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Abstract

The neural crest is a migratory and multipotent cell population that plays a crucial many aspects of 

embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube 

then migrate long distances to different regions of the body, where they contribute to formation of 

many cell types and structures. These include much of the peripheral nervous system, craniofacial 

skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding 

neural crest development are mediated by transcription factors and signaling molecules. In recent 

years, however, growing evidence supports an important role for epigenetic regulation as an 

additional mechanism for controlling the timing and level of gene expression at different stages of 

neural crest development. Here, we summarize the process of neural crest formation, with focus 

on the role of epigenetic regulation in neural crest specification, migration, and differentiation as 

well as in neural crest related birth defects and diseases.
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Introduction

Neural crest cells are a population of multipotent stem/progenitor cells that are induced 

during gastrulation at the neural plate border, between the neural and non-neural ectoderm. 

By neurulation, definitive neural crest cells are specified as premigratory cells within the 

dorsal neural tube and initiate expression of typical neural crest markers like FoxD3 and 

Sox10. They then emerge from the neural tube by undergoing an epithelial to mesenchymal 

transition (EMT) whereby they delaminate from the neuroepithelium, assume a 

mesenchymal morphology and migrate extensively to different parts of the body. After 
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migration, they differentiate into numerous derivatives including neurons and glia of the 

peripheral nervous system, melanocytes, portions of the cardiac outflow tract, craniofacial 

bone and cartilage, and smooth muscle of major blood vessels (Bronner and LaBonne, 2012; 

Sauka-Spengler and Bronner-Fraser, 2008; Sauka-Spengler and Bronner, 2010). 

Understanding neural crest development is important because these cells are involved in a 

variety of birth defects, diseases and cancers, including cleft lip and palate, heart defects, 

Hirschprung’s disease, melanoma and neurofibromatosis.

There is good evidence that transcriptional events are critical for many aspects of neural 

crest development. A neural crest gene regulatory network (GRN) (Meulemans and 

Bronner-Fraser, 2004) comprised of transcriptional and signaling events has been proposed 

to function in a feed-forward series of regulatory circuits (Betancur et al., 2010; Sauka-

Spengler and Bronner-Fraser, 2006). This neural crest GRN appears to be highly conserved 

throughout vertebrates, including basal agnathans (Sauka-Spengler et al., 2007), suggesting 

that these regulatory mechanisms were in place before the divergence of jawed and jawless 

vertebrates, likely to the base of the origin of vertebrates at 550 million years ago.

In addition to transcriptional regulation, there is growing evidence to support roles for 

epigenetic regulation as critical for many aspects of neural crest development, most notably 

in controlling the timing of gene expression at different developmental stages. Here we 

discuss the critical role of epigenetic regulation during neural crest development and disease 

and some examples of how it impinges upon the neural crest GRN.

Overview of epigenetic regulation

Epigenetic modifications are defined as mechanisms that regulate gene expression without 

altering the underlying sequence of DNA (Bernstein et al., 2007). However, recent changes 

in the usage of the term have led to the suggestion that the requirement of heritability be 

dropped and that epigenetic events might better be defined as “the structural adaptation of 

chromosomal regions so as to register, signal or perpetuate altered activity states” (Bird, 

2007).

Epigenetic modifiers can alter chromatin structure and genome function through different 

processes such as DNA modifications, histone modifications and variants, or can work as a 

complex to regulate higher-level chromatin conformation in an ATP-dependent manner. 

Depending on the specific type of regulator, the outcome can either lead to gene activation, 

in which the chromatin is relaxed and DNA is accessible to transcription factors, or to gene 

repression, where chromatin is tightly packed and inaccessible to transcriptional regulators.

Epigenetic modifiers, including “writers” and “erasers” that establish the epigenetic code 

(Fig. 1), are key regulators of developmental events and also aberrant marks associated with 

many types of cancers, and disease states (Portela and Esteller, 2010). Here, we focus on 

various epigenetic regulators that have been shown to play a role in neural crest 

development and neural crest related diseases (Table 1). The epigenetic machinery falls into 

the following groups: DNA methylation, histone methylation, histone acetylation, Polycomb 

repressive complex, ATP-dependent chromatin remodeling complex, and other regulators 

that work with the epigenetic machinery to regulate neural crest development. Different 
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types of DNA and histone modifications and family members of chromatin remodeling 

complexes have been reviewed recently in (Liu and Xiao, 2011).

