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ABSTRACT 

From the moment a liquid is put in contact with a solid, physico-chemical reactions 
occur at their interface. These reactions have been modeled over the years by 
preferential adsorption or corrosion. Whatever the model, they lead to a charge 
distribution called electrical double layer (EDL), formed by a charge layer at the 
solid wall, and a diffuse charge layer of opposite sign in the liquid. In this work we 
focus on the formation of the EDL when a plane wall is put in contact with a 
quiescent fluid. The governing equations and a semi-analytical solution are 
presented. A simpler solution can be found by assuming the instantaneous 
formation of the charge density profile. The semi-analytical solution presented in 
this work is compared to the former at different reaction rates leading to the 
conclusion that for fast enough wall reactions, the instantaneous charge density 
profile cannot be assumed. 

   Index Terms — Electrical double layer, transient dynamics, Quiescent fluid. 
 

1   INTRODUCTION 

ELECTRICAL double layers (EDL) have been studied 
for over a century due to the important role that they play 
in chemistry, biology, engineering and industrial processes. 
In particular, problems related to the petroleum industry or 
the electric power industry led to the study of the EDL in 
dielectric liquids [1-5]. In the petroleum or electric power 
industries, EDL related phenomena represent a problem due 
to charge buildup that can lead to explosions. On the other 
hand, in the last fifteen years there has been growing 
interest in electro kinetic phenomena related to 
microfluidics where the electrolyte is a solution of some 
salt in water. In this area of application, electrokinetics is 
used to induce movement of the fluid or to control mixing 
processes for instance. This led to the development of many 
electroosmotic pumps, driven by DC currents or AC 
currents, as well as mixer devices. Three comprehensive 
reviews on these subjects can be found in [6-8].  

The use of AC electroosmotic pumps led to the study of 
the dynamics of the diffuse layer charge. Although the 
macroscopic theory of neutral electrolytes with quasi-
equilibrium double layers is well developed [9-11], the 
transient formation of the EDL, or the response of an 
electrolyte to the application of a variable voltage or a 
sudden voltage are still subject of current research efforts 
[12-17].  

The cited works related to transient EDL are focused 
mostly on the response of an electrolyte to an externally 
applied potential, with blocking electrodes and no chemical 
reactions in the bulk, or at the interface between the 
electrolyte and the electrodes. A detailed description can be 
found in [18]. With the exception of the analysis presented in 
[18], the cited works are numerical solutions to the linear or 
non-linear partial differential equations that govern EDL 
dynamics, or theoretical models based on electrical analogies 
where the EDL is modeled as combinations of resistors and 
capacitors. On the other hand, the transient formation of an 
EDL when a quiescent liquid is put in contact with a solid 
wall is of interest because the results can be extrapolated to 
the evolution of an EDL in the entrance region of a duct 
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when the liquid is set in motion (this point is discussed 
further in the results section), which is rather complicated. A 
numerical solution to the full non-linear partial differential 
equations, with dissociation-recombination reactions in the 
liquid, and a reaction model at the interface (preferential 
adsorption), can be found in [19]. However, in order to 
obtain analytical solutions some simplifications are needed. 
For instance, some authors assume the reactions’ kinetics to 
be too slow [20-24], or too fast [25-27] when compared to 
charge relaxation time. In this work, we present and solve 
the differential equation that governs the transient formation 
of an EDL when a liquid at rest is put in contact with a solid 
wall, in the case of weak space charge density (which allows 
for the linearization of the equation). In order to solve the 
differential equation, two approaches are used. The first one 
assumes that the transient solution is at all times proportional 
to the stationary solution, and that only the wall space-
charge-density changes with time. We call this solution the 
“instantaneous profile” solution. The second approach does 
not rely on that assumption. The problem to solve is then 
more complicated and led us to a “semi-analytical” solution 
using Laplace transforms. The approach is similar to the one 
used in [18], but with different boundary conditions (we 
included a wall current due to reactions at the interface 
instead of a suddenly applied potential), and we were able to 
find the inverse transform in the form of an integral (the so-
called semi-analytical solution). The results obtained with 
both methods are compared, and limits to the application of 
the former are established. 

