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Abstract: In this work, we propose a different “surgical modified model” for the construction of counter-
factual variables under non-parametric structural equation models. This approach allows the simultaneous
representation of counterfactual responses and observed treatment assignment, at least when the interven-
tion is done in one node. Using the new proposal, the d-separation criterion is used to verify conditions
related with ignorability or conditional ignorability, and a new proof of the back door theorem is provided
under this framework
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1 Introduction

The main objective of this short report is to discuss the relationship between the back door theorem (Pearl
2000, 79) and the conditional randomization (or exchangeability) assumption. We will relate these two
concepts through the d-separation rule, constructing both counterfactual variables and observed treatments
in the same graph.

During the last years, several authors have been concerned with this problem. The twin directed acyclic
graphs (DAGs), presented by Balke and Pearl (1994), allow simultaneous construction of observed and
counterfactual variables.

Recently, Richardson and Robins (2013) presented a graphical theory based on single world interven-
tion graphs (SWIGs), unifying causal directed graphs and potential outcomes. The present study, less
ambitious, can be considered as a complementary work focusing in particular on the back door theorem,
one of the most popular criteria to identify the distribution of counterfactual variables. We can present our
results in a simple way, accessible to those who may be nonexperts in the mathematical technicalities, but
still familiar with the field and with non-parametric structural equation models (NPSEM) (Pearl 2000, ch. 7).
In this setting, Pearl has proposed a modified NPSEM where potential outcomes are defined by replacing
the equations related to the treatment nodes by the constants corresponding to the desired intervention.
Therefore, the observed treatment assignment and counterfactual variables do not occur together, neither in
the model for the observed data nor in the modified model.

We propose here a new modified NPSEM model containing both treatments and counterfactual vari-
ables. Unlike the case of the twin graph, variables in this new model factorize according to the back door
theorem graph, namely the DAG, where arrows emerging from nodes associated with the intervention are
removed. We use this fact to prove that, for univariate treatment, the graphical assumptions of Pearl’s back
door theorem (Pearl 2000, 79) imply conditional exchangeability. In this way, we establish a new proof of
Pearl’s back door theorem and thus of identifiability of the mean of the counterfactual variables, a proof
which can be understood by both proponents of the counterfactual and graphical approaches to causality.

It should be said that even if Richardson and Robins’ graphs differ from the graphs in this paper, our
perspectives are rather similar. One difference is that, although they assume an underlying NPSEM, they do
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not assume independence of the disturbances (as we do). Instead, they prefer to work with the Finest Fully
Randomized Causally Interpretable Structured Tree Graphs model (FFRCISTG), introduced in Robins (1986),
but in the sense of Definition 2 (p. 23) presented in Richardson and Robins (2013).

In this work, we start assuming NPSEM with independent errors (NPSEM-IE). Although NPSEM-IE are
less general than FFRCISTG models, we decided to present our proposal under this setting, considering that
these models are commonly used. However, in Section 4 we show that all the results presented in this work
remain valid if FFRCISTG models are assumed instead.

This work is organized as follows. In Section 2 we present a simple example with a three-node DAG,
explaining the main idea to construct jointly the observed treatment assignment and counterfactual
variables. We check in this example that the assumptions of the back door theorem imply conditional
randomization. In Section 3 we generalize these results, first for the case of an intervention on one node,
and then for many nodes. In Section 4 we discuss our results in the framework of FFRCISTG models.

To conclude this introduction, we would like to establish a subtle difference frequently omitted. Given a
DAG G, we use V ¼ fV1;V2; . . . ;Vng to denote the nodes of a graph, whereas random variables associated with
a given node Vi are denoted by Vi or by some perturbation of Vi, like Vi;t or Vt

i , as it will be explained later on.

2 Toy example – main idea

In the potential outcome framework (Rubin 1974), the identifiability of the average treatment effect is
guaranteed under the assumption of conditional randomization (or ignorability). It states that there exists a
vector L of observed variables such that Ya and A are independent given L, for a ¼ t; c, where A is a binary
treatment variable taking values in ft; cg while Ya denotes the potential outcomes under treatment level a.
More precisely, Ya is the outcome variable that would have been observed in a hypothetical world in which
all individuals received treatment level a. Denoting by Y the observed outcome and assuming that it
satisfies Y ¼ YtIA¼t þ YcIA¼c, we get that the average treatment effect (ATE ¼ E½Yt� � E½Yc�) is identified by
the distribution of observed data ðL;A;YÞ by the formula ATE ¼ E E½Y jA ¼ t; L�½ � � E E½Y jA ¼ c; L�½ �.