Neural crest induction and specification

The process of neural crest formation is initiated by signaling events, mediated by ligands 

including BMPs, WNTs and FGFs that are secreted from neighboring tissues such as the 

neural and non-neural ectoderm as well as the underlying mesoderm. During gastrulation, 

these signals establish the neural plate border region and initiate neural crest induction 

(Basch and Bronner-Fraser, 2006; Heeg-Truesdell and LaBonne, 2004; Steventon et al., 

2005; Stuhlmiller and Garcia-Castro, 2012). The neural plate border region has the 

competence to form not only neural crest cells but also other cell types such as placode cells 

and some central nervous system (CNS) cells. Signaling inputs in this region up-regulate a 

group of transcription factors called ‘neural plate border specifier genes’ including Msx1/2, 

Pax3/7, Dlx5, AP2A, Gbx2 and Zic1. The collective and overlapping expression of these 

genes confers upon the neural plate border region the unique ability to form neural crest 

cells. However, among all the neural plate border specifiers, the Pax3/7 genes, when 

combined to Zic1, are sufficient to activate a bona fide neural crest specification program 

(Basch et al., 2006; Hong and Saint-Jeannet, 2007; Milet et al., 2013; Monsoro-Burq et al., 

2005; Sato et al., 2005).

During neurulation, neural plate border circuitry activates a set of transcription factors called 

the ‘neural crest specifier genes’ in the dorsal neural tube. These include genes like AP2, n-

Myc, Id, Snail2, FoxD3, Ets-1, Sox8/9/10, with some differences in the timing of their initial 

expression (Khudyakov and Bronner-Fraser, 2009). These factors function to maintain 

multipotency, promote their epithelial-to-mesenchymal transition (EMT), initiate 

delamination and migration, while also affecting cell proliferation and survival. A bona fide 

neural crest cell is first recognizable by the expression of transcription factors such as 

FoxD3, Sox9, Snail2, and Sox10, which are expressed in the dorsal neural tube and/or newly 

delaminated neural crest cells, depending upon the species. These genes regulate 

downstream effector genes to promote EMT and migration, at which point the neural crest 

cells become an identifiable population of multipotent- migratory stem-like cells 

(Barembaum and Bronner-Fraser, 2005; Gammill and Bronner-Fraser, 2003; Sauka-

Spengler and Bronner-Fraser, 2008).

Neural crest EMT and migration

During the epithelial to mesenchymal transition process, neural crest cells alter cell 

junctions, adhesive properties and morphology to acquire cell motility, which enables them 

to migrate long distances to their final destinations. For example, they switch from 

expression of cadherins characteristic of epithelial cells to cadherins of more mesenchymal 

character and lose tight junctions while establishing gap junctions. Neural crest specifier 

genes like Snail2 and FoxD3 regulate downstream genes to facilitate this process. As a 

result, N-Cad and Cad6B are down-regulated and Cad7 is up-regulated, along with an N-cad 

to E-cad switch and modulation of gap junction proteins and integrins (Kerosuo and 

Bronner-Fraser 2012; Strobl-Mazzulla and Bronner 2012a; Rogers et al., 2013). At this 
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point, neural crest cells become a distinct group of mesenchymal cells that delaminate from 

the neuroepithelium and migrate out of the dorsal neural tube.

During their migration, neural crest cells interact with each other and with their environment 

via signaling receptors such as Neuropilins, Robo and Eph receptors, which respond to 

ligands that guide them to specific destinations or restrict them from certain territories 

(Betancur et al., 2010; Sauka-Spengler and Bronner-Fraser, 2008).

At the end of migration, the expression of most neural crest specifier genes is down-

regulated. However, expression of some factors like Sox10 and FoxD3 remain on in a subset 

of cells and contribute to terminal differentiation (Kelsh, 2006). Depending on the axial 

location and time of emigration, neural crest cells give rise to a wide variety of derivatives 

such as peripheral neurons and glia, craniofacial skeleton, cartilage derivatives, and 

melanocytes. (Betancur et al., 2010; Le Douarin, 1982).

DNA methylation in the neural crest

Methylation of the fifth position of cytosine (5-methylcytosine, 5mC) is a highly conserved 

epigenetic modification of DNA found in most plant and animal models (Law and Jacobsen, 

2010) and has a profound impact on genome stability and gene expression (Jaenisch and 

Bird, 2003; Smith and Meissner, 2013). During development, epigenetic repression, via 

DNA methylation, is one of the most common ways to shut down alternative pathways 

during cell type specification and lineage commitment (Cedar and Bergman, 2008). DNA 

methylation also has been implicated in genome imprinting and inactivation of the silent X 

chromosome (Ooi et al., 2009).

