotes the average over magnetic fields from
−50 mT to 50 mT. This magnetic field range was chosen
to avoid the onset of classical commensurability effects.
We calculate Eq. (7) using Lαβ∆θ(2) in place of Lαβ,

since we have assumed that ∆θ(2) is independent of B
and thus cancels out. We then define the symmetry pa-
rameter as

Σαβ,γδ ≡ 〈Lαβ(B)Lγδ(−B)〉 . (8)

Note that Σαβ,γδ goes from +1 for complete symmetry,
to −1 for complete anti-symmetry. We stress that Σαβ,γδ

is well suited to quantify the overall symmetry of func-
tions which, like the ones in Fig. 2, display rapid oscilla-
tions on top of a smooth, slowly oscillating background.
The need for a quantitative symmetry measure becomes
apparent when comparing Figs. 2b) and 2c); while the
corresponding symmetry parameters are essentially iden-
tical, Σ44,44 ≈ Σ24,42, to the bare eye the curves in Fig.
2b) appear more symmetric than the ones in 2c). We
have analyzed all combination of curves αβ, γδ and also
compared the results to another potential symmetry mea-
sure, the magnitude of the fluctuation of the difference,
〈[Lαβ(B)−Lγδ(−B)]2〉. The result (not presented here)
firmly establishes that Σαβ,γδ is a reliable symmetry mea-
sure.
Deviations from the perfect symmetries predicted in

Eq. (4) are seen in our measurements. To rule out noise
as the cause of the limited symmetries, we verified that
two traces measured almost two weeks apart showed very
high correlation (see Appendix C), demonstrating the
high repeatability of these fluctuations. We attribute
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FIG. 2: (Color online) a) Representative four-terminal resis-
tances Rαβ,γδ(B) as a function of magnetic field. The sym-
metry Rαβ,γδ(B) = Rγδ,αβ(−B) is clearly visible; small devi-
ations are discussed in Appendix B. Note that the resistance
R24,24(B) depends weakly on magnetic field for −50 mT <

B < 50 mT. b)-d) Magnetic field traces of the thermoelectric
coefficient Lαβ(B). Each panel also displays the correspond-
ing quantitative symmetry parameter Σαβ,γδ [Eq. (8)] calcu-
lated for the range −50 mT < B < 50 mT, for the respective
pair of traces shown. The symmetry of the diagonal terms
Lαα(B) = Lαα(−B) is clearly visible in b), as well as that of
the off-diagonal terms Lαβ(B) = Lβα(−B), in c). For com-
parison, an example of the expected absence of symmetries,
here between L14(B) and L23(−B), is illustrated in d) and
manifested by a Σ14,13 value near zero. The green and red
curves in a), b), and c) are offset for clarity. All measure-
ments were performed at a cryostat temperature of θ0 = 240
mK.
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FIG. 3: (color online) Heating voltage dependence of the sym-
metries described in Eq. (4) for the a) diagonal, α = β, and
b) off-diagonal, α 6= β, elements of Lαβ . In panel a), a clear
trend for decreasing symmetry with increasing thermal bias
is seen for the diagonal elements. This same trend is only
present in three of the six curves in panel b).

the limited symmetry in Fig. 2b),c) mainly to the same
mechanisms that limit the observed conductance sym-
metry. In addition, however, we offer two other possible
mechanisms: i) the unheated terminals do not remain
cold, which would modify Eq. (6); and ii) inelastic scat-
tering, which at finite temperature can lead to asym-
metries in the thermopower even in the linear response
regime13–15.

IV. SYMMETRY BREAKDOWN

One can expect the symmetry of Lαβ to break
down for finite heating voltage, analogous to the well-
established breakdown of symmetries in the differential
conductance20,21 observed at finite bias voltage in meso-
scopic systems19,22–26. In Fig. 3, all ten symmetry rela-
tions defined by Eq. (4) are plotted as a function of heat-
ing voltage VH . At low VH , all symmetries described by
Eq. (4) manifest themselves, with Σαβ,βα & 0.5. As VH

is increased though, the trend in the diagonal elements,
α = β, is towards decreased symmetry, while the off-
diagonal elements, α 6= β, remain fairly symmetric with
a slight trend to decrease.
The overall tendency is for the B-field symmetries of

Lαβ to be suppressed with increasing thermal bias. From
further analysis of our measured data (see Appendix D),
we establish that the linear-response regime extends to
about VH ≈ 1 mV. The decreasing symmetry observed in
Lαα, Fig. 3a), is then consistent with symmetry-breaking
due to non-linear thermoelectric behavior31–33, analogous
to non-linear electronic effects. Increased inelastic scat-
tering due to heating effects may also play a role.