 

2  GOVERNING EQUATIONS 
The transport of a charged species is given by diffusion, 

migration and convection. The flux density i


of a charged 

species can be represented by: 

 (1) 

Where: 

Di   diffusion coefficient (m2/s)  

ni    concentration of species i (1/m3) 

e0   elementary charge (1.6022 10-19 C)  

zi    species i valence 

k     Boltzmann constant (1.38 10-23 J/K) 

T    temperature (K) 

   electric potential (V) 

   velocity vector (m/s) 

The second term in equation (1) is negative for positive 
charge species, and positive for negative charge species.  

The current density (A/m2) due to this flux is, for a positive 
charge species: 

ii

 e0zii


 (2) 

And for a negative charge species it is: 

ii

 e0zii


 (3) 

If we consider a fluid with l types of cations and m types of 
anions, the current density due to the flux of those l positive 
species is: 

iP


 e0 ziDi


ni

i1

l

  e0
2

kT
zi

2Dini

i1

l

 

  e0 zi

i1

l

 ni u


 (4) 

And the current density due to the flux of the m negative 
species is: 

iN


 e0 z jDj


nj

j1

m

  e0
2

kT
zj

2Djnj

j1

m

 

  e0 zj

j1

m

 nj u


 (5) 

In the absence of chemical reactions in the fluid, 
conservation equations are:  



 iP


 e0 zi

i1

l

 ni

t
 0  (6) 



 iN


 e0 z j

j1

m

 nj

t
 0  (7) 

And finally the Poisson equation for the electric potential:  

   e0


zi

i1

l

 ni  zj

j1

m

 nj










 (8) 

It is possible to reduce this system into a binary one by 
making the hypothesis that all cations have the same valence 
zP and that all anions have the same valence zN.  

We have to introduce a mean positive diffusion coefficient 
DP and a number of cations nP as follows:  

DP 
Di

i1

l

 ni

ni

i1

l




Di

i1

l

 ni

ni
i1

l


, nP  ni

i1

l

  (9) 

Where ni can be obtained from the Boltzmann solution [28], 
in which ni∞ represents the ion concentration at the center of 
the fluid. 

ni  ni. exp
e0zP

kT







 (10) 

The mean negative diffusion coefficient DN and the anion 
concentration nN can be defined in the same manner.  

The binary system is then: 

iP


 e0zPDP


nP  nP

e0
2zP

2DP

kT


  e0zPnP u



iN


 e0zN DN 


nN nN

e0
2zN

2DN

kT


  e0zNnN u





 iP


 e0zP

nP

t
 0



 iN


 e0zN

nN

t
 0

   e0


zPnP  zNnN 

 (11) 

At this point we can introduce the variables  for the space 
charge density and  for the conductivity of the liquid: 

  e0 zPnP  zN nN 

  e0
2

kT
DPzP

2nP DN zN
2nN 

 (12) 

u

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In order to simplify the system we assume that the positive 
and negative valences are the same: zP=zN=z. In this case, the 
problem’s general equations are: 

i

 D0


  *   e0zD0

kT
 *

  u



i*

 D0


 *  e0zD0

kT
  * 




 1 2  * 



u




 i

 
t

 0



 i*

 1 2  

*

t
 

t
 0

   


 (13) 

Where we have used the following definitions: 

 *  kT

e0zD0

 D0 
2DN DP

DP DN

   DP DN

DP DN

  (14) 

i

 iP


 iN



i*

 iP


 iN

  (15) 

By replacing the current densities i and i* in the 
conservation equation and then using the electric potential 
equation we get, for the case of a quiescent fluid (u=0):  

0  D0 


f ,  

  f ,  



 
t

 kT

e0zD0

f , 
t

 (16) 

Where: 

f ,   1 2     kT
e0zD0









  (17) 

In order to solve this equation, we consider here the case of 
weak space charge density. This assumption leads to 
conductivity values very close to the mean conductivity   and 
also to the following relation: 

1 2    e0zD0

kT
 1 2    e0zD0

kT
 1 2   (18) 

Touchard [28] established three ranges in order to 
determine whether one is in the case of “weak space charge 
density (WSCD)”, “mean space charge density (MSCD)” or 
“strong space charge density (SSCD)”: 

 e0zD0

kT 0

102 1  2 WSCD  (19) 

102 1 2    e0zD0

kT 0

102 1 2  MSCD  (20) 

102 1 2    e0zD0

kT 0

 SSCD  (21) 

In the case of weak space charge density, the condition 
f ,   1 2   const  holds, and consequently (16) 

becomes: 

0  D0 
1 2 


  1  2  

t
  (22) 

This equation is called the Debye-Falkenhagen equation 
[29]. In order to non-dimensionalize equation (22), we choose 
the following parameters: the liquid’s conductivity , its 
dielectric constant , the mean diffusion coefficient D0 and the 
space charge density at the wall for a completely developed 
EDL wd.  