Although the DNA methylation pattern in somatic cells is stably maintained, genome-wide 

DNA methylation is erased at specific developmental stages such as in preimplantation 

embryos (Mayer et al., 2000; Oswald et al., 2000; Sasaki and Matsui, 2008). Global DNA 

demethylation is important for reprogramming cells in early embryos to enable reacquisition 

of pluripotency (Mayer et al., 2000). However, a unifying mechanistic understanding of 

active DNA demethylation has only been realized recently. After fertilization, the repressive 

parental 5mC marks are erased by iterative oxidation by TET proteins to generate oxidized 

cytosine bases known as 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-

carboxycytosine (5caC) (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009). As 

development proceeds, new DNA methylation marks are established to gradually restrict the 

cell’s potential (Borgel et al., 2010; Mayer et al., 2000; Reik, 2007). In mammalian cells, 

60–90% of the cytosine residues are methylated in the context of CpG dinucleotides 

(Gardiner-Garden and Frommer, 1987; Namihira et al., 2004). However, recent work 

suggests that non-CpG methylation is relatively abundant in oocytes, pluripotent embryonic 

stem cells and mature neurons (Lister et al., 2013; Lister et al., 2009; Shirane et al., 2013; 

Xie et al., 2012); to date, the function of mammalian non-CpG methylation remains unclear.

This process is mediated by the family of DNA methyltransferases: DNMT1, DNMT3A and 

3B. These enzymes catalyze the transfer of a methyl group on cytosine using S-adenosyl-L-

methionine as a donor (Turek-Plewa and Jagodzinski, 2005), thereby inhibiting interaction 
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of some proteins with DNA, while facilitating the binding of others (Jaenisch and Bird, 

2003; Smith and Meissner, 2013).

According to their function, the DNMTs can be categorized into two main groups with 

DNMT1 representing the maintenance methyltransferase and DNMT3A and 3B acting as de 

novo methyltransferases. DNMT1 preferably attacks the newly synthesized strand of DNA 

during chromatin replication, repairing and maintaining the pattern of methylation according 

to the parent strand (Chen and Li, 2006). The de novo methyltransferases (DNMT3A and 

3B) are the major players in tissue specific regulation during development, establishing the 

initial CpG methylation pattern. Their activities can be modulated by a catalytically inactive 

family member, DNMT3L (Jurkowska et al., 2011; Siddique et al., 2012; Wienholz et al., 

2010).

The de novo DNMTs recognize CpGs and newly methylate DNA by transferring a methyl 

group to cytosine residues (Cheng and Blumenthal, 2008). Such methylation of CpG sites, 

generally located at the promoter region of a gene, is thought to inhibit gene expression, as 

shown in cancer and stem cells (Altun et al., 2010; Miranda and Jones, 2007; Momparler 

and Bovenzi, 2000; Suzuki and Bird, 2008). DNMT3A and its paralog DNMT3B have been 

shown to be vital for normal mammalian development and play important roles in disease 

(Ehrlich et al., 2008; Jaenisch and Bird, 2003; Linhart et al., 2007; Yan et al., 2011). For 

example, Dnmt3A homozygous knockout mice die several weeks after birth, and Dntm3B 

homozygous knockout embryos have rostral neural tube defects and growth impairment 

(Okano et al., 1999), suggesting a very important role of these proteins during development.

In the chick embryo, Dnmt3A is predominantly expressed in the neural crest territory and its 

loss of function results in down regulation/loss of neural crest specifier genes Sox10, Snail2, 

FoxD3, and the expansion of neural genes Sox2 and Sox3 into the neural crest territory (Hu 

et al., 2012). Intriguingly, Dnmt3A plays an early function in repressing the neural genes 

Sox2 and Sox3 in the presumptive neural crest region, and this down-regulation of neural 

genes in the dorsal neural fold is a prerequisite to activate neural crest specifier genes (Hu et 

al., 2012).

Mutations in human Dnmt3B are found in ICF (immunodeficiency-centromeric instability-

facial anomalies) syndrome, comprised of facial abnormalities such as widened nasal bridge 

and hypotelorism, neurological dysfunction and other related defects (Ehrlich et al., 2008; 

Jin et al., 2008). These defects are consistent with an important role for DNMT3B in neural 

crest development. In zebrafish, DNMT3B and histone methyltransferase G9a cooperate to 

regulate neurogenesis through Lef1 and play a critical role in forming the precursors of 

craniofacial structures, brain and retina (Rai et al., 2010). In human embryonic stem cells, 

knockdown of Dnmt3B accelerates neural and neural crest differentiation and increases the 

expression of neural crest specifier genes (Pax3, Pax7, FoxD3, Sox10 and Snail2) (Martins-

Taylor et al., 2012).

