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Abstract In this paper, we study the Sobolev trace Theorem for variable exponent spaces
with critical exponents. We find conditions on the best constant in order to guaranty the
existence of extremals. Then, we give local conditions on the exponents and on the domain
(in the spirit of Adimurthy and Yadava) in order to satisfy such conditions and therefore to
ensure the existence of extremals.
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1 Introduction

The study of variable exponent Lebesgue and Sobolev spaces have deserved a great deal
of attention in the last few years due to many interesting new applications including the
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1608 J. Fernández Bonder et al.

mathematical modeling of electrorheological fluids (see [21]) and image processing (see
[3]). We refer to Sect. 2 below for a brief account of the main results needed here and to the
book [4] for a complete account on these spaces.

One fundamental point in the study of these spaces is the generalization of the well-known
Sobolev immersion Theorems. That is, if� ⊂ R

N is a bounded domain and p : � → [1,∞)

is a finite exponent such that sup� p < N the following immersions hold

W 1,p(x)
0 (�) ↪→ Lq(x)(�) and W 1,p(x)(�) ↪→ Lr(x)(∂�),

if the exponents q : � → [1,∞) and r : ∂� → [1,∞) verify the bounds

q(x) ≤ p∗(x) := N p(x)

N − p(x)
and r(x) ≤ p∗(x) := (N − 1)p(x)

N − p(x)
.

These exponents p∗(x) and p∗(x) are called the critical Sobolev exponent and the critical
Sobolev trace exponent, respectively. (Some mild regularity assumptions on the exponents
are needed in order for the immersions to hold, see [4] and Sect. 2). These immersions can
be restated as

0 < S(p(·), q(·),�) := inf
v∈W 1,p(x)

0 (�)

‖∇v‖L p(x)(�)

‖v‖Lq(x)(�)

, and

0 < T (p(·), r(·),�) := inf
v∈W 1,p(x)(�)

‖v‖W 1,p(x)(�)

‖v‖Lr(x)(�)

.

Here, the norms that are considered are the Luxemburg norms. We refer to Sect. 2 for the
precise definitions.

An important and interesting problem is the study of the existence of extremals for these
immersions, i.e., functions realizing the infimum in the definition of S(p(·), q(·),�) and
T (p(·), r(·),�). When the exponents are uniformly subcritical, i.e.,

inf
�
(p∗ − q) > 0 and inf

∂�
(p∗ − r) > 0,

the immersions are compact, and so the existence of extremals follows by a direct minimiza-
tion procedure. The situation when the subcriticality is violated is much more complicated.

In contrast with the constant critical exponent case which has deserved a lot of attention
since Aubin’ seminal work [2], the critical immersion for variable exponent has only been
considered recently. In [18], the authors study some cases where even if the subcriticality is
violated, the immersion W 1,p(x)

0 (�) ↪→ Lq(x)(�) remains compact. This result requires for
very restrictive hypotheses on the exponents p and q , so a more general result is desirable. In
this direction, in [10], applying an extension of the P.L. Lions’ Concentration–Compactness
Principle for the variable exponent case (see [12,13]), the authors proved that

S(p(·), q(·),�) ≤ sup
ε>0

inf
x∈A

S(p(·), q(·), Bε(x)),

where A = {x ∈ � : q(x) = p∗(x)} is the critical set, and Bε(x) is the ball centered at x of
radius ε. Moreover, in that paper, it is shown that if the strict inequality holds, namely

S(p(·), q(·),�) < sup
ε>0

inf
x∈A

S(p(·), q(·), Bε(x)),

then there exists an extremal for S(p(·), q(·),�). Some conditions on p, q , and � are also
given in order for this strict inequality to hold. We also refer to [9] where this result is applied
to obtain the existence of a solution to a critical equation involving the p(x)-Laplacian.
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On the Sobolev trace Theorem 1609

The purpose of this article is to extend the above-mentioned results to the trace problem.
That is, we assume hereafter that the subcriticality for the trace exponent fails in the sense
that

AT := {x ∈ ∂� : r(x) = p∗(x)} �= ∅,
and find conditions on the exponents p, r and on the domain� in order to ensure the existence
of an extremal for T (p(·), r(·),�). Up to our knowledge, this is the first paper where the
critical trace inequality, in the context of variable exponent Sobolev spaces, is addressed.

Concerning the constant exponent case, it is known, see [7], that

T (p, p∗,�) ≤ K̄ (N , p)−1 = inf
v∈D̄1,p(RN+ )

‖∇v‖L p(RN+ )
‖v‖L p∗ (RN−1)

,

where D̄1,p(RN+) is the set of measurable functions f (y, t) such that ∂i f ∈ L p(RN+), i =
1, . . . , N , and f (·, 0) ∈ L p∗(RN−1). Moreover, in [7], it is shown that if

T (p, p∗,�) < K̄ (N , p)−1, (1.1)

then there exists an extremal for the trace inequality. Notice that one trivial global condition
on � that implies (1.1) is

|�| 1
p

HN−1(∂�)
1
p∗
< K̄ (N , p)−1, (1.2)

where Hd denotes the d-dimensional Hausdorff measure. Observe that the family of sets
verifying (1.2) is large. Indeed, for any fixed set �, �t := t ·� verifies (1.2) for any t > 0
small.

A more interesting and difficult task is to find local conditions on � ensuring (1.1). For
p = 2, this was done by Adimurthy and Yadava in [1] (see also Escobar [5] for a closely
related problem) by using the fact that the extremals for K̄ (N , 2)−1 were explicitly known
since the work of Escobar [5]. In fact, in [1], the authors proved that if the boundary of
� contains a point with positive mean curvature, then (1.1) holds true. Recently, Nazaret
[19] found the extremals for K̄ (N , p)−1 by means of mass transportation methods. These
extremals are of the form

Vλ,y0(y, t) = λ
− N−p

p−1 V
( y−y0

λ
, t
λ

)
, y ∈ R

N−1, t > 0,

with

V (y, t) = r− N−p
p−1 , r =

√
(1 + t)2 + |y|2. (1.3)

From the explicit knowledge of the extremals, one can compute the value of the constant
K̄ (N , p) (see, for example, [8]). It holds

K̄ (N , p) = π
1−p

2

(
p − 1

N − p

)p−1
⎛

⎝
�

(
p(N−1)
2(p−1)

)

�
(

N−1
2(p−1)

)

⎞

⎠

p−1
N−1

,

where �(x) = ∫ ∞
0 t x−1e−t dt is the Gamma function. Using these extremals, Fernández

Bonder and Saintier in [8] extended [1] by proving that (1.1) holds true if ∂� contains a
point of positive mean curvature for 1 < p < (N + 1)/2. See also [20] for a related result.
We also refer to [22] where this question has been addressed in the case p = 1.
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1610 J. Fernández Bonder et al.

