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Abstract We show that McVittie geometry, which describes
a black hole embedded in a FLRW universe, not only solves
the Einstein equations but also remains as a non-deformable
solution of f (T ) gravity. This search for GR solutions
that survive in f (T ) gravity is facilitated by a null tetrad
approach. We also show that flat FLRW geometry is a con-
sistent solution of f (T ) dynamical equations not only for
T = −6H2 but also for T = 0, which could be a manifes-
tation of the additional degrees of freedom involved in f (T )

theories.

1 Introduction

It is well known that Riemann–Cartan spacetime, the under-
lying arena of Einstein–Cartan gravity, is a geometry pos-
sessing non-vanishing torsion and curvature [1–4]. Einstein’s
general relativity (GR) is defined in a spacetime with zero tor-
sion and non-vanishing curvature. But there is another way of
simplifying the Riemann–Cartan spacetime: by imposing the
vanishing of the curvature tensor and letting the torsion unde-
termined. In this case, the spacetime geometry is completely
described in terms of the vierbein (tetrad) field, since both
the metric and the connection depend on it. The connection
is called Weitzenböck connection and has torsion but vanish-
ing curvature. For a certain choice of a Lagrangian quadratic
in this torsion, the theory reduces to the so-called Telepar-
allel Equivalent of General Relativity (TEGR) [5–9], whose
dynamical equations are equivalent to those of GR [10–16].
A decade ago, a novel approach to modified gravity was pro-
posed by using TEGR as a starting point: the so-called f (T )

gravity [17,18], which mimics the proposal of f (R) gravity
by extending the Lagrangian through an arbitrary function.
From the very beginning, the modified teleparallel gravity
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approach attracted attention since it successfully describes an
inflationary scenario without the introduction of any inflaton
field [17,19], together with an explanation for the accelerated
expansion of our universe without dark energy [20]. More-
over, the action of f (T ) gravity contains only first derivatives
of the dynamical variables so that the dynamical equations
are of second order, which is an unusual feature in modified
gravity. Soon enough, it was also established that the action
is not local Lorentz invariant [17,21–23], which relates to the
fact that f (T ) gravity presents additional degrees of freedom,
although their physical nature is not yet well understood [21–
25]. A lot of work has been done from then on (e. g. [21–45],
among others). Following the steps of f (T ) gravity as an
extension of TEGR, it is worth mentioning that other alter-
native theories in teleparallel framework were also developed
in Born–Infeld [19,46–49], Kaluza–Klein [50], or Lovelock
[51] schemes.

In this work, we study the McVittie solution [52,53],
which describes a black hole embedded in a FLRW cosmol-
ogy, in the context of modified teleparallelism. The McVittie
spacetime is regular everywhere on and outside the black
hole horizon, and also away from the big-bang singularity,
when the cosmology is dominated at late times by a positive
cosmological constant. The spherically symmetric geome-
try is parameterized by a function a(t) and a constant mass
parameter m. Of course, it reduces to FLRW cosmology with
factor scale a(t) at large radius, and to a black hole with
mass m for proper limits. An exhaustive study of McVit-
tie spacetime was developed in [54–56] (see also Ref. [57]).
There were pointed out some misleading conceptions about
the geometrical interpretation of the solutions that are shown
in [58], where the McVittie geometry and its casual structure
are thoroughly analyzed. It is fair to say that the McVittie
solution does not describe astrophysical black holes because
of missing ingredients such as accretion and rotation. How-
ever, it is still interesting as a first approach to study compact
objects in an expanding universe.
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Due to the lack of local Lorentz invariance, looking for
dynamical solutions in f (T ) gravity could be an awkward
task. The symmetries of the metric does not throw light on
the path one must follow. In [41] we have shown that a null
tetrad approach seems to be a useful way to find solutions
with spherical or axial symmetry. We will apply the same
strategy here.

The outline of the paper is the following. In Sect. 2 we
briefly introduce teleparallel gravity and the so-called f (T )

gravity. In Sect. 3 we present the McVittie spacetime. In
Sect. 4 we look for McVittie-like solutions in f (T ) gravity by
taking advantage of the null tetrad approach, which provides
a simple way to find suitable frames. In Sect. 5 we show that
FLRW cosmology consistently solves the f (T ) equations for
two different tetrads not linked by a symmetry transformation
of the equations. Finally, we state the conclusions in Sect. 6.