Dnmt3B expression is significantly up-regulated during neural crest induction in chicken 

embryos (Adams et al., 2008). In contrast to the human syndrome and stem cell studies, 

however, conditional knock-down of Dnmt3B in the mouse neural crest using Wnt1- or 
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Sox10-cre does not produce an apparent craniofacial phenotype (Jacques-Fricke et al., 

2012). Wnt-1-Cre driven knock-out of DNMT3B exhibits only mild migration defects of 

dispersed Sox10 positive cells, that recover during cranial gangliogenesis (Jacques-Fricke et 

al., 2012). One possibility for the difference between these findings in different species is 

that the neural crest defect obtained in Dnmt3B mutant mice may be due to a requirement for 

this protein earlier during neural crest development. Alternatively, this could reflect 

differences between species, or may indicate that the primary function of DNMT3B is in 

non-neural crest tissue.

Histone modifications

Histone proteins associate with compacting DNA strands and organize them into structural 

components called nucleosomes. Each nucleosome contains eight histones: two of each of 

the core histones H2A, H2B, H3 and H4 form octameric structures called nucleosome cores 

around which DNA is wrapped with unstructured tails (Gibney and Nolan, 2010). The core 

histone proteins are highly conserved throughout evolution and their tails are subject to post-

translational modifications such as methylation, acetylation, deacetylation, phosphorylation, 

ubiquitination, and sumoylation (Berger, 2007; Kouzarides, 2007), with modification on 

histone H3 being one of the best described to date (Fig. 1). New histone marks and new 

types of histone modifications continue to be discovered (Tan et al., 2011). Among these 

modifications, histone methylation and acetylation are currently the best studied in neural 

crest cells and play an essential role in neural crest development.

Histone methylation is associated with both active and repressive transcription (Kouzarides, 

2007). Histone methyltransferases add methylation marks whereas histone demethylases 

remove them. H3K4me3 (Histone 3 Lysine 4 trimethylation) established by Trithorax group 

proteins is indicative of transcriptionally permissive chromatin states, and is mostly found in 

the promoter regions of genes (Akkers et al., 2009; Barski et al., 2007; Cheung et al., 2010; 

Pan et al., 2007). H3K36me3 is associated with euchromatic regions that are associated with 

active transcription and primarily found in gene bodies. In contrast, H3K27me3 catalyzed by 

Polycomb repressive complex (Schwartz et al., 2006; Simon and Kingston, 2009; Swigut 

and Wysocka, 2007; Tolhuis et al., 2006), and H3K9me3 catalyzed by G9a 

methyltransferase (Allan et al., 2012; Nielsen et al., 2001; Shi et al., 2003) are associated 

with transcriptional repression.

During neurulation, the H3K9me3 mark is abundant in dorsal compared with ventral neural 

tube cells, reflecting clear differences in the epigenetic background of neural crest versus 

neural progenitor cells (Fig. 2). Histone demethylases such as members of the Jumonji 

family can revert H3K9me3 and H3K36me3 (Tan et al., 2008). Accordingly, JmjD2A (also 

known as Kdm4A) is the first epigenetic gene discovered to regulate neural crest 

specification via modulating H3K9me3 of neural crest genes (Strobl-Mazzulla et al., 2010). 

JmjD2A is expressed in the neural crest forming territory during specification. Moreover, 

knocking down JmjD2A causes dramatic loss of neural crest specifier genes such as Sox10, 

Snail2, and FoxD3. In vivo ChIP assays reveal direct interaction of JmjD2A with Sox10 and 

Snail2 promoter regions that are occupied by H3K9me3 (Strobl-Mazzulla et al., 2010). 

Hu et al. Page 6

Dev Biol. Author manuscript; available in PMC 2015 December 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Thus, JmjD2A is required to demethylate histones occupying the promoters at the proper 

time and place to allow neural crest specification to occur.

Consistent with the importance of histone demethylases in development, patients with 

mutations in the histone demethylase PHF8, a JmjC domain containing protein, have 

craniofacial deformities. PHF8 is capable of demethylating the repressive marks H4K20me1 

and H3K9me1 around the transcription start site to activate transcription. In zebrafish, PHF8 

directly regulates homeodomain transcription factor MsxB during cranial facial development 

especially in the lower jaw (Phillips et al., 2006; Qi et al., 2010). This transcriptional 

regulator has been previously implicated in regulation of neural crest development in many 

vertebrate models (Maxson and Ishii, 2008; Monsoro-Burq et al., 2005; Phillips et al., 2006; 

Takahashi et al., 2001).