As we are considering a quiescent fluid between to plates, 
the problem is one-dimensional in space. Equation (22) then 
becomes: 

0  
2

x
2
 1 2   1 2  

t
 (23) 

Where:  

x  x 
D0

 x
0

 is the dimensionless spatial 

coordinate normal to the interface. 0 is the EDL’s thickness. 

t  t
 r
 t




 is the dimensionless time, and r=/ is 

EDL’s relaxation time. 

 

wd

 is the dimensionless space charge density.  

3  SOLVING THE PARTIAL DIFFERENTIAL 

EQUATION 
In this section we present two different approaches in order 

to solve equation (23). Their results are compared in the next 
section in order to determine the limits to their application.  

3.1 INSTANTANEOUS SPACE CHARGE PROFILE 
FORMATION (METHOD A) 

The first approach, based on the work of Touchard et al. 
[20] consists in assuming that the solution is, at every instant, 
proportional the stationary solution. In the stationary case the 
temporal derivative in equation (23) is null: 

0  
2

x
2
 1 2 

 (24) 

The general solution to this PDE is: 

 x  C1 sinh 1 2 .x 
C2 cosh 1 2 .x 

 (25) 

For an EDL between to infinite plates separated by a 
distance 2a the stationary solution is: 

 x   cosh( 1 2 .x )

cosh( 1 2 .a )
, (26) 

where the boundary condition  x  a  1 has been 

used.  

a  a
0

is the non-dimensional half distance between the 

plates.  

As stated before, this first method (method A) assumes that 
the transient solution is proportional to the stationary solution 
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at all times: 

 x, t   f t  cosh( 1 2 .x)

cosh( 1 2 .a )
 (27) 

For the temporal boundary condition we assume that from 
the moment the liquid is put in contact with the solid a wall 
current density appears in the form: 

iw 
iw r

wd0

  r

0

K[1 w ] K[1  a, t ] (28) 

with K  K  r 0
 being the dimensionless reaction rate.  

Considering an elementary volume of non-dimensional wall 
surface dA+, the charge conservation equation can be written 
in integral form to give: 

2iwdA 


t
dx dA

a

a

  (29) 

Replacing equations (27) and (28) in equation (29) and 
integrating the resulting differential equation we obtain: 

f (t ) 1 exp 
Kt 1 2

tanh(a 1  2 )










 (30) 

where the initial condition used is f(t+=0)=0, which 
corresponds to a null space charge density at t+=0. Finally, the 
dimensionless space charge density is: 

 x, t   1 exp 
Kt 1 2

tanh(a 1 2 )






















cosh(x 1  2 )

cosh(a 1 2 )
 (31) 

If the distance between the two plates is large enough 
(a+>>1), the one plate solution (with the origin for the space 
coordinate set at the interface, pointing towards the liquid) is 
valid: 

 x, t   1 exp Kt 1 2 



exp x 1 2   (32) 

Both solutions are equivalent at large values of a+. 

3.2 NON-INSTANTANEOUS SPACE CHARGE 
PROFILE FORMATION (METHOD B) 

In order to solve equation (23) without the hypothesis used 
in the previous case we apply the Laplace transform to the 
space charge density: 

L  x, t   x, s   (33) 

Therefore, in the transformed domain equation (23) reads 
[30]: 

0  
2 x, s 

x
2

 1  2  x, s 

 1  2  s. x, s    x, t  0  

 (34) 

The initial condition is, again, null space charge density at 
t+=0. Then, reorganizing the terms in (34) we obtain (35): 

0  
2 x, s 

x
2

 1  2   1 2  s



 x, s   (35) 

The solution to this equation is, in the transformed domain: 

 x, s   1 s sinh x (1 2 ) s(1 2 ) 
2 s cosh x (1 2 ) s(1 2 ) 

 (36) 

To simplify the equations below we will obtain the solution 
in the case of far away plates (a+>>1), with the origin (x+=0) 
of the space coordinate at the interface. In that case 
 x    0 , and the solution becomes:  

 x, s  2 s exp x (1 2 ) s(1 2 )  (37) 