2 Teleparallel framework

Teleparallelism is a framework to describe gravity where the
role of the metric tensor gμν is played by the tetrad or vierbein
{ea(xμ)}, a = 0, 1, 2, 3. The tetrad is a set of four vectors
at each point of the spacetime which are linked to the metric
by the condition of orthonormality ea · eb = ηab, where
ηab = diag(1,−1,−1,−1) is the Minkowski symbol. In
coordinate bases, we write the tetrad and its dual co-tetrad
{ea(xμ)} as ea = e μ

a ∂μ and ea = eaμ dxμ, where e μ
a and

eaμ are the components of the tetrad and its inverse which
obey duality relationships (eaμ e μ

b = δab and eaμ e ν
a = δν

μ).
By combining duality and orthonormality, one can get the
metric tensor of the manifold in terms of a tetrad in the tangent
space,

gμν = ηab eaμ ebν . (1)

Of course, this relationship is invariant under (local) Lorentz
transformations of the tetrad. As seen, we have used Greek
indices to label coordinates and tensor components in a coor-
dinate basis; instead Latin indices a, b, . . . = 0, 1, 2, 3 label
the vectors taking part in the tetrad, and tensor components
with respect to these Lorentzian frames. These indices are
lowered and raised by the metric tensor and the Minkowski
symbol, respectively.

It is well known that General Relativity can be reformu-
lated by using the tetrad as the dynamical variable. In fact,
in the so-called Teleparallel Equivalent of General Relativ-
ity (TEGR) [10–13] the action is built from the object of
anholonomity dea , which reads dea = eaμ Tμ

ρν dxρ ∧ dxν

in a coordinate basis, where

Tμ
ρν = e μ

b ( ∂ρe
b
ν − ∂νe

b
ρ). (2)

dea coincides with the torsion Ta = dea + ωa
b ∧ eb when

the spin connection ωa
b is chosen to be zero. Such a choice

is the Weitzenböck connection [59], which also implies that
the curvature Ra

b = dωa
b + ωa

c ∧ ωc
b vanishes. According to

Eq. (2) the Christoffel symbols for the Weitzenböck connec-

tion are
W

�
μ
ρν = e μ

a ∂νeaρ = −eaρ ∂νe
μ
a . The Weitzenböck

connection leads to the vanishing of the covariant derivative
of the tetrad, which also means that this connection is metric-
compatible (see Eq. (1)). This property defines an absolute

parallelism in the spacetime. In fact,
W∇e μ

a ≡ 0 means that a
parallel transported vector keeps its projections on the tetrad
constant, irrespective of the path as a consequence of the zero
curvature. This is the reason why the name teleparallelism
comes up. As can be seen, the Weitzenböck torsion (2) is
invariant only under global Lorentz transformations of the
tetrad. So, Weitzenböck geometry selects a preferred global
frame modulo global Lorentz transformations, in spite of the
metric being invariant under local Lorentz transformations.

2.1 The teleparallel equivalent of general relativity

The TEGR action is

ST = 1

2κ

∫
d4x e T +

∫
d4x e Lmatter, (3)

where κ = 8πG, e = det[eaμ] = √−g and the torsion
scalar or Weitzenböck invariant T is defined by the contrac-
tion of the torsion tensor (2) and the superpotential, that is,

T ≡ S μν
ρ T ρ

μν, (4)

where S μν
ρ ≡ 1

2 (Kμν
ρ + T λμ

λ δν
ρ − T λν

λ δ
μ
ρ ), with Kμν

ρ ≡
1
2 (T μν

ρ −Tμν
ρ+T νμ

ρ) the contorsion tensor. Then the torsion
scalar can be expressed by the following quadratic combina-
tion of the components of the torsion tensor:

T = 1

4
T μν

ρ T ρ
μν + 1

2
T μν

ρ T ρ
νμ − T μρ

ρ T σ
σμ. (5)

One can compute the Levi-Civita scalar curvature R in
terms of the tetrad by using Eq. (1); then a relation is obtained
between T and R which shows that the Einstein–Hilbert
Lagrangian only differs from the TEGR Lagrangian by a
four-divergence,

T = −R[ea] + 2 e−1 ∂ρ(e Tμ ρ
μ ). (6)