Histone acetylation is associated with active transcription and histone de-acetylation silences 

transcription (Jenuwein and Allis, 2001). HATs and HDACs are two classes of enzymes that 

antagonize each other (Shahbazian and Grunstein, 2007). HATs (histone acetyltransferases) 

transfer acetyl groups to lysines, and their binding is correlated with active transcription 

(Carrozza et al., 2003; Shahbazian and Grunstein, 2007). Acetylation neutralizes the charge 

of lysine residues and weakens their interactions with negatively charged DNA, allowing the 

chromatin structure to open up, thus increasing accessibility to transcription factors (Ekwall, 

2005; Wang et al., 2009). HATs have also been identified as co-transcriptional activators 

(Roth et al., 2001; Yang, 2004). In contrast, HDACs (histone deacetylases) de-acetylate 

lysine residues and one of their major functions is to remove acetyl groups added by HATs 

(Wang et al., 2002). As a result, chromatin is reset to its tightly packed state (Hsieh et al., 

2004). As a consequence, HDACs have been identified as transcriptional co-repressors 

(Kadosh and Struhl, 1997; Rundlett et al., 1998).

Epigenetic annotation such as histone acetylation is closely associated with enhancer activity 

and is a new, powerful tool to identify neural crest cis-regulatory regions together with 

conserved regulatory regions. For example, H3K27ac is associated with active enhancers 

(Bonn et al., 2012; Cotney et al., 2012; Creyghton et al., 2010; Heintzman et al., 2009; 

Rada-Iglesias et al., 2011). In human neural crest cells derived from hESC, a tour de force 

ChIP-seq study using antibodies to several histone marks reveals that active enhancer 

regions are enriched with H3K27ac and H3K4me1 while lacking H3K4me3 (Rada-Iglesias 

et al., 2012). Neural crest enhancer elements that are conserved between human and chicken 

are both enriched for H3K27ac. Moreover, the finding that a TFAP2A, together with nuclear 

receptors NR2F1 and NR2F2, leads to the establishment of a transcriptionally permissive 

enhancer chromatin states, opens the possibility to identify new important genes involved in 

neural crest development (Rada-Iglesias et al., 2011). Many have now been identified as a 

result of these studies and it will be interesting to monitor their functional characterization.

In neural crest development, the HDAC inhibitor Trichostatin A (TSA) promotes trunk 

neural crest cell specification (Murko et al., 2013). In chick, in ovo treatment with the 

inhibitor TSA induces neural crest markers Bmp4, Pax3, Sox9 and Sox10, and dysregulates 

the proper timing of expression of cadherins, such as Cad6B and N-cad, resulting in 

premature loss of epithelial characteristics.
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The HDAC repression complex also plays an essential role in regulating neural crest 

migration. Premigratory neural crest cells from the dorsal neural tube undergo an epithelial 

to mesenchymal transition to gain migratory properties and travel to distant parts of the 

body. The transcriptional repressor Snail2 has been reported to directly repress transcription 

of the adhesion molecule Cad6B in premigratory neural crest cells (Hatta et al., 1987; 

Nakagawa and Takeichi, 1995; Taneyhill et al., 2007). Epigenetic regulation has been 

shown to play a critical underlying molecular role in this repression (Strobl-Mazzulla and 

Bronner, 2012). Interaction between an adaptor protein, PHD12, and Snail2 recruits the 

repressive complex Sin3A/HDAC to the Cad6B promoter region. As a result, Cad6B 

transcription is repressed via histone deacetylation. Thus, the dual coordination between 

epigenetic regulators, such as PHD12, and transcription factors, such as Snail2, is required 

to cooperatively regulate the process of neural crest EMT (Strobl-Mazzulla and Bronner, 

2012).

Later in development, HDACs play important roles in regulating downstream neural crest 

differentiation. HDAC1 has distinct spatial and temporal functions in neural crest-derived 

cells in zebrafish as it is involved in both melanophore specification and craniofacial 

cartilage development. HDAC1 mutant zebrafish embryos exhibit a severe reduction in the 

number of melanoblasts expressing MITFa, a critical transcription factor for melanoblast 

development, and retain prolonged FoxD3 expression in neural crest cells. FoxD3 physically 

interacts with the MITFa promoter and reducing FoxD3 expression in HDAC1 mutants 

partially rescues the melanoblast defects. Thus, during normal melanogenesis, HDAC1 is 

required to repress FoxD3 expression that in turn de-represses MITFa to allow melanophore 

specification, migration and differentiation (Ignatius et al., 2008). In addition, HDAC1 is 

also involved in neural crest derived craniofacial and peripheral neuron development 