Further theoretical as well as experimental investiga-
tions are needed to explain the observed difference in
symmetry between diagonal and off-diagonal elements of
Lαβ for VH ≥ 1mV, see Fig. 3. In particular, in contrast
to linear response theory5, existing non-linear theory31–33

does not predict any simple relations between diagonal
and off-diagonal elements.

V. CONCLUSION

In conclusion, we have verified that the TE reciprocity
relations predicted more than 20 years ago5 manifest
themselves in a mesoscopic device in the linear trans-
port regime. The relations were observed at low tem-
peratures, where inelastic scattering (predicted to sup-
press the symmetries13–15) can be expected to be small.
At finite thermal bias we observe a breakdown of the
reciprocity relations, tentatively due to a combination
of inelastic scattering and non-linear thermal transport.
Further investigations are needed to quantify the robust-
ness of the reciprocity relations with respect to these
mechanisms. Of particular interest will be the role
of sharp features in the transmission function or den-
sity of states commonly used for energy filtering to en-
hance thermoelectric performance, for example in low di-
mensional coolers34,35 and highly efficient thermoelectric
generators36,37. The possibility to experimentally control
the absence or presence of the TE symmetry relations
opens for exciting and fundamentally new opportunities
in increasing TE energy efficiency10–12.
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Appendix A: Measurement of transport coefficients

We individually use electric or thermal biases to deter-
mine the elements of the electrical conductance matrix,
Gαβ , and the thermoelectric matrix, Lαβ , respectively.
Electric biases are generated by applying a 37 Hz drive
current between any two of the four central terminals.
The measured Gαβ are discussed below. A representa-
tive circuit configuration used for thermal-bias measure-
ments is shown to the left in Fig. 1 in the main text. The
thermal bias is generated by individually heating one ter-
minal by applying two 180◦ out-of-phase, 37 Hz voltages,
denoted by ν±H , to the two channel contacts (in Fig. 1,
main text, contacts A and B are used to heat terminal
1). This heating configuration is designed to eliminate
any electric bias of the terminal due to the heating cur-
rent. Additionally, a DC shift was applied to the ther-
mal bias to cancel out residual DC offsets measured at
the respective terminal’s voltage probe. We note that
only one terminal is heated at a time, and that negligi-
ble electric current is drawn through the junction during
thermovoltage measurements. For further details on the
thermal bias measurements, see Ref. [7]. Under each type
of bias, all four-terminal voltages, {V1, V2, V3, V4}, were
simultaneously measured using lock-in detection.
For thermal biasing, one pad was electrically heated us-

ing AC heating currents of between 300−400 nA at a fre-
quency of 37 Hz. The externally measured, two-terminal
resistance of heating pads was between 1000 − 1400 Ω,
such that 1kΩ is a reasonable upper limit of the resis-
tance of the heating pad itself. This gives an upper limit
of the electric heating power delivered to a heating pad
of about 0.1 nW. Finite-element simulations (COMSOL)
that use the actual device geometry and take into ac-
count heat leaks to the surrounding 2DEG (but neglect
additional heat leaks to the phonons) predict an upper
limit of a temperature rise θ ≈ 0.5−1K. Using the upper
limit θ = 1 K, and estimating the thermal conductance
between two heating pads (based on the electrical resis-
tance between two pads of typically 1 kΩ and using the
Wiedemann-Franz law), and again neglecting other heat
leaks such as electron-phonon coupling, an upper limit
for the resulting heating power to neighboring heat pads
is about 6× 10−3 nW, about 100 times smaller than the
intentional heating.

Appendix B: Conductance measurements

To determine the conductance coefficients at B = 0,
three different biasing configurations were utilized; each
had the 37 Hz bias current injected at terminal 1, which
was then extracted at terminals 2, 3 and 4 for the three
biasing configurations. The rms amplitude of the bias
current, I, was varied from 4 to 980 nA to check for
linearity in the current-voltage characteristics, sec Fig. 4
for a set of representative curves.
We stress that for the entire bias current range used
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FIG. 4: The induced voltages Vαβ between all pair of ter-
minals α and β, as a function of an electrical current bias
between terminal 1 and 3.

here, the deviations from a linear-in-current voltage re-
sponse are negligibly small, three orders of magnitude
smaller than the linear response.
In the linear response regime, only the first harmonic

of the voltage response is significant, and we can write
the current as

I(1)α =
∑

β 6=α

GαβV
(1)
αβ , V

(1)
αβ = V (1)

α − V
(1)
β , (B1)

where I
(1)
α = +(−)I at the injection (extraction) termi-

nal and zero at the two floating terminals; and the su-
perscript denotes the harmonic of the drive voltage fre-
quency. Due to current conservation and gauge invari-
ance, the conductances obey the sum rules

∑

α Gαβ =
∑

β Gαβ = 0. Measurements of the 1ω voltage responses,

V
(1)
α , at B = 0 for each of the three biasing configura-

tions, together with the sum rules, allow us to determine
all 16 elements Gαβ of the conductance matrix G. Our
analysis gives

G(B = 0) =
2e2

h







−21.3 11.7 1.5 8.1
11.5 −25.3 10.5 3.3
1.6 10.4 −20.1 8.1
8.1 3.2 8.1 −19.5






.