Hence the equations of motion are fully equivalent, showing
the equivalence between GR and TEGR pictures. Although
the tetrad field has 16 independent components, in contrast
with the 10 independent components of the symmetric metric
tensor, TEGR and GR have the same number of degrees of
freedom, as expected from their equivalence. In fact, Eq. (6)
implies that TEGR only governs the dynamics of the met-
ric, which is invariant under local Lorentz transformations
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of the tetrad. Then the tetrad is only determined modulo this
local symmetry group. Therefore, the extra components of
the tetrad do not represent new dynamical degrees of free-
dom. In fact, the local Lorentz invariance of the relation (1)
means that the metric is related with an infinite set of tetrad
fields, connected by local Lorentz transformations. Note also
that teleparallel vacuum solutions do not force T to vanish,
as opposite to R in GR. This point is clearly shown in Eq. (6)
where R = 0 implies that T is a four-divergence.

2.2 f (T ) gravity

In analogy with f (R) gravity [60–65], where the GR
Lagrangian is extended to an arbitrary function f of the cur-
vature scalar R, f (T ) gravity is obtained by replacing the
TEGR Lagrangian with an arbitrary function f of the tor-
sion scalar T [17–19],

S f (T ) = 1

2κ

∫
d4x e f (T ) +

∫
d4x e Lmatter. (7)

The dynamical equations of f (T ) gravity are computed by
varying the modified teleparallel action with respect to the
tetrad, yielding

4 e λ
a S μν

λ ∂μT f ′′(T )

+ 4
[
e λ
a T ρ

μλ S μν
ρ + e−1∂μ(e e λ

a S μν
λ )

]
f ′(T )

− e ν
a f (T ) = −2 κ e λ

a T ν
λ , (8)

whereT ν
λ is the energy-momentum tensor. Of course, TEGR

dynamics is recovered if f (T ) = T . Remarkably, it is
straightforward to verify that the equations of motion are
of second order with respect to the tetrad (just as in GR with
respect to the metric), since T ρ

μλ and S μν
ρ are linear in the

first derivatives of the tetrad. Instead, other alternative theo-
ries of gravity have dynamical equations of higher order.

From the equivalence relation expressed in Eq. (6), it is
manifest that f (T ) gravity is a non-local Lorentz invari-
ant theory; by extending the TEGR Lagrangian to a func-
tion f (T ), the four-divergence (non-invariant) term remains
encapsulated inside the function f .1

While TEGR is a theory for the metric (as GR is), f (T )

gravity is a theory for the tetrad. This is so because the
modified teleparallel dynamical equations are not invariant
under local Lorentz transformations but only under global
Lorentz transformations.2 Thus the dynamical equations pos-

1 The equivalence between GR and TEGR is broken after the gener-
alization procedure; therefore f (T ) gravity is not at all equivalent to
f (R) gravity.

2 It should be noted too that the local Lorentz symmetry could be
broken at the level of quantum gravity (Planck scale) and many can-
didate theories of quantum gravity predict at some point the loss of
local Lorentz symmetry. In fact, there are many attempts to exam-
ine in detail the range in which the Lorentz symmetry is preserved

sess information exclusively associated with the tetrad field.
This means that f (T ) theories dynamically endow the space-
time with an absolute parallelism. This also means that, if one
is looking for a solution associated with a given metric, then
the symmetries of the metric are not sufficient to anticipate
the form of the tetrad solving the equations. For instance, it
was shown that Schwarzschild geometry [31] and non-flat
FLRW spacetimes [32] require non-trivial tetrads in order
to consistently solve the equations of motion. Therefore the
gravitational field is encoded in a set of preferred reference
frames, which should not depend on the function f con-
sidered [37]. Along this line, it was proposed that a set of
suitable frames would be defined up to certain local Lorentz
transformations, which are a remnant symmetry group which
depends on the specific spacetime considered [42]. In fact,
in a mathematical context, it has been known for a long time
that the vector fields capable to parallelize a manifold are not
unique (see for instance, Ref. [77]).