(Ignatius et al., 2013). Craniofacial cartilage defects are observed in mutant HDAC1 

zebrafish in which fewer branchial arch precursors marked by hoxb3a, dlx2, and dlx3 are 

specified and chondrocyte precursors fail to differentiate. The differentiation of enteric and 

dorsal root ganglion neurons in the posterior gut and tail are also disrupted in these mutant 

embryos. Interestingly, sympathetic neurons precursors can successfully undergo generic 

neuronal differentiation but fail to become noradrenergic (Ignatius et al., 2013). Overall, 

HDAC1 is required for distinct developmental processes and its activity is present in a broad 

range of cell types during neural crest derived differentiation.

In zebrafish craniofacial morphogenesis, embryos treated with HDAC4 morpholino exhibit 

loss of cranial neural crest derived palatal skeletal precursor cells and this later results in 

defects in the developing palate including cleft plate and a shortened face (DeLaurier et al., 

2012). In human development, HDAC4 is also highly associated with neural crest related 

diseases and syndromes. Haploinsufficiency of HDAC4 is associated with brachydactyly 

mental retardation syndrome with features such as craniofacial and skeletal abnormalities 

(Williams et al., 2010). In addition, high throughput SNP analysis has linked HDAC4 with 

nonsyndromic oral clefts, a common birth defect closely related to neural crest development 

(Park et al., 2006). Moreover, infants exposed to valproic acid (VPA, an HDAC inhibitor), 

an anticonvulsant and mood-stabilizing drug, during pregnancy have an increased risk of 
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neural crest and neural tube related malformations including cleft lip and palate, and 

cardiovascular defects (Alsdorf and Wyszynski, 2005; Wyszynski et al., 2005).

Other HDACs important for neural crest development include HDAC3 and 8. HDAC3 is 

crucial for the regulation of smooth muscle differentiation and cardiac outflow tract 

formation during cardiac neural crest development in mouse (Singh et al., 2011). Similarly, 

conditional deletion of HDAC8, driven by Wnt1-Cre in mice, results in loss of specific 

cranial skeletal elements. HDAC8 epigenetically controls skull morphogenesis in neural 

crest-derived cells by repressing homeobox transcription factors Otx2 and Lhx1 (Haberland 

et al., 2009).

Although histone deacetylation was originally thought to function by silencing genes via 

local compaction of the chromatin structure, it is now clear that HDACs also can activate or 

maintain the active state (Wang et al., 2009) by acting in concert with HATs. Therefore, the 

level of histone acetylation and the presence of HDACs at a specific gene locus do not 

necessarily correlate with the activity status of the gene. For example, a recent study in mice 

has demonstrated that both HDAC1 and HDAC2 direct the specification of neural crest cells 

into peripheral glia (Jacob et al., 2014) by binding to the promoter region of the transcription 

factor Pax3 and activating its expression. In turn, Pax3 is required to maintain Sox10 

expression levels necessary to trigger expression of the fatty acid binding protein 7 (Fabp7), 

one of the early determinants necessary for the neural crest differentiation into Schwann cell 

precursors and satellite glia. Moreover, HDAC1/2 also bind to and activate the promoter 

region of myelin protein P0, necessary for the peripheral glial differentiation. Consistent 

with these observations, deletion of HDAC1/2 in mouse neural crest cells leads to depletion 

of satellite glia and Schwann cell precursors in dorsal root ganglia and peripheral nerves.

In summary, HDACs execute important functions in the control of both enhancer activity 

and promoter regions of transcription factors to regulate gene expression. Their activity 

affects numerous aspects of neural crest development ranging from specification to 

migration and differentiation.

Polycomb repressive complex

The polycomb repressive complexes (PRC) epigenetically silence the transcription of their 

target g dependent manner. PRC1 and PRC2 are both involved in the differentiation of 

neural crest-derived craniofacial structures. During chondrogenesis and skeleton formation, 

Hox genes are normally turned off in the cranial neural crest. EZH2, enhancer of zeste 

homolog 2, is one of the four core subunits of PRC2. Conditional knockout of Ezh2 in pre-

migratory neural crest cells in mice leads to de-repression of Hox genes in cranial neural 

crest cells, which in turn suppresses osteochondrogeneis and prevents craniofacial cartilage 

and bone formation (Schwarz et al., 2014). Similarly, Ring1b/Rnf2 (the single E3 ubiquitin 

ligase) in the PRC1 complex regulates cranial neural crest differentiation into chondrocytes 

(van der Velden et al., 2013). Zebrafish Ring1b mutants lack cranial cartilage, bone and 

musculature due to the inability of cartilage precursors to differentiate into chondrocytes. 