A slightly more general problem can be treated. Namely, consider � ⊂ ∂�, � �= ∂� a
(possibly empty) closed set, and define

W 1,p(x)
� = {φ ∈ C∞(�̄) : φ vanishes in a neighborhood of �},

where the closure is taken in ‖ · ‖W 1,p(x)(�)-norm. This is the subspace of functions vanishing

on �. Obviously, W 1,p(x)
∅ (�) = W 1,p(x)(�). In general, W 1,p(x)

� (�) = W 1,p(x)(�) if and
only if the p(x)-capacity of � is 0, see [15]. The main concern of this paper is the study of
the existence problem of extremals for the best constant T (p(·), r(·),�, �) defined by

0 < T (p(·), r(·),�, �) := inf
v∈W 1,p(x)

� (�)

‖v‖W 1,p(x)(�)

‖v‖Lr(x)(∂�)

. (1.4)

First, employing the same ideas as in [18], we obtain some restricted conditions on the expo-
nents p and r guarantying that the immersion W 1,p(x)(�) ↪→ Lr(x)(∂�) remains compact
and so the existence of an extremal for T (p(·), r(·),�, �) holds true. As in the Sobolev
immersion Theorem, more general conditions for the existence of extremals are needed, and
these are the contents of our main results.

In order to state our main results, we first need to introduce some notation. The localized
Sobolev trace constant T̄x is defined, for x ∈ AT , as

T̄x = sup
ε>0

T (p(·), r(·),�ε, �ε) = lim
ε→0

T (p(·), r(·),�ε, �ε), (1.5)

where�ε = �∩ Bε(x) and �ε = ∂Bε(x)∩ �̄. The smallest localized Sobolev trace constant
is denoted by

T̄ := inf
x∈AT

T̄x . (1.6)

With these notations, our main results states that, under certain mild regularity assumptions
on p and r , the following inequalities hold true

T (p(·), r(·),�, �) ≤ T̄ ≤ inf
x∈AT

K̄ (N , p(x))−1.

Moreover, if the following strict inequality holds

T (p(·), r(·),�, �) < T̄ , (1.7)

then there exists an extremal for (1.4).
So a natural main concern is to provide with conditions in order for (1.7) to hold. We

obtain, as in the constant exponent case, two types of conditions: local and global.
Global conditions are easier to obtain. In fact, it is fairly easy to see that if� is contracted

enough, then (1.7) holds.
In order to find local conditions for (1.7) to hold, a more refined analysis has to be

made. The idea is to find a precise test function in order to estimate T (p(·), r(·),�, �).
This test function is constructed by properly scaling and truncating the extremal for
K̄ (N , p(x))−1 around some point x ∈ AT . This estimate will give local conditions ensuring
that T (p(·), r(·),�, �) < K̄ (N , p(x))−1. The analysis is then completed by providing with
conditions that ensure T̄x = K̄ (N , p(x))−1 and requiring that T̄ = T̄x for some x ∈ AT .
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On the Sobolev trace Theorem 1611

Organization of the paper The rest of the paper is organized as follows. In Sect. 2, we collect
some preliminaries on variable exponent spaces that will be used throughout the paper. In
Sect. 3, by applying the method developed in [18], we find conditions than ensure that the trace
immersion remains compact although AT �= ∅. As we mentioned in the introduction, these
conditions are not satisfactory, so in the remaining of the paper we look for a general result
that guaranty the existence of extremals. In Sect. 4, we revisit the proof of the Concentration–
Compactness Theorem as stated in [12] to perform the corresponding adaptation for the trace
inequality. In Sect. 5, we prove our main results, Theorems 5.4 and 5.6 that provide with
general conditions for the existence of extremals. Finally, in Sect. 6, we provide both local
and global conditions for the validity of T (p(·), r(·),�) < T̄ .

2 Preliminaries on variable exponent Sobolev spaces

In this section, we review some preliminary results regarding Lebesgue and Sobolev spaces
with variable exponent. All of these results and a comprehensive study of these spaces can
be found in [4].

The variable exponent Lebesgue space L p(x)(�) is defined by

L p(x)(�) =
⎧
⎨

⎩
u ∈ L1

loc(�) :
∫

�

|u(x)|p(x)dx < ∞
⎫
⎬

⎭
.

This space is endowed with the norm

‖u‖L p(x)(�) = ‖u‖p(x) := inf

⎧
⎨

⎩
λ > 0 :

∫

�

∣∣∣
u(x)

λ

∣∣∣
p(x)

dx ≤ 1

⎫
⎬

⎭

We can define the variable exponent Sobolev space W 1,p(x)(�) by

W 1,p(x)(�) = {u ∈ L p(x)(�) : ∂i u ∈ L p(x)(�) for i = 1, . . . , N },
where ∂i u = ∂u

∂xi
is the i th-distributional partial derivative of u. This space has a corresponding

modular given by

ρ1,p(x)(u) :=
∫

�

|u|p(x) + |∇u|p(x)dx

which yields the norm

‖u‖W 1,p(x)(�) = ‖u‖1,p(x) := inf
{
λ > 0 : ρ1,p(x)

(u

λ

)
≤ 1

}
.

Another possible choice of norm in W 1,p(x)(�) is ‖u‖p(x) +‖∇u‖p(x). Both norms turn out
to be equivalent but we use the first one for convenience.

The following result is proved in [6,16] (see also [4], pp. 79, Lemma 3.2.20 (3.2.23)).

Proposition 2.1 (Hölder-type inequality) Let f ∈ L p(x)(�) and g ∈ Lq(x)(�). Then, the
following inequality holds

‖ f (x)g(x)‖Ls(x)(�) ≤
(( s

p

)+ +
( s

q

)+)
‖ f ‖L p(x)(�)‖g‖Lq(x)(�),

123



1612 J. Fernández Bonder et al.

where

1

s(x)
= 1

p(x)
+ 1

q(x)
.

From now on, we define the classes of exponents that we deal with. Let P(�) be the
set of Lebesgue measurable functions p : � → [1,∞) and let P(∂�) be the set of HN−1-
measurable functions r : ∂� → [1,∞).

In order to state the trace Theorem, we need to define the Lebesgue spaces on ∂�. We
assume that � is C1 so ∂� is a (N − 1)-dimensional C1 immersed manifold on R

N (less
regularity on ∂� is enough for the trace Theorem to hold, but the C1 regularity is enough for
our purposes). Therefore, the boundary measure agrees with the (N − 1)-Hausdorff measure
restricted to ∂�. We denote this measure by dS. Then, the Lebesgue spaces on ∂� are defined
as

Lr(x)(∂�) :=
⎧
⎨

⎩
u ∈ L1

loc(∂�, dS) :
∫

∂�

|u(x)|r(x)dS < ∞
⎫
⎬

⎭

and the corresponding (Luxemburg) norm is given by

‖u‖Lr(x)(∂�) = ‖u‖r(x),∂� := inf

⎧
⎨

⎩
λ > 0 :

∫

∂�

∣∣∣
u(x)

λ

∣∣∣
r(x)

dS ≤ 1

⎫
⎬

⎭
.

Throughout this paper, the following notation will be used: For a μ-measurable function
f , we denote f + := sup f and f − := inf f , where by sup and inf we denote the essential
supremum and essential infimum, respectively, with respect to the measure μ.