In the present work, we rely on results displayed in [31,41]
where Schwarzschild and Kerr spacetimes proved to remain
as vacuum solutions in f (T ) gravity, since both geometries
admit a tetrad where the torsion scalar vanishes (T = 0) or
is constant (T = Tc). In fact if ∂μT = 0, Eq. (8) can be
arranged as follows:

G ν
η − 1

2
δ ν
η Tc + 1

2
δ ν
η

f (Tc)

f ′(Tc)
= κ

f ′(Tc)
T ν

η , (9)

where we define G ν
η from Eq. (8) by taking f (T ) = T ,

G ν
η ≡ −2eaη

[
e λ
a T ρ

μλ S μν
ρ + e−1 ∂μ(e e λ

a S μν
λ )

]

+ 1

2
δ ν
η T (10)

(G(μν) is the Einstein tensor). Remarkably the dynamical
equations (9), when the energy-momentum tensor is symmet-
ric, are nothing but (TEGR) Einstein equations with a scaled
Newton constant G̃ = G/ f ′(Tc) and cosmological constant
� = (Tc − f (Tc)/ f ′(Tc))/2. Therefore, if f (T = 0) = 0
then the TEGR solutions having T = 0 remain as solutions
of f (T ) gravity (in the case of non-vacuum solutions we
should adjust the Newton constant). Even if Tc �= 0 one
could still regard any TEGR solution having T = Tc as a
solution to f (T ) equations for proper values of cosmologi-
cal and Newton constants. In the following sections we will
take advantage of this property to figure out whether a met-
ric solving Einstein’s equations could survive as a solution
of f (T ) equations or not. Following the strategy displayed
in [41], we will exploit the local Lorentz invariance of TEGR
to look for solutions having T = 0 by starting from a known

Footnote 2 continued
[66–71]. Other alternative descriptions of gravity in vogue nowadays
such that Hor̆ava–Lifshitz [72–74] and Æther–Einstein [75,76] are not
local Lorentz invariant in the time sector.
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solution. If we succeed, then we can state that the solution
so obtained remains as a solution to f (T ) gravity. The null
tetrad approach will be very useful for this purpose.

3 McVittie geometry

McVittie geometry [52] describes a cosmological black hole,
which means a black hole solution embedded in an expand-
ing FLRW universe. A comprehensive review of McVittie
geometry was carried out by Nolan in the late-1990s [54–56].
Nonetheless, Kaloper et al. [58] went one step further by ana-
lyzing some misconceptions in the geometrical interpretation
of the solution. The original McVittie spacetime assumes
vanishing (Levi-Civita) spatial curvature in the asymptoti-
cally FLRW region, but also it can easily be generalized so
as to include positive or negative spatial curvature [57]. Here
we will focus on the spatially flat case. It is assumed that the
spatial curvature of the FLRW does not significantly influ-
ence the dynamics around the central mass, accounting for
that the radius of curvature is (much) greater than the gravita-
tional radius of the mass source. Then the standard McVittie
geometry is described by the metric

ds2 =
(

1 − μ

1 + μ

)2

dt2 − (1 + μ)4a2(t) dx2, (11)

where μ = m(2a(t)|x|)−1, withm/G the mass of the source,
a(t) is the asymptotic cosmological scale factor, and the cen-
ter of the spherical symmetry is at x = 0. This is an exact
solution to Einstein’s equations for an arbitrary mass m pro-
vided that a(t) solves the Friedmann equation. As might
be expected, if m = 0 the geometry corresponds to the
standard flat FLRW spacetime, and if a(t) = 1 the line
element describes the Schwarzschild solution (in isotropic
coordinates). For a ∼ eH0t , the metric reduces to the case
of Schwarzschild–de Sitter (by adopting a positive cosmo-
logical constant). It can be verified that McVittie solution
has a spacelike and an inhomogeneous singularity at μ = 1
(which means that a(t)|x| = m/2) where the surface lies in
the causal past of all spacetime events so that it should be
properly interpreted as a cosmological big-bang singularity
(see Ref. [58] for more detail).

In analogy to the FLRW case for a perfect fluid, the energy
density scales with the scale factor a(t) and commands the
expansion rate

ρ = 3H2(t)

κ
, (12)

where H(t) = ȧ(t)/a(t) is the Hubble parameter. Remark-
ably, the energy density is constant along slices where t is
constant, but the pressure on fixed t slices is not homoge-
neous,

p = 1

κ

(
−3 H(t)2 + 2 Ḣ2(t)

(
m + 2 |x| a(t)

m − 2 |x| a(t)

))
. (13)

The inhomogeneous pressure constitutes the necessary non-
gravitational balancing force (when the mass is constant and
the energy density is spatially homogeneous) to compensate
for the gravitational attraction of the central mass.