Interestingly, H3K27me3 and PRC proteins are reduced at the promoter regions of neural 
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crest specifier genes upon knock-down of DNMT3B in hESCs (Martins-Taylor et al., 2012) 

suggesting cross-regulation between these epigenetic regulators.

In addition to cartilage differentiation, defects in PRC genes are associated with neural crest 

related diseases and syndromes. Aebp2, a component of the PRC2, is expressed in the neural 

crest territory (Kim et al., 2009). Heterozygous mouse mutants of Aebp2 gene present 

phenotypes similar to human patients with Hirschsprung’s disease and Waardenburg 

syndrome. Both disorders are caused by migratory and developmental defects in neural crest 

cells (Ahola et al., 2009; Inoue et al., 2002; Kim et al., 2011). Expression levels of key 

neural crest genes are affected in Aebp2 heterozyous mutants. In particular, Sox10 is 

consistently down-regulated, similar to the reduced SOX10 dosage frequently observed on 

Waardenburg syndrome type 4 human desease. It is possible, that Aebp2 misregulation is 

responsible for Hirschsprung’s disease and Waardenburg syndrome via improper epigenetic 

regulation of the neural crest genes (Kim et al., 2011).

ATP-dependent chromatin remodelers

The ATP-dependent chromatin remodeling complexes such as SWI/SNF, ISWI, and CHD 

regulate gene expression by changing the position or structure of higher order chromatin in 

an ATP-dependent manner. They create nucleosome-free regions to facilitate access of DNA 

to transcription factors and regulatory proteins (Kwon and Wagner, 2007; Wu et al., 2009). 

CHD7, an ATP-dependent chromatin domain helicase DNA-binding domain member, 

cooperates with PBAF (SWI/SNF chromatin remodeling complex (Muchardt and Yaniv, 

2001)) to promote neural crest specification in hESC induced to become neural crest cells. 

CHD7 activates core neural crest transcriptional circuitry genes including Sox9 and Twist 

through directly regulating their enhancer regions (Bajpai et al., 2010). Sixty-seven percent 

of patients with CHARGE syndrome (a rare genetic disorder) have CHD7 mutations 

(Zentner et al., 2010). CHD7 impairment in Xenopus embryos recapitulates major 

CHARGE syndrome features such as craniofacial malformations, peripheral nervous system 

abnormalities and heart defects (Bajpai et al., 2010). Consistent with this, CHD7 deficient 

mice exhibit craniofacial abnormalities (Bosman et al., 2005; Hurd et al., 2007; Layman et 

al., 2009). Taken together, these data suggest that CHARGE syndrome is a result of CHD7 

malfunction in early neural crest development. In addition, in zebrafish, Brg1, a member of 

the SWI/SNF chromatin-remodeling complex, plays an important role in neural crest 

induction, possibly via regulating the promoter region of Snail2 (Eroglu et al., 2006).

WSFT, Williams syndrome transcription factor, is a major subunit of two distinct ATP-

dependent chromatin remodeling complexes: WINAC and WICH (Barnett and Krebs, 

2011). It is one of the genes associated with Williams syndrome, a developmental disorder 

in which patients have defects in neural crest derived tissues. These include facial 

abnormalities, heart defects, and neural problems, among other abnormalities. In Xenopus 

embryos, WSFT is expressed in the migratory neural crest and branchial arches. Knockdown 

of WSFT perturbs Snail and Snail2 expression in the branchial arches. There are severe 

defects in neural crest migration and maintenance, while neural crest induction is unaffected 

(Barnett et al., 2012). In mice, WSFT heterozygotes exhibit cardiovascular abnormalities 

that phenocopy Williams syndrome patients (Yoshimura et al., 2009). Taken together, these 
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data suggest that malfunction of WSFT during neural crest development is a major 

contributor to Williams syndrome.