The Sobolev trace Theorem is proved in [6]. When the exponent is critical, it requires
more regularity on the exponent p(x) (Lipschitz regularity is enough). This regularity can
be relaxed when the exponent is strictly subcritical. It holds,

Theorem 2.2 Let � ⊆ R
N be an open bounded domain with Lipschitz boundary and let

p ∈ P(�) be such that p ∈ W 1,γ (�) with 1 ≤ p− ≤ p+ < N < γ . Then, there is a
continuous boundary trace embedding W 1,p(x)(�) ⊂ L p∗(x)(∂�).

Theorem 2.3 Let � ⊂ R
N be an open bounded domain with Lipschitz boundary. Suppose

that p ∈ C0(�̄) and 1 < p− ≤ p+ < N. If r ∈ P(∂�) is uniformly subcritical, then the
boundary trace embedding W 1,p(x)(�) → Lr(x)(∂�) is compact.

Corollary 2.4 Let � ⊂ R
N be an open bounded domain with Lipschitz boundary. Suppose

that p ∈ C0(�̄) and 1 < p− ≤ p+ < N. If r ∈ C0(∂�) satisfies the condition

1 ≤ r(x) < p∗(x) x ∈ ∂�
then there is a compact boundary trace embedding W 1,p(x)(�) → Lr(x)(∂�).

The following proposition, also proved in [16], will be most useful (see also [4], Chapter
2, Section 1).
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On the Sobolev trace Theorem 1613

Proposition 2.5 Set ρ(u) := ∫
�

|u(x)|p(x)dx. For u ∈ L p(x)(�) and {uk}k∈N ⊂ L p(x)(�),
we have

u �= 0 ⇒
(
‖u‖L p(x)(�) = λ ⇔ ρ(

u

λ
) = 1

)
. (2.1)

‖u‖L p(x)(�) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1). (2.2)

‖u‖L p(x)(�) > 1 ⇒ ‖u‖p−
L p(x)(�)

≤ ρ(u) ≤ ‖u‖p+
L p(x)(�)

. (2.3)

‖u‖L p(x)(�) < 1 ⇒ ‖u‖p+
L p(x)(�)

≤ ρ(u) ≤ ‖u‖p−
L p(x)(�)

. (2.4)

lim
k→∞ ‖uk‖L p(x)(�) = 0 ⇔ lim

k→∞ ρ(uk) = 0. (2.5)

lim
k→∞ ‖uk‖L p(x)(�) = ∞ ⇔ lim

k→∞ ρ(uk) = ∞. (2.6)

For much more on these spaces, we refer to [4].

3 Compact case

In this section, we find conditions on the exponents p ∈ P(�) and r ∈ P(∂�) that imply
that the immersion W 1,p(x)(�) ↪→ Lr(x)(∂�) remains compact. Therefore, in this case, the
existence of extremals follows directly by minimization.

Roughly speaking, these conditions require the critical set to be small and also a strict
control on how the exponent r reaches the critical one when one is approaching the critical
set AT . For the Sobolev immersion W 1,p(x)

0 (�) ↪→ Lq(x)(�), this result was obtained in
[18]. Following the same ideas, we can prove a similar result for the trace immersion.

First, we define the upper Minkowsky content for sets contained in ∂�. We say that
a compact set K ⊂ ∂� has finite (N − 1 − s)-boundary dimensional upper Minkowsky
content if there exists a constant C > 0 such that

HN−1(K (r) ∩ ∂�) ≤ Crs, for all r > 0,

where K (r) = {x ∈ R
N : dist(x, K ) < r}. The result is the following:

Theorem 3.1 Let ϕ : [r−1
0 ,∞) → (0,∞) be a continuous function such that: ϕ(r)/ ln r is

non-increasing in [r−1
0 ,∞) for some r0 ∈ (0, e−1) and ϕ(r) → ∞ as r → ∞. Let K ⊂ ∂�

be a compact set whose (N −1− s)-boundary dimensional upper Minkowski content is finite
for some s with 0 < s ≤ N − 1.

Let p ∈ P(�) and r ∈ P(∂�) be such that p+ < N and r(x) ≤ p∗(x). Assume that r(x)
is subcritical outside a neighborhood of K , i.e., inf∂�\K (r0)(p∗(x) − r(x)) > 0. Moreover,
assume that r(x) reaches p∗(x) in K at the following rate

r(x) ≤ p∗(x)−
ϕ

(
1

dist(x,K )

)

ln
(

1
dist(x,K )

) for almost every x ∈ K (r0) ∩ ∂�.

Then, the embedding W 1,p(x)(�) ↪→ Lr(x)(∂�) is compact.

Proof Let us prove that

lim
ε→0+ sup

⎧
⎪⎨

⎪⎩

∫

K (ε)∩∂�
|v(x)|r(x)dS : v ∈ W 1,p(x)(�) and ‖v‖W 1,p(x)(�) ≤ 1

⎫
⎪⎬

⎪⎭
= 0. (3.1)
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1614 J. Fernández Bonder et al.

First, we take β such that 0 < β < s/p+∗ and ε > 0 such that ε−1 > r−1
0 and ϕ( 1

ε
) ≥ 1.

For each n ∈ N, we consider ηn = ε−βn . We choose x ∈ (K (εn) \ K (εn+1))∩ ∂�, then, we
have

η
r(x)−p∗(x)
n ≤ η

− ϕ
(

1
dist(x,K )

)

ln
(

1
dist(x,K )

)

n ≤ η

−
ϕ

(
1

εn+1

)

ln

(
1

εn+1

)

n = ε
− βn

n+1ϕ
(

1
εn+1

)

= An .

On the other hand, we know that H(K (r) ∩ ∂�) ≤ Crs and we can estimate the following
term

∫

(K (εn)\K (εn+1))∩∂�
ηr(x)

n dS ≤ η
p+∗
n

∫

K (εn)∩∂�
dS ≤ Cεn(s−βp+∗ )

Now, we have

∫

(K (εn)\K (εn+1))∩∂�
|v(x)|r(x)dS

≤
∫

(K (εn)\K (εn+1))∩∂�
|v(x)|r(x)

( |v(x)|
ηn

)p∗(x)−r(x)

dS +
∫

(K (εn)\K (εn+1))∩∂�
ηr(x)

n dS

≤ An

∫

(K (εn)\K (εn+1))∩∂�
|v(x)|p∗(x)dS + Cεn(s−βp+∗ )

for each n0 ∈ N, we obtain

∫

K (εn0 )∩∂�
|v(x)|r(x)dS =

∞∑

n=n0

∫

(K (εn)\K (εn+1))∩∂�
|v(x)|r(x)dS

≤ ( sup
n≥n0

An)

∫

K (εn0 )∩∂�
|v(x)|p∗(x)dS + C

∞∑

n=n0

εn(s−βp+∗ )

Using that ‖v‖p∗,∂� ≤ C‖v‖1,p and that (s − βp+∗ ) > 0, we can conclude (3.1).
Finally, let {vn}n∈N ⊂ W 1,p(x)(�) and v ∈ W 1,p(x)(�) be such that

vn ⇀ v weakly in W 1,p(x)(�).