The d-separation criterion (Pearl 2000, 18) is a graphical tool designed to check independence and
conditional independence between coordinates (or sub-vectors) of a random vector whose distribution
satisfies the Markov factorization with respect to a given DAG. Then, one is tempted to use such a tool to
decide whether conditional ignorability can be assumed for the problem under consideration, studying the
DAG associated with it.

For those who are familiar with DAGs, the back door theorem is a famous result used to identify the
distribution of the counterfactual variables, and its assumptions give rise to the same formula presented under
conditional exchangeability for identifying the average treatment effect. So, we asked ourselves whether the
graphical conditions required by the back door theorem allow to prove conditional exchangeability using the
d-separation criterion. To answer this question, we need to construct both counterfactual and treatment in the
same DAG, in particular in the DAG involved in the back door theorem. To do so, we propose a simple
modification to the approach presented by Pearl to define counterfactual variables. In the coming example,
we outline the basic idea of our construction, which is generalized in the following section.

Assume that the causal diagram associated with the problem of interest is given by the DAG G (Figure 1).

A Y

L

Figure 1 The original DAG G
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In terms of NPSEM (Pearl 2000, ch. 7 or 2009) this means that there exists a set of functions
F ¼ ffL; fA; fYg and jointly independent disturbances U ¼ fUL;UA;UYg, which give rise to factual variables
according to the following recursive system:

L ¼ fLðULÞ ; A ¼ fAðL;UAÞ ; Y ¼ fYðL;A;UYÞ : ½1�
We use M ¼ ðF;UÞ to denote the model which defines the factual variables. To emulate the intervention
doðaÞ, Pearl (2000, ch. 7 or 2009) considers a model Ma where the function fA is replaced by the constant a,
while the disturbances remain unchanged: Ma ¼ ðFa;UÞ, with Fa ¼ ffa;L; fa;A; fa;Yg, where

fa;L ¼ fL ; fa;A ¼ a ; fa;Y ¼ fY : ½2�
The variables obtained iterating the functions in model Ma using the same vector of disturbances
U ¼ fUL;UA;UYg are denoted with the subindex a: La, Aa and Ya. In this way, the counterfactual response
of interest at level a is given by Ya.

Our proposal to represent counterfactual variables consists in the use of a new system of functions, in
which the value a is inserted in lieu of the variable corresponding to the node A, every time this one is
required by the recursion. To do so we change the functions related to each node having A as parent. In the
present example, Ma ¼ ðFa;UÞ, with Fa ¼ ff aL ; f aA ; f aYg, where

f aL ¼ fL f aA ¼ fA ; f aYð,; uÞ ¼ fYð,; a; uÞ : ½3�
Note that this new set of functions is compatible with the DAG GA, where arrows emerging from A are
removed (Figure 2).

The variables constructed iterating the functions in Fa and using the same vector of disturbances
fUL;UA;UYg are denoted by the supraindex a: La, Aa and Ya. Then, we get that the distribution of
ðLa;Aa;YaÞ is compatible with GA.

The following Lemma and Corollary summarize the main results of this section.

Lemma 1 1. La ¼ La ¼ L, Aa ¼ A and Ya ¼ Ya.
2. A and Y are d-separated by L in GA and so, since the distribution of ðLa;Aa;YaÞ is compatible with GA, we
get that Aa is independent of Ya given La.

Corollary 2 For the causal DAG given in Figure 1, we get that A is independent of Ya given L. Thus, conditional
randomization holds.

3 Intervention with constant regimes

3.1 Interventions on a single node

Consider a causal DAG G with nodes V1; . . . ;Vn, labeled in a compatible way with G. Recall that in the
graph terminology, we say that Vi is a parent of Vj if an arrow points from Vi to Vj. We use PAGðVjÞ to

A Y

L

Figure 2 GA, constructed removing in G arrows emerging from A
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denote the set of parents of Vj in G. If Vi has a directed path to Vk we say that Vi is an ancestor of Vk, and
use AnGðVkÞ to denote the set of ancestors of Vk in G.