At this point we must introduce the same boundary 
condition as before. That is, we assume that from the moment 
the liquid is put in contact with the solid a wall current density 
appears in the form: 

iw 
iw r

wd0

  r

0

K[1 w ] K[1  0, t ] (38) 

The conservation equation in integral form is, again: 

iwdA 


t
dx dA

0



  (39) 

And in the transformed domain it becomes:  

s x, s    x, t  0  dx 
K

s
K2 s 

0



  (40) 

Introducing the solution (37) and integrating leads to: 

2 s   K (1 2 ) s(1 2 )

s2  sK (1 2 ) s(1 2 )
 (41) 

After some rearranging and using the convolution theorem 
[30], the inverse Laplace transform of  x, s  is: 

 x, t   L1  x, s  

1

2

Kd

s2  s1

xd


3

2
exp c 

x
2d

2

4








F t  












d

0

t


 (42) 

Where we have used: 

c 
1 2

1 2
d  1 2

s1 
K

2d
2  K

4d
4  4K

2d
2c

2

s2 
K

2d
2  K

4d
4  4K

2d
2c

2

 (43) 

and, 

F t    c  s2 

exp s2 t    1 erf c  s2  t   



1 

 c  s1 

exp s1 t   erfc c  s1  t    1 

 (44) 

The integral in equation (42) has to be calculated 
numerically. Equation (42) is then a semi-analytical solution 
to equation (23), for the boundary condition equation (39) and 
null space charge density at t+=0. 
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4  RESULTS AND DISCUSSION  
In this section we are going to compare the results of 

methods A and B.  

We will consider the case of a dielectric liquid (transformer 
oil) with the following properties: 

  = 5×10-13 S/m, D0 = 4×10-11 m2/s,  = 1×95×10-11 F/m. 

The value used for the diffusion coefficient is proposed in 
[31]. If heptane (which is also a dielectric liquid with low 
conductivity, but with lower viscosity) were used instead of 
transformer oil, the diffusion coefficient would be on the order 
of 1×10-9 m2/s.  

This values give a double layer thickness of 0=39.46 m. 
For a distance 2a=3 mm (this is the dimension between 
plates of the sensor described in [32-33]) between plates, a+= 
38, which allows largely for the use of the single plate 
solution.  

The only two dimensionless parameters that influence the 
solution are K+ and . By definition -1 < , but it is 
squared in the solution so only values between 0 and 1 give 
different results. Higher values of  result in wider diffuse 
layers and longer equilibrium times. In practice small 
differences in the diffusion coefficients of positive and 
negative ions give values of  around 0. In this work we 
present results assuming that the cations’ diffusion coefficient 
is the same to that of the anions. In that case =0. 

In those conditions, the only parameter to vary is the 
reaction rate K. We present here the results of both methods 
for K  K  r 0

=0.001, 0.01, 0.1, 1, 10 and 100. This choice 

of K+ values is due to the experimental values of K+ obtained 
in previous work [34], which were in the range of 0.01-1. This 
dimensionless parameter represents the ratio of the reaction 
rate to the relaxation velocity 0/r, due to migration-diffusion. 
Higher values of K+ mean faster reactions.  

The dimensionless time evolution of the dimensionless 
space charge density, calculated with methods A and B, is 
presented in Figures 1 and 2 for K+=10, and in figures 3 and 4 
for K+=0.1. 

 
Figure 1. Dimensionless time evolution of the dimensionless space charge 
density for K+=10, calculated with method A: instantaneous exponential 
profile (in color online). 

 
Figure 2. Dimensionless time evolution of the dimensionless space charge 
density for K+=10, calculated with method B: semi-analytical solution (in 
color online). 

 
Figure 3. Dimensionless time evolution of the dimensionless space charge 
density for K+=0.1, calculated with method A: instantaneous exponential 
profile (in color online). 

 
Figure 4. Dimensionless time evolution of the dimensionless space charge 
density for K+=0.1, calculated with method B: semi-analytical solution (in 
color online). 
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In all four figures it can be observed that the completely 
developed space charge profiles calculated with both methods 
coincide for large values of t+. This of course is an expected 
result because at large t+ the time derivative in the differential 
equation vanishes. However, it is clear when comparing 
Figure 1 and Figure 2, and also Figure 3 and Figure 4, that 
during the formation methods A and B do not show the same 
behavior, the difference is more evident when comparing 
Figures 1 and 2. In these cases (K+=10), charge production at 
the interface is too fast, and does not give enough time to 
those charges to relax in the diffuse layer. The space charge 
density profile calculated with method B shows that charges 
are closer to the interface, with higher values of the wall space 
charge density at every time. This is more clear when plotting 
the dimensionless space charge profile calculated with both 
methods at different dimensionless times, on the same plot, as 
presented in Figures 5, 6, 7 and 8 for dimensionless reaction 
rates K+=10, 1, 0.1 and 0.01 respectively.  