Then,

vn ⇀ v weakly in Lr(x)(∂�),

vn → v strongly in Ls(x)(∂�) for every s such that inf
∂�
(p∗(x)− s(x)) > 0,

123



On the Sobolev trace Theorem 1615

therefore vn → v in Lr(x)(∂� \ K (ε)) for each ε > 0 small. Hence,

lim sup
n→∞

∫

∂�

|vn(x)− v(x)|r(x)dS = lim sup
n→∞

( ∫

K (ε)∩∂�
|vn(x)− v(x)|r(x)dS

+
∫

∂�\K (ε)

|vn(x)− v(x)|r(x)dS
)

≤ sup
n∈N

∫

K (ε)∩∂�
|vn(x)− v(x)|r(x)dS

So, by (3.1), we conclude the desired result. ��
Now it is straightforward to derive, analogous to Corollary 3.5 in [18],

Corollary 3.2 Let p ∈ P(�) be such that p+ < N and let r ∈ P(∂�). Suppose that
there exist x0 ∈ �, C > 0, n ∈ N, r0 > 0 such that inf∂�\Br0 (x0)(p∗(x) − r(x)) > 0

and r(x) ≤ p∗(x) − c
lnn( 1

|x−x0 | )
ln( 1

|x−x0 | )
for almost every x ∈ ∂� ∩ Br0(x0). Then, the embedding

W 1,p(x)(�) ↪→ Lr(x)(∂�) is compact.

4 The concentration–compactness principle for the Sobolev trace immersion

This section is devoted to the extension of the CCP to the trace immersion.
Let r ∈ P(∂�) be a continuous critical exponent in the sense that

AT := {x ∈ ∂� : r(x) = p∗(x)} �= ∅.
We define the Sobolev trace constant in W 1,p(x)

� (�) as

T (p(·), r(·),�, �) := inf
v∈W 1,p(x)

� (�)

‖v‖1,p(x)

‖v‖r(x),∂�
= inf
v∈W 1,p(x)

� (�)

‖v‖1,p(x)

‖v‖r(x),∂�\�

More precisely, we prove

Theorem 4.1 Let {un}n∈N ⊂ W 1,p(x)(�) be a sequence such that un ⇀ u weakly in
W 1,p(x)(�). Then, there exists a countable set I , positive numbers {μi }i∈I and {νi }i∈I and
points {xi }i∈I ⊂ AT ⊂ ∂� such that

|un |r(x)dS ⇀ ν = |u|r(x)dS +
∑

i∈I

νiδxi weakly-* in the sense of measures, (4.1)

|∇un |p(x)dx ⇀ μ ≥ |∇u|p(x)dx +
∑

i∈I

μiδxi weakly-* in the sense of measures,

(4.2)

T̄xi ν

1
r(xi )

i ≤ μ

1
p(xi )

i , (4.3)

where T̄xi = supε>0 T (p(·), q(·),�ε,i , �ε,i ) is the localized Sobolev trace constant where

�ε,i = � ∩ Bε(xi ) and �ε,i := ∂Bε(xi ) ∩�.
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1616 J. Fernández Bonder et al.

Proof The proof is very similar to the one for the Sobolev immersion Theorem, see [10], so
we only make a sketch stressing the differences between the two cases.

As in [12, Theorem 1.1], it is enough to consider the case where un ⇀ 0 weakly in
W 1,p(x)(�).

Take φ ∈ C∞(�̄). According to Theorem 2.2, we have

T (p(·), q(·),�)‖φu j‖r(x) ≤ ‖φu j‖1,p(x). (4.4)

We have that

‖φu j‖1,p(x) ≤ C(‖∇(φu j )‖p(x) + ‖φu j‖p(x))

On the other hand,

| ‖∇(φu j )‖p(x) − ‖φ∇u j‖p(x)| ≤ ‖u j∇φ‖p(x).

Then, as un ⇀ 0, we observe that the right hand side of the inequality converges to 0. In
fact, we can assume that ρp(x)(u) < 1, then

‖u j∇φ‖p(x) ≤ (‖∇φ‖∞ + 1)p+‖u j‖p(x)

≤ (‖∇φ‖∞ + 1)p+
ρp(x)(u j )

1/p− → 0

We the same argument, we obtain that

‖φu j‖p(x) → 0

Finally, if we take the limit for j → ∞ in (4.4), we arrive at

T (p(·), r(·),�)‖φ‖
Lr(x)
ν (∂�)

≤ ‖φ‖
L p(x)
μ (�)

, (4.5)

for every φ ∈ C∞(�̄). Observe that if φ ∈ C∞
c (R

N ) and U ⊂ R
N is any open set containing

the support of φ, the constant in (4.5) can be replaced by T (p(·), q(·),� ∩ U, ∂U ∩�).
Now, the exact same proof of [12, Theorem 1.1] implies that the points {xi }i∈I must belong

to the critical set AT .
Let φ ∈ C∞

c (R
N ) be such that 0 ≤ φ ≤ 1, φ(0) = 1 and supp(φ) ⊂ B1(0). Now, for

each i ∈ I and ε > 0, we denote φε,i (x) := φ((x − xi )/ε).
From (4.5) and the subsequent remark we obtain

T (p(·), r(·),�ε,i , �ε,i )‖φε,i‖Lr(x)
ν (∂�∩Bε(xi ))

≤ ‖φε,i‖L p(x)
μ (�∩Bε(xi ))

.

As in [12], we have

ρν(φi0,ε) :=
∫

∂�∩Bε(xi0 )

|φi0,ε|r(x)dν

=
∫

∂�∩Bε(xi0 )

|φi0,ε|r(x)|u|r(x)dS +
∑

i∈I

νiφi0,ε(xi )
r(xi )

≥ νi0 .

From now on, we will denote

r+
i,ε := sup

∂�∩Bε(xi )

r(x), r−
i,ε := inf

∂�∩Bε(xi )
r(x),

p+
i,ε := sup

�∩Bε(xi )

p(x), p−
i,ε := inf

�∩Bε(xi )
p(x).
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If ρν(φi0,ε) < 1, then

‖φi0,ε‖Lr(x)
ν (∂�∩Bε(xi0 ))

≥ ρν(φi0,ε)
1/r−

i,ε ≥ ν
1/r−

i,ε
i0

.

Analogously, if ρν(φi0,ε) > 1, then

‖φi0,ε‖Lr(x)
ν (∂�∩Bε(xi0 ))

≥ ν
1/r+

i,ε
i0

.

Therefore,

T (p(·), r(·),�ε,i , �ε,i )min

⎧
⎨

⎩
ν

1
r+
i,ε

i , ν

1
r−
i,ε

i

⎫
⎬

⎭
≤ ‖φi,ε‖L p(x)

μ (�∩Bε(xi ))
.