Other epigenetic regulators

The reduced folate carrier (RFC) is a membrane-bound receptor involved in folate uptake by 

cells. Mice lacking RFC1 develop multiple defects including neural tube, craniofacial and 

heart abnormalities (Gelineau-van Waes et al., 2008). In Xenopus, XRFC is expressed 

exclusively in the neural crest domain and its morpholino-mediated knockdown down-

regulates neural crest markers such as Zic1, Snail2, and FoxD3 (Li et al., 2011). As a result, 

Twist1 positive neural crest cells fail to migrate ventrally and embryos exhibit similar 

phenotypes to those observed in mice. In animal cap assays, knock-down of RFC reduces 

the levels of H3K4me1 and H3K4me3. Over expressing lysine transferase hMLL1 in XRFC 

MO treated embryos fully rescues Zic1 and FoxD3 expression and partially rescues Snail2 

and Twist1 expression (Li et al., 2011). Taken together, these data suggest that an RFC 

mediated folate metabolic pathway controls neural crest development through epigenetic 

mechanisms.

Leo1 is a component of the Polymerase-Associated Factor (PAF1) complex associated with 

chromatin remodeling and gene regulation (He et al., 2004; Krogan et al., 2003; Simic et al., 

2003). In zebrafish mutants with truncated Leo1 protein, there is reduced expression of 

Crestin, Gch2, and Miftfa in neural crest derived cells (Nguyen et al., 2010). As a 

consequence, mutants have phenotypes such as reduced numbers of melanocyte, craniofacial 

cartilage, and glial cells. It is interesting to speculate that Leo 1 may be essential for neural 

crest differentiation, possibly through epigenetic regulations.

Conclusions

Many of the most common human birth defects are related to abnormal neural crest 

development. Neural crest malformation can lead to craniofacial defects like cleft lip and 

palate, heart septation defects, and agangliogenesis of the colon (Jiang et al., 2006; 

Tennyson et al., 1986; Youn et al., 2003). In addition, neural crest cells are involved in a 

variety of diseases and syndromes such as Hirschsprung’s disease (HSCR), Wardensburg 

syndrome (WS), CHARGE syndrome and Williams Syndrome (Ahola et al., 2009; Bajpai et 

al., 2010; Inoue et al., 2002; Kim et al., 2011; Yoshimura et al., 2009). Although some of 

these syndromes are based in transcriptional or metabolic events, others like CHARGE 

syndrome clearly involve epigenetic factors.

Thus, in addition to transcriptional regulators, epigenetic modifiers serve as important inputs 

that are crucial for proper neural crest development. At a given time point, epigenetic 

modifiers control aspects of neural crest development in a spatially and temporally specific 

manner. They are capable of communicating at both the promoter and enhancer regions to 

render DNA as accessible state for transcription, poise an enhancer region for future 

activation, or remove active marks to turn off transcription. Often, these regulators cross-talk 

and work together to achieve their goals. For example, DNA methyltransferases often work 

with histone methyltransferases to shut down genes and histone demethylases read and 
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remove repressive marks along with histone acetylases to activate transcription at the 

appropriate time. Each cell lineage is marked with different combinations of epigenetic 

modifications at a given developmental time point. Uncovering these marks in neural crest 

cells will be critical for understanding both neural crest development and related diseases.

Epigenetic machinery also works closely with transcription factors and lineage specific 

genes to achieve tissue specific regulation. Most of the interactions between epigenetic 

regulators and downstream transcriptional effectors reviewed here are correlative. Only a 

few relationships have been proven to be direct. Future work must dissect the molecular 

mechanisms underlying each predicted interaction and identify new genes and regulatory 

circuits acting during neural crest development. The tools to accomplish this goal--high 

throughput technologies such as Chip-seq and RNA-seq combined with in vivo perturbation 

analysis and genome editing—are now in place. It will be of great value to expand our 

understanding of events underlying neural crest formation and gene regulatory interactions 

at the mechanistic level, from both a transcriptional and epigenetic vantage point.
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Highlights

• Epigenetic contributions during neural crest development

• Role of Histone and DNA modifiers in developing nervous system

• Involvement of epigenetic modifications in neural crest related diseases
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Figure 1. 
Schematic diagram of the different epigenetic marks identified on histone H3 and DNA and 

their respective “writer”, “eraser” and “reader” proteins. Histone methylations on red and 

green are associated with transcriptional repression and activation, respectively. TETs, Ten-

Eleven translocation enzymes; DNMTs, DNA methyltransferases; HATs, histone 

acetyltransferases; HDACs, histone deacetylases; HMTs, histone methyltransferases; and 

HDMTs, histone demethylases.
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Figure 2. 
Transverse section through a chick embryo stained with an antibody to the H3K9me3 mark 

(red) illustrates variation in the abundance of the mark between premigratory neural crest, at 

the dorsal aspect of the neural tube, and the ventral neural tube progenitors. After neural 

crest migration, evidenced by the HNK-1 marker (in blue), none of those highly abundant 

H3K9me3 positive cells are observed on the entire neural tube (unpublished data).
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