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Time-delayed coupled logistic capacity model in population dynamics
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This study proposes a delay-coupled system based on the logistic equation that models the interaction of a
population with its varying environment. The integro-diferential equations of the model are presented in terms
of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior
knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward
the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are
presented, and analytical conclusions have been done in terms of the two parameters of the model.
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I. INTRODUCTION

A. Population growth

The first law for population growth was given by Malthus
in 1798 when he observed that population growth follows a
geometrical progression. Under the conditions of unlimited
sources, Malthus’s law [1] can be expressed in the form
dN/dτ = rN , where N (τ ) is the instantaneous population
under consideration and r is some proportionality constant.
Later Verhulst in 1838 took into account the fact that the
growth may stop due to the tendency of one organism to destroy
others, or to the limit on the density of population which the
environment can hold (i.e., limited food); then he postulated
that the rate of the population growth was proportional to
the product of the existing population and the difference
between the total available resources and the resources used
by the present population [2]. Denoting by K the maximum
population that a given amount of food can support, Verhulst’s
equation can be written in the form dN/dτ = rN(1 − N/K).
The solution of this equation gives the so-called Logistic curve,
which has a characteristic S-like shape.

The continuing interest in the Logistic equation [3], and
indeed some of its limitations, is reflected in many works
which modify it for a wide variety of applications. Among
then there are stochastic modifications considering random
temporal variations into the environment [4,5] and also taking
into account pure deterministic modifications [6–9]. Many
of these latter approaches attempt to consider the crucial
point that in reality the carrying capacity (K) cannot be
considered as a constant. Positive changes in environment
such as new resources elevate the carrying capacity, where a
negative change, such as the advent of a toxic environment, will
degrade the carrying capacity. Therefore it would be valuable
to modify the Logistic equation so that the final asymptote
depends on conditions while growth occurs. Such attempt
have been recently presented coupling the evolution of the
carrying capacity linearly with the population [10] and also in
a nonlinear way [11].

Many ecosystems can be modified when external pertur-
bations arise, and to emulate these facts most of the current
models are achieved considering stochastic modifications in
the dynamics [4,5,12]; these approaches lead to the study of
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population growth in terms of mean values and its fluctua-
tions [13–15]. In the present work we will follow a quite differ-
ent route to tackle this important ecological problem. We will
modify Verhulst’s dynamics by treating the carrying capacity
as a state variable in the governing equation of the model.
Thereby, any change to the environment will be reflected into
the dynamics of the ecosystem. Another modification that we
will introduce is the fact that a realistic environment does
not change instantaneously to external perturbations [16], so
we will take care of this fact by introducing a distributed
time-delayed coupled Logistic-Capacity model.

B. Pattern formation in population dynamics

Another important chapter in the generalization of the
Logistic model are the so-called reaction-diffusion equa-
tions [17]. In fact, population dynamics covers a wide spectrum
of fields, and the formation of patterns in the evolution of bac-
terial colonies provides a good example of application [18]. In
1937, Fisher proposed a one-dimensional model: ∂τN (x,τ ) =
rN (1 − N/K) + D∂2

xN for the spread of an advantageous
gene in a population [19]. Since then nonlocal effects in the
competition term have also been introduced to generalize
Fisher’s equation, in an attempt to improve the description
of pattern formation in population dynamics [17,20,21] and
also with the Allee effect [22]. For instance, in the case
of bacteria, the diffusion of nutrients and/or the release of
toxic substances can cause nonlocality in the interaction.
Also nonlocal interactions with stochastic perturbations have
recently been considered to find a characteristic time scale for
the pattern formation [23]. In all these studies the nonlocality is
introduced by considering the space variable in the description
of the population growth.

In the present paper we will study a related but different
approach, considering a zero-dimensional Logistic model with
a carrying capacity coupled with distributed delays to the
size of the population (nonlocality in time). Similar zero-
dimensional models have also been used to study oscillations
in epidemic problems [24].