On the other hand,
∫

�∩Bε(xi )

|φi,ε|p(x)dμ ≤ μ(� ∩ Bε(xi ))

hence

‖φi,ε‖L p(x)(�∩Bε(xi ))
≤ max

{
ρμ(φi,ε)

1
p+
i,ε , ρμ(φi,ε)

1
p−
i,ε

}

≤ max
{
μ(� ∩ Bε(xi ))

1
p+
i,ε , μ(� ∩ Bε(xi ))

1
p−
i,ε

}
,

so we obtain,

T (p(·), r(·),�ε,i , �ε,i )min
{
ν

1
r+
i,ε

i , ν

1
r−
i,ε

i

}
≤ max

{
μ(� ∩ Bε(xi ))

1
p+
i,ε , μ(� ∩ Bε(xi ))

1
p−
i,ε

}
.

As p and r are continuous functions and as r(xi ) = p∗(xi ), letting ε → 0, we get

T̄xi ν
1/p∗(xi )
i ≤ μ

1/p(xi )
i ,

where μi := limε→0 μ(� ∩ Bε(xi )).
The proof is now complete. ��

5 Non-compact case

In this section, we parallel the results for the Sobolev immersion Theorem obtained in [10]
to the Sobolev trace Theorem.

In that spirit, the result we obtain states that if the Sobolev trace constant is strictly smaller
than the smallest localized Sobolev trace constant in the critical set AT , then there exists an
extremal for the trace inequality.

Then, the objective will be to find conditions on p(x), r(x), and� in order to ensure that
strict inequality. We find global and local conditions.

As in [10], global conditions are easily obtained and they say that if the surface measure
of the boundary is larger than the volume of the domain, then the strict inequality holds and
therefore an extremal for the trace inequality exists.

Once again, local conditions are more difficult to find. In this case, the geometry of the
domain comes into play.

We begin with a lemma that gives a bound for the constant T (p(·), r(·),�, �).
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1618 J. Fernández Bonder et al.

Lemma 5.1 Assume that the exponents p ∈ P(�) and r ∈ P(∂�) are continuous functions
with modulus of continuity ρ such that

ln(λ)ρ(λ) → 0 as λ → 0 + .

Then, it holds that

T (p(·), r(·),�, �) ≤ inf
x∈AT

K̄ (N , p(x))−1.

Proof The proof uses the same rescaling argument as in [10] but we have to be more careful
with the boundary term.

Let x0 ∈ AT . Without loss of generality, we can assume that x0 = 0 and that there exists
r > 0 such that

�r := Br ∩� = {x ∈ Br : xN > ψ(x ′)}, Br ∩ ∂� = {x ∈ Br : xN = ψ(x ′)},

where x = (x ′, xN ), x ′ ∈ R
N−1, xN ∈ R, Br is the ball centered at the origin of radius r

and ψ : R
N−1 → R is of class C2 with ψ(0) = 0 and ∇ψ(0) = 0.

First, we observe that our regularity assumptions on p and r imply that

r(λx) = r(0)+ ρ1(λ, x) = p∗(0)+ ρ1(λ, x),

p(λx) = p(0)+ ρ2(λ, x),

with limλ→0+ λρk (λ,x) = 1 uniformly in �̄r . From now on, for simplicity, we write p = p(0)
and p∗ = p∗(0) = r(0).

Now, let φ ∈ C∞
c (R

N ) and define φλ to be the rescaled function around 0 ∈ AT as

φλ = λ
−(N−1)

p∗ φ( x
λ
) and observe that, since � is closed and 0 �∈ �, φλ ∈ W 1,p(x)

� (�) for λ
small. Then, we have

∫

∂�

φλ(x)
r(x)dS =

∫

∂�λ

λ
−(N−1)ρ1(λ,y)

p∗ φ(y)p∗+ρ1(λ,y)dS

=
∫

RN−1

λ
−(N−1)ρ1(λ,y)

p∗ φ(y′, ψλ(y′))p∗+ρ1(λ,y′)
√

1 + |∇ψλ(y′)|2dy′,

where �λ = 1
λ

·� and ψλ(y′) = 1
λ
ψ(λy′).

Since ψ(0) = 0 and ∇ψ(0) = 0 we have that ψλ(y′) = O(λ) and |∇ψλ(y′)| = O(λ)
uniformly in y′ for y′ ∈ supp(φ) which is compact. Moreover, our assumption on ρ1 imply
that

λ
−(N−1)ρ1(λ,y)

p∗ φ(y)ρ1(λ,y) → 1 when λ → 0+

uniformly in y.
Therefore, we get

ρr(x),∂�(φλ) =
∫

∂�

φλ(x)
r(x)dS →

∫

RN−1

|φ(y′, 0)|p∗dy′, as λ → 0 + . (5.1)
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On the Sobolev trace Theorem 1619

In particular, (5.1) imply that ‖φλ‖r(x),∂� is bounded away from 0 and ∞. Moreover,
arguing as before, we find

1 =
∫

∂�

(
φλ(x)

‖φλ‖r(x),∂�

)r(x)

dS

=
∫

RN−1

λ
−(N−1)ρ1(λ,y)

p∗
(
φ(y′, ψλ(y′))
‖φλ‖r(x),∂�

)p∗+ρ1(λ,y′) √
1 + |∇ψλ(y′)|2dy′,

so

lim
λ→0+ ‖φλ‖r(x),∂� = ‖φ‖p∗,∂RN+ .

For the gradient term, we have
∫

�

|∇φλ|p(x)dx =
∫

�

λ
− N

p p(x)|∇φ( x
λ
)|p(x)dx

=
∫

�λ

λ
− N

p ρ2(λ,y)|∇φ(y)|p+ρ2(λ,y)dy.

Now, observing that �λ → R
N+ and from our hypothesis on ρ2, we arrive at

ρp(x),�(φλ) =
∫

�

|∇φλ(x)|p(x)dx →
∫

R
N+

|∇φ(y)|pdy as λ → 0 + .

Similar computations show that

ρp(x),�(φλ) =
∫

�

|φλ(x)|p(x)dx = O(λp),

so

ρ1,p(x),�(φλ) =
∫

�

|∇φλ(x)|p(x) + |φλ(x)|p(x)dx →
∫

R
N+

|∇φ(y)|pdy as λ → 0 + .

Arguing as in the boundary term, we conclude that

lim
λ→0+ ‖φλ‖1,p(x),� = ‖∇φ‖p,RN+ .

Now, by the definition of T (p(·), r(·),�, �), it follows that

T (p(·), r(·),�, �) ≤ ‖φλ‖1,p(x)

‖φλ‖r(x),∂�

and taking the limit λ → 0+, we obtain

T (p(·), q(·),�, �) ≤
‖∇φ‖p,RN+
‖φ‖p∗,∂RN+

for every φ ∈ C∞
c (R

N ). Then,

T (p(·), q(·),�, �) ≤ K̄ (N , p)−1
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1620 J. Fernández Bonder et al.

and so, since x0 = 0 is arbitrary,

T (p(·), q(·),�, �) ≤ inf
x∈AT

K̄ (N , p(x))−1,

as we wanted to show. ��
Now we prove a Lemma that gives us some monotonicity of the constants T (p(·), q(·),

�, �) with respect to � and � ⊂ ∂�.