(B2)
All conductance coefficients obey Gαβ > 2e2/h, demon-
strating that electron transport is in the open regime.
Eq. (B2) clearly shows that Gαβ ≈ Gβα, as expected

from the fundamental symmetry of G. However, microre-
versibility predicts a complete symmetry. To further in-
vestigate the small asymmetry apparent in Eq. (B2) we
plot in Fig. 2a) in the main text the four-terminal re-

sistances Rαβ,γδ(B) = V
(1)
αβ /Iγδ, with γ(δ) representing

the current injection (extraction) terminal, as a function
of magnetic field, B. The fluctuations observed in these
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FIG. 5: Magnetic field traces of the thermoelectric coefficient
L44(B) taken almost two weeks apart. The modified sym-
metry parameter Σ+

44,44 (see text), calculated for the range
−50 mT < B < 50 mT, gives a value close to unity, demon-
strating a high degree of repeatability. The measurements
were performed at a cryostat temperature of θ0 = 240 mK.

traces are due to wave interference effects typical for open
mesoscopic conductors. We see that the required sym-
metry relation Rαβ,γδ(B) = Rγδ,αβ(−B) is slightly vi-
olated, in particular at the lower fields, |B| . 50 mT,
consistent with the slightly asymmetric conductance co-
efficients Gαβ observed in Eq (B2). The origin of this
asymmetry is not clear. We can rule out noise and non-
linear effects38 as the cause by comparing to a second
measurement taken at much higher bias current, which
essentially shows the same asymmetry. A magnetic sam-
ple holder can also be ruled out, as care was taken to
use non-magnetic materials. Leakage currents due to the
voltage probes are also found to be negligibly small. We
speculate that magnetic impurities may play a role.
The typical magnitude of the magnetic field depen-

dent oscillations of Gαβ can be qualitatively estimated
from corresponding fluctuations of the longitudinal four-
terminal resistance R24,24 in Fig. 2 in the manuscript
(similar results obtained for other Rαβ,αβ, not pre-
sented). In the magnetic field range −50 mT < B <
50 mT the fluctuations are of the order of a few per-
cent, to be expected39 from a mesoscopic system in
the open transport regime with a typical conductance
Gαβ ∼ 10e2/h, see Eq. (B2).

Appendix C: Symmetry measure and reproducibility

To quantify the degree to which the two data sets Lαβ

and Lγδ obey the symmetry relation Lαβ(B) = Lγδ(−B),
we make use of Pearsons product-moment correlation co-
efficient, or r-correlation coefficient30, between Lαβ(B)
and Lγδ(−B), our Eqs. (7) and (8) in the main text.
The r-correlation coefficient is a well established mea-
sure to quantify the correlation between two data sets.
Importantly, the r-correlation coefficient is known to be a
reliable measure of correlation in the absence of outliers,
i.e. extreme, isolated measurement points. We carefully
investigated our data to rule out such extreme points.
To investigate the repeatability of the magnetic field

traces Lαβ(B), two traces measured almost two weeks
apart are shown in Fig. 5. The degree of correlation be-
tween the two traces is quantified by the modified sym-
metry parameter Σ+

αβ,γδ =
∑

B Lαβ(B)Lγδ(B), reaching

1 for perfect correlation Lαβ(B) = Lγδ(B).

Appendix D: Linear thermal bias response

To establish the range over VH where we expect a
linear-in-temperature response, we used the solution of
the quasi-one-dimensional heat diffusion equation34 to
estimate the temperature rise in the heated channel, la-
belled below as the α’th terminal, as a function of VH ,

θα = θ0

√

1 +

(

VH

VC

)2

cos2(ωt) , (D1)

where VC is a heating channel dependent parameter. Us-
ing Eq. (D1), we can estimate the predicted Fourier com-

ponents of Lαγ∆θ
(2)
γ and compare them to our measured

data,
∑

β GαβV
(2)
αβ . In this way, we have clearly estab-

lished that the linear-response regime extends to about

VH ≈ 1 mV, which corresponds to ∆θ
(2)
γ /θ0 ≈ 0.21 to

0.75 depending on which terminal is heated.
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