Consider a collection of independent random variables U ¼ fU1; . . . ;Ung. Let V i denote the common
support of any random variable associated with the node Vi and let U i denote the support of Ui. A set of
functions F ¼ ffi : i � 1g is said to be compatible with G, if for each i ¼ 1; . . . n, we get that

fi :
Y

Vj2PAGðViÞ
V j � U i �!V i : ½4�

Given a set F ¼ ffi : i � 1g of compatible functions with G, and independent U ¼ fU1; . . . ;Ung, factual
variables are defined by the recurrence

Vi ¼ fiðPAi;UiÞ;
where PAi are the random variables (already defined by the recurrence) associated with the nodes in
PAGðViÞ. Note that, by construction, the distribution of ðV1; . . . ;VnÞ is compatible with G, meaning that it
satisfies the Markovian factorization induced by G. We use M ¼ ðF;UÞ to denote the model that gives rise to
factual variables.

In order to represent an intervention at level a for a given node A, Pearl (2000, ch. 7 or 2009) defined
the “Surgically modified model” Ma ¼ ðFa;UÞ, considering Fa ¼ ffa;i : i � 1g, where fa;i ¼ fi if Vi 6¼ A and for
Vj ¼ A, fa;j ¼ a. Counterfactual variables are defined by this new set of functions and the same disturbances
fU1; . . . ;Ung, by the recurrence

Va;i ¼ fa;iðPAa;i;UiÞ ;

where PAa;i are the random variables (already defined by the recurrence) associated with the nodes in
PAGðViÞ.

Before presenting our proposal for constructing counterfactual variables, recall that given a DAG G and
a node A in G, GA is the graph obtained by removing from G all arrows emerging from A. We will now
introduce a new set of functions Fa ¼ ff ai : i � 1g, compatible with GA, which will allow the simultaneous
definition of both the observed assignment random variable A associated with the node A and the counter-
factual responses. To achieve this, if A‚PAGðViÞ we get that PAGAðViÞ ¼ PAGðViÞ and define f ai being equal
to fi. When A 2 PAGðViÞ, f ai is obtained by fixing the value a in the original function fi. To be more precise, if
A 2 PAGðViÞ, without loss of generality, it holds

fi :
Y

Vj2PAGðViÞnA
V j � A � U i �! V i; ½5�

where A denotes the set of possible values which can be assumed by the variables associated with node A.
Since PAGAðViÞ ¼ PAGðViÞnA and Fa should be compatible with GA, we need f ai to satisfy the following
condition:

f ai :
Y

Vj2PAGðViÞnA
V j � U i �! V i: ½6�

Then, for �vi 2
Q

Vj2PAGðViÞnA V j, u 2 U i, we define

f ai ðvi; uÞ ¼ fiðvi; a; uÞ:
Let Va

i denote the variables obtained by the recurrence based on these new functions:

Va
i ¼ f ai ðPAa

i ;UiÞ ;
where PAa

i are the random variables (already defined by the recurrence) associated with the nodes in
PAGAðViÞ. Note that the distribution of ðVa

1 ; . . . ;V
a
n Þ is compatible with GA. Let Ma ¼ ðFa;UÞ.

The following Lemma explains how variables defined under models M, Ma and Ma are related.
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Lemma 3 The random variables associated with both modified models Ma ¼ ðFa;UÞ and Ma ¼ ðFa;UÞ are the
same, with the exception of those associated with node A:

Vi;a ¼ Va
i if Vi 6¼ A :

Variables associated with the node A defined by M ¼ ðF;UÞ and Ma ¼ ðFa;UÞ, respectively, are equal:

A ¼ Aa :

Moreover, if Vi is not a descendent of A, we get that

Vi ¼ Va;i ¼ Va
i :

Finally, under the assumption that the Ui are mutually independent, the joint distribution of the vector
ðVa

1 ; . . . ;V
a
n Þ factors according to GA (i.e. the variables are Markov with respect to GA).

To conclude this section, we state the back door theorem, which was originally presented in Pearl (1993)
and can be found, as most of the results presented in this work, in Pearl (2009). A new proof of this result is
provided.