Lemma 5.2 Let �1,�2 ⊂ R
N be two C2 domains, and let �i ⊂ ∂�i , i = 1, 2 be closed.

If �2 ⊂ �1, (∂�2 ∩�1) ⊂ �2 and (�1 ∩ ∂�2) ⊂ �2, then

T (p(·), q(·),�1, �1) ≤ T (p(·), q(·),�2, �2).

Proof The proof is a simple consequence that if v ∈ W 1,p(x)
�2

(�2), then extending v by 0 to

�1 \�2 gives that v ∈ W 1,p(x)
�1

(�1). ��

Remark 5.3 Lemma 5.2 will be used in the following situation: For � ⊂ R
N and � ⊂ ∂�

closed, we take x0 ∈ ∂� \ � and r > 0 such that (Br (x0) ∩ ∂�) ∩ � = ∅.
Then, if we call �r := � ∩ Br (x0), �r = ∂Br (x0) ∩ �̄, we obtain

T (p(·), q(·),�, �) ≤ T (p(·), q(·),�r , �r ).

As a consequence of Lemma 5.1 and Lemma 5.2, we easily obtain the following Theorem.

Theorem 5.4 Let � ⊂ R
N be a bounded C2 domain and � ⊂ ∂� be closed. Let p ∈ P(�)

and r ∈ P(∂�) be continuous functions with modulus of continuity ρ such that

ln(λ)ρ(λ) → 0 as λ → 0 + .

Then, it holds that

T (p(·), r(·),�, �) ≤ T̄ ≤ inf
x∈AT

K̄ (N , p(x))−1.

Now, in the spirit of [10], we use the convexity method of [17] to prove that a minimizing
sequence either is strongly convergent or concentrates around a single point.

Theorem 5.5 Assume that r− > p+. Let {un}n∈N ⊂ W 1,p(x)
� (�) be a minimizing sequence

for T (p(·), r(·),�, �). Then, the following alternative holds:

• {un}n∈N has a strongly convergence subsequence in Lr(x)(∂�) or
• {un}n∈N has a subsequence such that |un |r(x) dS ⇀ δx0 weakly in the sense of measures

and |∇un |p(x) dx ⇀ T̄ p(x0)
x0 δx0 weakly in the sense of measures, for some x0 ∈ AT and

un → 0 strongly in L p(x)(�).

Proof Let {un}n∈N ⊂ W 1,p(x)
� (�) be a normalized minimizing sequence for T (p(·), r(·),�,

�), i.e.

T (p(·), r(·),�, �) = lim
n→∞ ‖un‖1,p(x) and ‖un‖r(x),∂� = 1.

For simplicity, we denote by T = T (p(·), r(·),�, �). The concentration compactness prin-
ciple for the trace immersion, Theorem 4.1, together with the estimate given in Theorem 5.4
gives

123



On the Sobolev trace Theorem 1621

1 = lim
n→∞

∫

�

|∇un |p(x) + |un |p(x)

‖un‖p(x)
1,p(x)

dx

≥
∫

�

|∇u|p(x) + |u|p(x)

T p(x)
dx +

∑

i∈I

T −p(xi )μi

≥ min{(T −1‖u‖1,p(x))
p+
, (T −1‖u‖1,p(x))

p−} +
∑

i∈I

T̄ −p(xi )
xi μi

≥ min{‖u‖p+
r(x),∂�, ‖u‖p−

r(x),∂�} +
∑

i∈I

ν

p(xi )
p∗(xi )

i

≥ ‖u‖p+
r(x),∂� +

∑

i∈I

ν

p(xi )
p∗(xi )

i

≥ ρr(x),∂�(u)
p+
r− +

∑

i∈I

ν

p(xi )
p∗(xi )

i .

On the other hand, since {un}n∈N is normalized in Lr(x)(∂�), we get

1 =
∫

∂�

|u|r(x)dS +
∑

i∈I

νi

So, since p+ < r−, we can conclude that either u is a minimizer of the corresponding
problem and the set I is empty, or v = 0 and the set I contains a single point.

If the second case occur, it is easily seen that the second alternative holds. ��
With the aid of Theorem 5.5, we can now prove the main result of the section.

Theorem 5.6 Let � be a bounded domain in R
N with ∂� ∈ C1. Let � ⊂ ∂� be closed.

Let p ∈ P(�) and r ∈ P(∂�) be exponents that satisfy the regularity assumptions of
Theorem 5.4. Assume, moreover, that p+ < r−.

Then, if the following strict inequality holds T (p(·), r(·),�, �) < T̄ , the infimum (1.4)
is attained.

Proof Let {un}n∈N ⊂ W 1,p(x)
� (�) be a minimizing sequence for (1.4) normalized in

Lr(x)(∂�).
If {un}n∈N has a strongly convergence subsequence in Lr(x)(∂�), then the result holds.
Assume that this is not the case. Then, by Theorem 5.5, there exists x0 ∈ AT such that

|un |r(x) dS ⇀ δx0 and |∇un |p(x) dx ⇀ T̄ p(x0)
x0 δx0 weakly in the sense of measures.

So for ε > 0, we have,
∫

�

|∇un |p(x) + |un |p(x)

(T̄x0 − ε)p(x)
dx → T̄ p(x0)

x0

(T̄x0 − ε)p(x0)
> 1.

Then, there exists n0 such that for all n ≥ n0, we know that

‖un‖1,p(x) > T̄x0 − ε.

Taking limit, we obtain

T (p(·), r(·),�, �) ≥ T̄x0 − ε.

As ε > 0 is arbitrary, the result follows. ��
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6 Conditions for the validity of T( p(·), r(·),�) < T̄

In this section, we investigate under what conditions the strict inequality (1.7) holds. We
provide two types of conditions. First, by some simple rough estimates we give global
conditions, that is, a condition that involves some quantities measured in the whole domain
�. This condition resembles the one found in [7]. Then, we devote ourselves to the more
delicate problem of finding local conditions, that is, conditions that involves some quantities
computed at a single point of ∂�. These types of conditions are in the spirit of [1,8,9].

6.1 Global conditions

Now, we want to show an example of when the condition (1.7) is guaranteed. We assume
that � = ∅, and using v = 1 as a test function, we can estimate

T (p(·), r(·),�) ≤ ‖1‖1,p(x)

‖1‖r(x),∂�
.

It is easy to see that

‖1‖1,p(x) = ‖1‖p(x) ≤ max

{
|�|

1
p+ , |�|

1
p−

}

and

‖1‖r(x),∂� ≥ min{|∂�| 1
r+ , |∂�| 1

r− }.
So, if � satisfies

max

{
|�|

1
p+ , |�|

1
p−

}

min{|∂�| 1
r+ , |∂�| 1

r− }
< T̄ , (6.1)

then by Theorem 5.6 there exists an extremal for T (p(·), r(·),�).
Observe that the family of sets that verify (6.1) is large. In fact, for any open set � with

C1 boundary, if we denote �t = t ·� we have

max

{
|�t |

1
p+ , |�t |

1
p−

}

min{|∂�t |
1

r+ , |∂�t |
1

r− }
≤ t

N
p+ |�|

1
p+

t
N−1
r− |∂�| 1

r−
for t < 1.