The coordinates employed in the line element given by
Eq. (11) are such that |x| covers the exterior of the black
hole twice, that is, m/2 < |x| < ∞ covers the same exterior
region as 0 < |x| < m/2. Therefore, Kaloper et al. [58] pro-
pose another coordinate choice which in turn imitates better
the familiar static form of the Schwarzschild metric. The new
radial coordinate is defined by

R = (1 + μ)2 a(t) x, (14)

where |R| = R represents the “spherical area” coordinate.
Since the relation between a(t)|x| and R is quadratic, the
coordinate transformation (14) actually defines two separate
branches,

a(t) |x| = m

2

⎛
⎝ R

m
− 1 ±

√(
R

m
− 1

)2

− 1

⎞
⎠

−1

. (15)

The physically relevant branch is the one with the − sign,
since R → ∞ implies |x| → ∞, therefore the geometry is
asymptotically FLRW-like.

By applying the transformation defined in (14), the McVit-
tie metric becomes

ds2 =
(

1 − 2m

R
− H(t)2R2

)
dt2 + 2H(t)R√

1 − 2m/R
dR dt

− dR2

1 − 2m/R
− R2d2, (16)

where d2 = dθ2 + sin2 θ dφ2. It is now evident that a con-
stant value of H leads to the Schwarzschild–de Sitter metric
in coordinates which are analogous to outgoing Eddington–
Finkelstein coordinates.

4 McVittie solution in f (T ) gravity

As previously mentioned, f (T ) gravity is not locally Lorentz
invariant. This means that tetrads connected by local Lorentz
transformations, which reproduce the same metric tensor, are
not equivalent at the level of the equations of motion of f (T ):
not all of them will represent a proper parallelizing field of
frames (in the sense of being a consistent solution of the
dynamical equations). We can state that f (T ) gravity selects
the parallelization of the spacetime. Finding suitable tetrad
solutions is then quite awkward in f (T ) theory, since the
symmetry of the searched metric is not sufficient to determine
the form of the tetrad. However, as explained at the end of
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Sect. 2, one can exploit the local Lorentz invariance of TEGR
solutions to force the scalar torsion T to be zero. If such
a purpose is attainable, we will obtain a tetrad solving the
f (T ) gravity equations too (whenever f (T = 0) �= 0). This
also means that the same metric solving TEGR equations is
admissible in f (T ) gravity. Since the condition T = 0 is not
affected by global linear transformations of the tetrad, it could
be easier to look for the condition T = 0 by using a null tetrad
[41]: given an orthonormal tetrad {ea} = {e0, e1, e2, e3}, a
null tetrad can be defined as

{na} = {l,n,m,m}
=

{
(e0 − e1)√

2
,
(e0 + e1)√

2
,
(e2 + i e3)√

2
,
(e2 − i e3)√

2

}
.

(17)

{na} is a null basis, na · na = 0, but it is not orthogonal
(l · n = −m · m = 1). Then Eq. (1) can be rewritten in this
new basis as

gμν = ηab n
a
μ nbν, (18)

where ηab now reads

ηab =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ . (19)

In terms of the tensorial product of the elements of the null
tetrad the metric reads g = n⊗ l+ l⊗n−m⊗m−m⊗m.
A local Lorentz boost along the direction of e1, with param-
eter γ (xμ) = cosh[λ(xμ)], is the transformation {l,n} �→
{exp[−λ(xμ)] l, exp[λ(xμ)]n}, which clearly does not mod-
ify the form of the metric tensor. The null tetrad approach to
get T = 0 exploits the freedom in the choice of the function
λ(xμ). The strategy is the following: (i) determine the null
tetrad {na}, (ii) apply the transformation in the {l,n}-sector,
(iii) impose the condition that the torsion scalar T be zero.
This approach was successfully implemented for the Kerr
geometry [41]; here we will show that it is also useful in
McVittie spacetime.3

Then we compute the null tetrad associated with the met-
ric given in Eq. (16) with coordinates (t, R, θ, φ) and we
perform a radial boost yielding

naμ = 1√
2

⎛
⎜⎜⎜⎝

e−λ(t,R,θ)
(√

1 − 2m/R + RH(t)
) −e−λ(t,R,θ) 1√

1−2m/R
0 0

eλ(t,R,θ)
(√

1 − 2m/R − RH(t)
)

eλ(t,R,θ) 1√
1−2m/R

0 0

0 0 R i R sin θ

0 0 R −i R sin θ

⎞
⎟⎟⎟⎠ , (20)