Theorem 4 The Back Door Criterion Consider a set of nodes L � fV1; . . . ;Vng, such that L \ A ¼ ;.
Assume that the following conditions hold:
1. No element of L is a descendent of A in G,
2. L blocks all back door paths from A to Y in G.

Then, Ya is independent of A given L and so

PðYa ¼ yÞ ¼
X
,

P Y ¼ yjA ¼ a; L ¼ ,ð ÞPðL ¼ ,Þ :

Proof: To prove that conditional ignorability holds, meaning that Ya is independent of A given L, we note
that under the assumption of Theorem 4, considering the results presented in Lemma 3, we get that
1. If no element of L is a descendent of A in G, then L ¼ La ¼ La.
2. If L blocks all back door paths from A to Y in G, then A and Y are d-separated by L in GA, and so Aa and

Ya are independent given La.

Finally, resorting again to the results stated in Lemma 3, we also know that Aa ¼ A and Ya ¼ Ya. So, if L
satisfies both conditions [1] and [2], we can conclude that Ya is independent of A given L. This means that
conditional ignorability holds, as we meant to prove. Thus, the distribution of the counterfactual variables
can be identified by the formula

PðYa ¼ yÞ ¼
X
,

P Y ¼ yjA ¼ a; L ¼ ,ð ÞPðL ¼ ,Þ :
□

3.2 Interventions on multiple nodes

Assume now that we wish to intervene in a set of nodes Aset ¼ fA1; . . . ;Akg. Consider ai 2 Ai, where Ai

denotes the support of variables associated with node Ai, and let a ¼ ða1; . . . ; akÞ. Following the new
surgically modified model, we will change the functions related to those nodes whose parents include some Aj.

As in the one node case, given a DAG G, let M ¼ ðF;UÞ denote the model (compatible with G) for
factual variables ðV1; . . . ;VnÞ. Let ðVa;1; . . . ;Va;nÞ denote the vector of variables determined by the model
Ma ¼ ðFa;UÞ proposed by Pearl, with Fa ¼ ffa;i : i � 1g, where fa;i ¼ fi if Vi does not belong to the set Aset,
and when Vj ¼ Ai for some i, fa;j ¼ ai.
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We will now generalize our construction presented for single node intervention in this new scenario. To
do so, we consider Ma ¼ ðFa;UÞ, for Fa ¼ ff ai : i � 1g, compatible with GAset , the graph obtained removing
in G all arrows emerging from the set Aset. Note that the set of parents of a given node Vi in GAset is obtained
by eliminating from the set of parents of Vi in the original DAG G, all nodes in Ai

set ¼ Aset \ PAGðViÞ;
namely, we have that PAGAset

ðViÞ ¼ PAGðViÞnAi
set. Therefore, the definition of f ai depends on whether the set

Ai
set is empty or not. Now, if Ai

set ¼ ;, we get that PAGAset
ðViÞ ¼ PAGðViÞ and we define f ai ¼ fi. When

Ai
set 6¼ ;, we can assume that

fi :
Y

Vj2PAGðViÞnAi
set

V j �
Y

Aj2Ai
set

Aj � U i �! V i; ½7�

and consider

f ai :
Y

Vj2PAGðViÞnAi
set

V j � U i �! V i; ½8�

where for �vi 2
Q

Vj2PAGðViÞnAi
set
V j, u 2 U i, we define

f ai ðvi; uÞ ¼ fiðvi; ai; uÞ;
including in ai all the coordinates of the vector a ¼ ða1; . . . ; akÞ corresponding to the set Ai

set:
ai ¼ ðaj : Aj 2 Ai

setÞ. In other words, when PAGðViÞ \ Aset 6¼ ;, each time the value of the variable related
to the node Aj is required by the original function fi (meaning that Aj 2 Ai

set), we construct the function f ai
fixing in fi the value aj.

Let ðVa
1 ; . . . ;V

a
n Þ denote the vector of variables obtained by the recurrence based on these new functions

(Fa) and disturbances U. Once more, we get that the distribution of ðVa
1 ; . . . ;V

a
n Þ is compatible with GAset .

The results are presented in what follows.