Now, the hypothesis p+
r− < 1 imply that N

p+ − N−1
r− ≥ 1

p+ > 0, so we can conclude that:

T (p(·), r(·),�t ) < T̄ ,

if t > 0 is small enough.

6.2 Local conditions

As we mentioned in the introduction, the strategy to find local conditions for (1.7) to hold
is to construct a test function to estimate T (p(·), r(·),�, �) by scaling and truncating an
extremal for K̄ (N , p(x))−1 with x ∈ AT . In order for this argument to work, a result stating
the equality T̄x = K̄ (N , p(x))−1 is needed. This is the content of our next result.

We begin with a Lemma that is a refinement of the asymptotic expansions found in the
proof of Lemma 5.1 since we obtain uniform convergence for bounded sets of W 1,p(x)(�).

123



On the Sobolev trace Theorem 1623

Though this lemma can be proved for variable exponents, we choose to prove it in the constant
exponent case since this will be enough for our purposes and simplifies the arguments.

In order to prove the Lemma, we use the so-called Fermi coordinates in a neighborhood
of some point x0 ∈ ∂�. Roughly speaking, the Fermi coordinates around x0 ∈ ∂� describe
x ∈ � by (y, t) where y ∈ R

N−1 are the coordinates in a local chart of ∂� at x0, and t > 0
is the distance to the boundary along the inward unit normal vector.

Definition 6.1 (Fermi coordinates) We consider the following change of variables around a
point x0 ∈ ∂�.

We assume that x0 = 0 and that ∂� has the following representation in a neighborhood
of 0:

∂� ∩ V = {x ∈ V : xn = ψ(x ′), x ′ ∈ U ⊂ R
N−1},

� ∩ V = {x ∈ V : xn > ψ(x ′), x ′ ∈ U ⊂ R
N−1}.

The function ψ : U ⊂ R
N−1 → R is assume to be at least of class C2 and that ψ(0) =

0, ∇ψ(0) = 0.
The change of variables is then defined as � : U × (0, δ) → � ∩ V

�(y, t) = (y, ψ(y))+ tν(y),

where ν(y) is the unit inward normal vector, i.e.

ν(y) = (−∇ψ(y), 1)
√

1 + |∇ψ(y)|2 .

It is well known that � defines a smooth diffeomorphism for δ > 0 small enough.
Moreover, in [5] it is proved the following asymptotic expansions.

Lemma 6.2 With the notation introduced in Definition 6.1, the following asymptotic expan-
sions hold

J�(y, t) = 1 − Ht + O(t2 + |y|2),
where J� is the Jacobian, and H is the mean curvature of ∂�.

Also, if we denote v(y, t) = u(�(y, t)) the function u read in Fermi coordinates, we have

|∇u(x)|2 = (∂tv)
2 +

N∑

i, j=1

(
δi j + 2hi j t + O(t2 + |y|2)

)
∂yi v∂y j v,

where hi j is the second fundamental form of ∂�.

For a general construction of the Fermi coordinates in differentiable manifolds, we refer
to the book [14].

Lemma 6.3 Let 1 < p < N be a constant exponent and let u be a smooth function on �̄.
Then, there holds

‖u‖p∗,Bε(x0)∩∂� = ε
N−1

p∗ (1 + o(1))‖ũε‖p∗,V ∩∂RN+ ,

‖u‖p,Bε(x0)∩� = ε
N
p (1 + o(1))‖ũε‖p,V ∩R

N+ ,

‖∇u‖p,Bε(x0)∩� = ε
N−p

p (1 + o(1))‖∇ũε‖p,V ∩R
N+ ,

where V is the unit ball transformed under the Fermi coordinates, o(1) is uniform in u for u
in a bounded subset of W 1,p(�), ũε(y) = ũ(εy), and ũ is u read in Fermi coordinates.
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Proof If we denote by �(y, t) the change of variables from Fermi coordinates to Euclidian
coordinates, then, from Lemma 6.2 we have

J� = 1 + O(ε) in Bε(x0) ∩�,
where J� is the Jacobian of �,

J∂�� = 1 + O(ε) in Bε(x0) ∩ ∂�,
where J∂�� is the tangential Jacobian of � and

|∇ũε| = (1 + O(ε))|∇u|
with O(ε) uniform in u.

For a more comprehensive study of the Fermi coordinates see [5] and the book [14].
Now, we simply compute

∫

Bε(x0)∩∂�
|u|p∗dS =

∫

(ε·V )∩∂RN+

|ũ(y, 0)|p∗(1 + O(ε))dy

= εN−1(1 + O(ε))
∫

V ∩∂RN+

|ũε(y, 0)|p∗dy.

In the same way,
∫

Bε(x0)∩∂�
|∇u|pdx =

∫

(ε·V )∩∂RN+

|∇ũ(y)|p(1 + O(ε))dy

= εN−p(1 + O(ε))
∫

V ∩∂RN+

|∇ũε(y))|pdy

and
∫

Bε(x0)∩∂�
|u|pdx =

∫

(ε·V )∩∂RN+

|ũ(y)|p(1 + O(ε))dy

= εN (1 + O(ε))
∫

V ∩∂RN+

|ũε(y))|pdy.

This completes the proof. ��
Now we can prove

Theorem 6.4 Let p ∈ P(�) and r ∈ P(∂�) be as in Theorem 5.4. Assume that x0 ∈ AT is
a local minimum of p(x) and a local maximum of r(x). Then,

T̄x0 = K̄ (N , p(x0))
−1.

Proof From the proof of Theorem 5.4, it follows that T̄x0 ≤ K̄ (N , p(x0))
−1.

Let us see that if x0 is a local minimum of p(x) and a local maximum of r(x) then the
reverse inequality holds. Let us call p = p(x0) and then p∗ = p(x0)∗ = r(x0).
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Since p(x) ≥ p, by Young’s inequality with 1
p = 1

p(x) + 1
s(x) we obtain

∫

�ε

|u|p + |∇u|pdx ≤ p

p−
ε

∫

�ε

|u|p(x) + |∇u|p(x)dx + 2
p

s−
ε

|Bε|

where p−
ε = sup�ε p(x).

It then follows that for any λ > 0,

‖λ−1u‖p
1,p,�ε

≤ (1 + o(1))ρ1,p(x),�ε (λ
−1u)+ O(εn).

So, for any δ > 0, taking λ = ‖u‖1,p(x),�ε + δ we obtain

‖u‖1,p,�ε ≤ ‖u‖1,p(x),�ε + δ, (6.2)

if ε is small, depending only on δ.
Arguing in much the same way, we obtain

‖u‖r(x),∂�ε ≤ ‖u‖p∗,∂�ε + δ, (6.3)

for ε is small, depending only on δ.
Now, by (6.2) and (6.3) it follows that

Q̄(p(·), r(·),�ε)(u) = ‖u‖1,p(x),�ε

‖u‖r(x),∂�ε
≥ ‖u‖1,p,�ε

‖u‖p∗,∂�ε
+ O(δ).