3 In both cases, the success of the null tetrad approach seems to reside
in the fact that the radial boost does not mix the sector {t, r} with the
angular part {θ, φ}.

where the function λ has to be determined. For this null tetrad,
we determine the torsion scalar by means of Eq. (4):

T = −6 H(t)2 + 2 R−2 − 4 R−1 ∂tλ. (21)

By imposing the requirement that the torsion scalar vanishes,
we solve the differential equation to obtain

λ(t, R) = t

2R
− 3R

2

∫
H2(t) dt. (22)

Note that λ allows for an additive function of (R, θ) without
affecting the result T = 0.

In summary, according to Eq. (9), we conclude that f (T )

gravity is not able to deform McVittie metric since we have
just found a solution leading to a vanishing torsion scalar
which consistently solves the dynamical equations (notice
the scaling of the Newton constant κ),

2κρ = f (T = 0) + 6 H2(t) f ′(T = 0)

= 6 H2(t) f ′(T = 0), (23)

2κ(p + ρ) = −4 f ′(T = 0) Ḣ(t)
1√

1 − 2m/R
, (24)

where, due to the non-diagonal form of the metric tensor
(16), the stress-energy tensor for a perfect fluid becomes

Tμ
ν =

⎛
⎜⎜⎝

ρ (ρ + p) R H(t)
√

1 − 2m/R 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

⎞
⎟⎟⎠ ,

(25)

with ρ and p the energy density and the pressure, respectively
[57].

5 Cosmology with T = 0

As has been extensively studied in the literature, flat FLRW
cosmology accepts the naive diagonal tetrad (in the Cartesian
chart) as a suitable solution in the context of f (T ) gravity,
which leads to T = −6H2(t) [17,32]. However, McVittie
metric for m = 0 reduces to FLRW metric. Therefore, we

have also obtained the outstanding result that there exists a
tetrad {ea}havingT = 0 in flat FLRW spacetime, from which
it immediately follows that such a tetrad is also a solution
of f (T ) gravity (assuming f (T = 0) �= 0, and taking care
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of the scaling of Newton constant). By replacing m = 0 in
Eq. (20), we find that the null tetrad associated with {ea} is

naμ = 1√
2

⎛
⎜⎜⎝
e−λ(t,R) (1 + RH(t)) −e−λ(t,R) 0 0
eλ(t,R) (1 − RH(t)) eλ(t,R) 0 0

0 0 R i R sin θ

0 0 R −i R sin θ

⎞
⎟⎟⎠ ,

(26)

where λ(t, R) is the function given in Eq. (22). According to
Eq. (24), the dynamical equations for m = 0 become

2κρ = f (T = 0) + 6 H2(t) f ′(T = 0)

= 6 H2(t) f ′(T = 0), (27)

2κ(p + ρ) = −4 f ′(T = 0) Ḣ(t). (28)

This remarkable result will be thoroughly studied in a forth-
coming article [78]. At first sight, solutions providing the
same metric tensor but different torsion scalars suggest the
involvement of the extra degrees of freedom characteristic
of f (T ) gravity. They constitute different admissible paral-
lelizations of FLRW geometry.

To compare the two f (T ) solutions, firstly, we will get the
orthonormal tetrad eaμ associated with the null tetrad given in
Eq. (26), and then we will write it in the original chart (t, |x|).
In fact, by performing the inverse coordinate transformation
of Eq. (14), which reduces to R = a(t) |x| = a(t) r for m =
0, we will get ea

μ ′ , in terms of the spherical radial coordinate
r . The first step is achieved through a transformation La

b such
that (see Eq. (17))

eaμ = La
b n

b
μ = 1√

2

⎛
⎜⎜⎝

1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −i i

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝
e−λ (1 + RH(t)) −e−λ 0 0
eλ (1 − RH(t)) eλ 0 0