 
Figure 5. Dimensionless space-charge density (+) profiles for K+=10, at four 
different dimensionless times, calculated with methods A and B (in color 
online). 

 
Figure 6. Dimensionless space-charge density (+) profiles for K+=1, at four 
different dimensionless times, calculated with methods A and B (in color 
online). 

In Figure 8 one can see that the reaction rate is slow enough 
for the charges to form an equilibrium profile at all presented 
times. In Figures 5 to 8, the maximum dimensionless time 
presented was chosen so that the instantaneous exponential 
profile had reached the stationary profile. 

 
Figure 7. Dimensionless space charge density profiles for K+=0.1, at four 
different dimensionless times, calculated with methods A and B (in color 
online). 

 
Figure 8. Dimensionless space charge density profiles for K+=0.01, at four 
different dimensionless times, calculated with methods A and B (in color 
online). 

Furthermore, Figure 9 and Figure 10 present the evolution of the 
dimensionless wall-space-charge density as a function of 
dimensionless time found with method A and method B, 
respectively. The bigger differences between both methods are 
found for times t+<1. That is, for times smaller than the double 
layer relaxation time, in all cases. However, the slower the reaction, 
the more the relaxation time is negligible compared to the 
equilibrium time, and therefore the more the error made in 
assuming instantaneous formation of the profile will be acceptable. 
This result could be extrapolated to the formation of an EDL in the 
entrance region of a duct. If one assumes an instantaneous 
formation of the profile, the more the reaction is slow, the shorter 



IEEE Transactions on Dielectrics and Electrical Insulation    Vol. 21, No. 1; February 2014  177 

the length over which the charge profile is incorrectly assumed. 
This is important because in streaming electrification experiments, 
the streaming current is used to determine the space charge density 
at the wall, and if the duct’s length is short, to extrapolate the value 
obtained to the fully developed EDL wall space charge. The 
procedure that is used is to assume a space charge profile at the exit 
and, because the flow used is laminar, it is then easy to obtain the 
wall space at the exit position [33]. If one uses the instantaneous 
profile hypothesis, but the reaction is too fast, then the profile at the 
exit does not correspond to the one assumed. The charges are 
placed in a region closer to the wall and the method underestimates 
the wall charge density.  
 

 
Figure 9. Dimensionless wall-space-charge-density calculated with method A 
(in color online). 

 
Figure 10. Dimensionless wall-space-charge-density calculated with method 
B (in color online). 

Finally, it is shown in Figures 11 and 12 that the wall 
current density drops earlier in the case of faster reactions 
when using the semi-analytical solution. This difference is less 
and less clear for the slower reaction rates. 

The results presented here are related to the analytical 
solution of the linearized partial differential equation that 
governs the transient formation of an EDL in the case of weak 

space charge density. The fully non-linear system of PDE 
needs to be solved numerically. A finite volumes numerical 
solution including adsorption and desorption at the wall, plus 
dissociation-recombination reactions in the liquid for this 
problem, and for the transient set in motion of the liquid in the 
duct can be found in [19]. 

 
Figure 11. Dimensionless wall current density calculated with method A (in 
color online). 

 
Figure 12. Dimensionless wall current density calculated with method B (in 
color online). 

5  CONCLUSION 
In this work we have presented and solved the differential 

equation that governs the formation of an Electrical Double Layer 
(EDL) when a liquid is put in contact with a solid wall. In order to 
solve this differential equation, two approaches were used. The 
first one assumed that the transient solution is at all times 
proportional to the stationary solution, and that only the wall 
space-charge-density changes with time. We called this solution 
the “instantaneous profile” solution. The second approach did not 
rely on that assumption. The problem to solve led us to a “semi-
analytical” solution. The results obtained with both methods were 
compared, showing that the instantaneous profile solution should 
be used with caution when the non-dimensional reaction rate 
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K+>1. For values of K+<0.1 the differences on both results are 
relevant at the initial times only and those times are very small 
compared to the equilibrium time. 
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