Finally, by Lemma 6.3, we get

Q̄(p(·), r(·),�ε)(u) ≥
‖∇ũε‖p,V ∩R

N+
‖ũε‖p∗,V ∩∂RN+

+ o(1)+ O(δ) ≥ K̄ (N , p)−1 + o(1)+ O(δ).

So, taking infimum in u ∈ W 1,p(x)
�ε

(�ε), ε → 0 and δ → 0 we obtain the desired result.
��

With the aid of Theorem 6.4 we are now in position to find local conditions to
ensure the validity of T (p(·), r(·),�, �) < T̄ , and so the existence of an extremal for
T (p(·), r(·),�, �).

We assume, to begin with, that there exists a point x0 ∈ AT such that T̄ = T̄x0 . Moreover,
this critical point x0 is assume to be a local minimum of p(x) and a local maximum of q(x).
In view of Theorem 6.4, it follows that T̄ = T̄x0 = K̄ (N , p(x0))

−1.
The idea, then, is similar to the one used in [10]. We estimate T (p(·), r(·),�, �) evaluating

the corresponding Rayleigh quotient Q̄(p(·), q(·),�) in a properly rescaled function of the
extremal for K̄ (N , p(x0))

−1. A fine asymptotic analysis of the Rayleigh quotient with respect
to the scaling parameter will yield the desired result.

Hence, the main result of the section reads

Theorem 6.5 Let p ∈ P(�) and r ∈ P(∂�) be C2 and that p+ < r−. Assume that there
exists x0 ∈ AT such that T̄ = T̄x0 and that x0 is a local minimum of p(x) and a local
maximum of r(x). Moreover, assume that either ∂t p(x0) > 0 or H(x0) > 0.

Then, the strict inequality holds

T (p(·), q(·),�, �) < T̄

and therefore, there exists an extremal for T (p(·), q(·),�, �).
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We now construct the test functions needed in order to estimate the Sobolev trace constant.
Assume that 0 ∈ ∂�. We consider the test function

vε(x) = η(y, t)Vε,0(y, t), with x = �(y, t),

where V is the extremal for K̄ (N , p(0))−1 given by (1.3), and η ∈ C∞
c (B2δ×[0, 2δ), [0, 1])

is a smooth cutoff function.
From now on, we assume that p(x) ∈ P(�), r(x) ∈ P(∂�) are of class C2, 0 ∈ ∂� and

we denote p = p(0) and r = r(0).
The key technical tools needed in the proof of Theorem 6.5 are the following three Lemmas

that are proved in [11].

Lemma 6.6 There holds
∫

�

f (x)|vε|p(x)dx = C̄0ε
p + o(ε p) with C̄0 = f (0)

∫

R
N+

V pdx . (6.4)

Lemma 6.7 If p < N−1
2 ,

∫

∂�

f (x)|vε|r(x)dSx = Ā0 + Ā1ε
2 ln ε + o(ε2 ln ε) (6.5)

with

Ā0 = f (0)
∫

RN−1

V (y, 0)p∗dy,

and

Ā1 = − 1

2p∗
f (0)�r(0)

∫

RN−1

|y|2V (y, 0)p∗dy,

where �r(0) = ∑N−1
i=1 ∂i i (r ◦�(·, 0))(0) (equivalently, as 0 is a critical point of r, �r(0)

is also the Laplacian of r with respect to the induced metric of ∂�).

Lemma 6.8 Assume that p < N 2/(3N − 2). Then,
∫

�

f (x)|∇vε(x)|p(x)dx = D̄0 + D̄1ε ln ε + D̄2ε + D̄3(ε ln ε)2 + D̄4ε
2 ln ε + O(ε2),

with

D̄0 = f (0)
∫

R
N+

|∇V |pdydt, D̄1 = − N

p
f (0)∂t p(0)

∫

R
N+

t |∇V |pdydt,

and, assuming that ∂t p(0) = 0,

D̄2 = (∂t f (0)− H f (0))
∫

R
N+

t |∇V |pdydt + ph̄ f (0)
∫

R
N+

t |y|2
(1 + t)2 + |y|2 |∇V |pdydt,

D̄3 = 0,

D̄4 = − N

2p
f (0)∂t t p(0)

∫

R
N+

t2|∇V |pdydt − N

2(N − 1)p
f (0)�y p(0)

∫

R
N+

|y|2|∇V |pdydt,
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where h̄ = 1
N−1

∑N−1
i=1 hii (0) and �y p(0) = ∑N−1

i=1 ∂i i (p ◦ �(·, 0))(0) (which can also
be seen as the Laplacian of p|∂� at 0 for the indiced metric of ∂� since the all the first
derivatives of p at 0 vanishes by hypothesis).

As an immediate consequence of these Lemmas, we get

Corollary 6.9 Under the same hypotheses and notations as in Lemmas 6.6, 6.7 and 6.8 we
have

• If ∂t p(0) > 0,

‖uε‖1,p(x) = D̄
1
p

0

(
1 + D̄1

pD̄0
ε ln ε + o(ε ln ε)

)

‖uε‖r(x),∂� = Ā
1
p∗

0

(
1 + Ā1

p∗ Ā0
ε2 ln ε + o(ε2 ln ε)

)

• If ∂t p(0) = 0 and H(0) > 0,

‖uε‖1,p(x) = D̄
1
p

0

(
1 + D̄2

pD̄0
ε + o(ε)

)

‖uε‖r(x),∂� = Ā
1
p∗

0

(
1 + Ā1

p∗ Ā0
ε2 ln ε + o(ε2 ln ε)

)

Now we are in position to prove Theorem 6.5.

Proof of Theorem 6.5 The proof is an immediate consequence of Propositions 6.6, 6.7
and 6.8. In fact, without loss of generality we can assume that x0 = 0, and let p = p(0).
Assume first that ∂t p(0) > 0. Then,

T (p(·), q(·),�, �) ≤ Q̄(p(·), q(·),�)(uε) =
D̄

1
p

0

(
1 + D̄1

pD̄0
ε ln ε + o(ε ln ε)

)

Ā
1
p∗

0

(
1 + Ā1

p∗ Ā0
ε2 ln ε + o(ε2 ln ε)

)

= K̄ (N , p)−1
1 + D̄1

pD̄0
ε ln ε + o(ε ln ε)

1 + Ā1
p∗ Ā0

ε2 ln ε + o(ε2 ln ε)
.

The proof will be finished if we show that

1 + D̄1
pD̄0

ε ln ε + o(ε ln ε)

1 + Ā1
p∗ Ā0

ε2 ln ε + o(ε2 ln ε)
< 1,

or, equivalently,

D̄1

pD̄0
+ o(1) <

Ā1

p∗ Ā0
ε + o(ε).

But this former inequality holds, since D̄1 < 0 and D̄0 > 0.
The case where ∂t p(0) = 0 and H(0) > 0 is analogous. ��
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