Lemma 5 Let A ¼ ðA1; . . . ;AkÞ and Aa ¼ ðAa
1 ; . . . ;A

a
kÞ denote the random variables related to the nodes

A1; . . . ;Ak, according to model M and Ma, respectively. If W \ Aset ¼ ;, then the following version of the
consistency assumption holds:

fAa ¼ a ; Wa ¼ wg ¼ fA ¼ a ; W ¼ wg :

The random variables associated with both modified models Ma ¼ ðFa;UÞ and Ma ¼ ðFa;UÞ are the same,
with the exception of those associated with nodes in Aset:

Vi;a ¼ Va
i if Vi 62 Aset:

Under the assumption that the Ui are mutually independent, the joint distribution of the vector ðVa
1 ; . . . ;V

a
n Þ

factors according to GAset (i.e. the variables are Markov with respect to GAset ).

Finally, we include a new proof of the back door theorem, using the independences deduced from its
assumptions and Lemma 5.

Theorem 6 Back Door Criterion: Many Nodes Consider a set of nodes
L � fV1; . . . ;Vng, such that L \ Aset ¼ ;. Assume that the following conditions hold:
1. No element of L is a descendent of Aset;

2. L blocks all back door paths from Aset to Y in G.

Then,

PðYa ¼ yÞ ¼
X
,

P Y ¼ yjA ¼ a; L ¼ ,ð ÞPðL ¼ ,Þ ;

with a ¼ ða1; . . . akÞ.
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Proof: Under the present assumptions we get that
1. If no element of L is a descendent of Aset, then L ¼ La ¼ La:
2. If L blocks all back door paths from Aset to Y in G, then Aset and Y are d-separated by L in GAset , and so

Aa and Ya are independent given La.

Finally, if L satisfies the previous conditions, by Lemma 5, we get that fAa ¼ a; La ¼ ,g ¼ fA ¼ a; L ¼ ,g
for any ,, fYa ¼ y;Aa ¼ a; La ¼ ,g ¼ fY ¼ y;A ¼ a; L ¼ ,g for any ð,; yÞ and so (under positivity),

PðYa ¼ yÞ ¼ PðYa ¼ yÞ ¼
X
,

PðYa ¼ yjLa ¼ ,ÞPðLa ¼ ,Þ

¼
X
,

PðYa ¼ yjLa ¼ ,;Aa ¼ aÞPðLa ¼ ,Þ ¼
X
,

PðY ¼ yjA ¼ a; L ¼ ,ÞPðL ¼ ,Þ :
□

4 FFRCISTG models

In the previous results, we used the rules of d-separation to detect independence or conditional indepen-
dence between variables of a random vector. To do so, given a graph G, all we required from the joint
distribution of our vector was compatibility with G. When variables are constructed following a NPSEM-IE,
the Markov factorization induced by G holds automatically, and that is why our results are valid when the
errors are independent.

However, the Markov factorization remains true under weaker conditions. For instance, let

v ¼ ðv1; . . . ; vnÞ 2
Qn

j¼1 V j and call vpaGðViÞ the subvector of v containing the coordinates related to the

nodes in the set PAGðViÞ, namely vpaGðViÞ ¼ ðvj : Vj 2 PAGðViÞÞ. If

fi vpaGðViÞ;Ui
� �

: Vi 2 G
� �

are independent; for all v 2
Yn

j¼1
V j ; ½9�

then, the distribution of the vector whose variables are constructed with M ¼ ðF;UÞ is compatible with the
graph G. This condition mainly defines the FFRCISTG models (Richardson and Robins 2013).

It is worth noting that if M ¼ ðF;UÞ satisfies condition [9] relative to G, the intervened model
Ma ¼ ðFa;UÞ, defined in Section 3.2, also satisfies condition [9] relative to GAset

, since

f ai vpaGAset ðViÞ;Ui

� �
: Vi 2 GAset

n o
¼ fi vapaGðViÞ;Ui

� �
: Vi 2 G

n o

where vapaGðViÞ denotes the vector that results from replacing vj with aj for fj : Aj 2 Asetg. Then, the distribu-
tion of the variables constructed using the model Ma, requiring that the errors satisfy only condition [1],
factors according to the graph GAset

, allowing the use of d-separation rules, and thus extending our results
to this new model.
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