0 0 R i R sin θ

0 0 R −i R sin θ

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

cosh λ − R H(t) sinh λ sinh λ 0 0
sinh λ − R H(t) cosh λ cosh λ 0 0

0 0 R 0
0 0 0 R sin θ

⎞
⎟⎟⎠ ,

(29)

where we set λ ≡ λ(t, R) to abbreviate the notation. In the
second step, we will perform the coordinate transformation
xμ = (t, R, θ, φ) −→ xμ′ = (t, r, θ, φ). The tetrad {ea} is
a geometrical object independent of the coordinate choice,

ea = eaμ dxμ = eaμ′ dxμ′
, (30)

but its components eaμ will change. According to Eq. (14),

the 1-forms dxμ and dxμ′
will not change except for dR =

ȧ r dt + a dr . Then one finds

eaμ′ =

⎛
⎜⎜⎝

cosh λ a(t) sinh λ 0 0
sinh λ a(t) cosh λ 0 0

0 0 a(t)r 0
0 0 0 a(t) r sin θ

⎞
⎟⎟⎠ . (31)

The tetrad (31) is the one having T = 0, as written in the
usual spherical coordinates. On the other hand, there exists
a tetrad which has T = −6H2; this tetrad is diagonal in the
Cartesian chart, but in spherical coordinates it reads

ea
′
μ ′ =

⎛
⎜⎜⎝

1 0 0 0
0 a(t) sin θ cos ϕ a(t) r cos θ cos ϕ −a (t) r sin θ sin ϕ

0 a(t) sin θ sin ϕ a(t) r cos θ sin ϕ a(t) r sin θ cos ϕ

0 a(t) cos θ −a(t) r sin θ 0

⎞
⎟⎟⎠ .

(32)

Of course, there should exist a local Lorentz transformation
connecting the tetrads (31) and (32), since they describe the
same FLRW metric. In fact, the local Lorentz transformation
is

�a′
b =

⎛
⎜⎜⎝

cosh λ sinh λ 0 0
sinh λ sin θ cos φ cosh λ sin θ cos φ cos θ cos φ − sin φ

sinh λ sin θ sin φ cosh λ sin θ sin φ cos θ sin φ cos φ

sinh λ cos θ cosh λ cos θ − sin θ 0

⎞
⎟⎟⎠ ,

(33)

i.e. ea
′ = �a′

b eb, which can be separated into the product
of two rotations and one boost

�a′
b =

⎛
⎜⎜⎝

1 0 0 0
0 0 cos φ − sin φ

0 0 sin φ cos φ

0 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

cosh λ sinh λ 0 0
sinh λ cosh λ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (34)

In Ref. [42] it was shown that each solution to the dynam-
ical equations for f (T ) allow for a set of local Lorentz rem-
nant symmetries. Such symmetries are generated by Lorentz
transformations accomplishing the condition

d(εabcd ea ∧ eb ∧ ηde�c
f ′d�

f ′
e ) = 0. (35)

Our pair (ea,�a′
b) does not satisfy this relationship. This

is because, although both tetrads have consistent equations
of motion, their associated torsion scalars are different; so
the transformation (33) is not a symmetry of the action.
Also, they have different classification concerning to the n-
closed-area-frame (n-CAF), distinction firstly introduced in
the same paper. Remember that a solution of f (T ) gravity is
n-CAF if n of the six pairs (ea, eb) satisfy the equation

d(ea ∧ eb) = 0. (36)
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In this particular case, it can be proven that the tetrad (31) is a
1-CAF, since the only combination that is zero is the one with
(e0, e1). On the other hand, the tetrad (32) is a 3-CAF [42].
This means that the second one allows for three independent
local Lorentz transformations leaving T unchanged, while
the first solution admits only the local boost associated with
the remnant freedom of the function λ. On the contrary, the
transformation (33) is not a remnant symmetry of the f (T )

dynamical equations because it changes the torsion scalar T .

6 Conclusions

The main purpose of f (T ) gravity would be finding
low/high-energy deformations of Einstein gravity to address
its shortcomings in a geometric framework. However, the null
tetrad approach shows that it is rather easy to get TEGR solu-
tions with constant torsion scalar. These solutions survive in
f (T ) gravity, associated with modified Newton and cosmo-
logical constants. This is the way we followed to show that
McVittie geometry is a solution to f (T ) gravity. Remarkably,
by taking m = 0 we also obtained a new consistent solution
for FLRW universe in f (T ) gravity, which has T = 0. To the
best of our knowledge, this is the first time that a consistent
cosmological solution with a vanishing torsion scalar is intro-
duced in the literature. The fact that the torsion scalar differs
from −6H2 could be a manifestation of the extra degrees of
freedom of the theory, which is a topic under consideration
presently [78].
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