C. The open-ended logistic-like growth

Time-dependent forms for the carrying capacity, K(τ ), have
been successfully used to describe the enrichment of a lake
by nutrients [25], to forecast product life cycles of electrical
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goods [26], to describe seasonal environments [27], and to
show the changing micro-environment beneath and occlusion
on healthy human skin [28]. For all these applications it
is important that the carrying capacity is not treated as a
constant. Thus it is valuable to modify the Logistic equation
so that the asymptotic mass becomes a quantity which
acclimates to growth conditions. This purpose is achieved
by the open-ended Logistic-like growth model proposed by
Thornley and France [10]. In that approach the carrying
capacity K(τ ) is coupled linearly to the size of the population
(or mass) N (τ ), and the coupling parameter is related to the
ratio between the environmental development rate and the
population growth rate. We have shown that Thornley and
France’s coupled Logistic-Capacity model can be rewritten
as a coupled population growth model with distributed times
delay, in fact using an exponential distribution of times [29].

In the present work we reinvestigate this problem by
considering a more realistic distribution for the times delay.
Then this generalization could allow for situations in which
the carrying capacity encompasses the adjustment of the
environment resulting from imposed changes (as occurs on
the skin surface due to the application of an occlusion) [28].
So we will introduce a biparametric exponential distribution
with two characteristic time scales: λ−1,tD . This distribution
improves the description that relates the natural delay in the
coupling between the population and the environment, which
is more similar to many real situations (as, for example, occurs
in the case of real diseases [24]). Our generalization allows a
better description for the time-delay distribution, leading it to
a broad or narrow coupling, between the carrying capacity
and the population, depending on the values of parameters
λ−1 and tD . When tD ∼ 0, the parameter λ−1 is the coupling
parameter as in the Logistic-Capacity model [10], but in
general the parameter tD will characterize a time scale for a
sharp distribution of times delay. By taking tD = 0 we recover
Thornley and France’s model. The time scale tD also permits
mass at the inflexion point to be a higher fraction than in
Verhulst’s model or in Thornley and France’s model. The time
scale tD also gives the possibility to modify the value of the
attractor N (τ = ∞) ≡ N̄ at the stationary state. In addition we
will show that the presence of tD �= 0 can introduce oscillations
and instabilities in the system, a situation which is of interest
in problems involving diseases (in the case tD → 0 the system
is always stable and does not present any oscillations).

II. THE COUPLED LOGISTIC-CAPACITY MODEL

In a recent work [29] it has been proved that the open-ended
Logistic-base model, introduced by Thornley and France [10],

dÑ/dt̃ = aÑ (1 − Ñ/K̃), (1)

dK̃/dt̃ = b(Ñ − K̃), (2)

is equivalent to the exponential distributed time-delay Logistic
model:

dN/dt = N (1 − N/K), (3)

K(t) =
∫ ∞

0
λe−λsN (t − s) ds. (4)

Here I have rescaled Eqs. (1) and (2) using the substitutions
N → bÑ , K → bK̃ , t → at̃ , where λ = b/a is the ratio be-
tween the environmental development rate and the population
growth rate.

Note that to have a one-to-one correspondence with the
original Thornley and France’s model, we must relate the
initial condition K(0) (in rescaled units) to the prefunction
ϕ(s) associated with Eq. (4) [i.e., N (−s), s ∈ (∞,0)] in the
form

K(0) =
∫ ∞

0
λe−λsN (−s) ds =

∫ 0

−∞
λeλsϕ(s) ds. (5)

Therefore in general K(0) is proportional to the Laplace
transform of the prefunction. Thus, if we take as a prefunction
a constant ϕ(s) = ϕ, we get K(0) = ϕ.

Generalizing Thornley and France’s model

Following reference [29] it is possible to go one step for-
ward and to generalize the exponential distributed time-delay
model [Eq. (4)] by considering a general delay distribution:

K(t) =
∫ ∞

0
G(s)N (t − s)ds =

∫ t

−∞
G(t − x)N (x)dx, (6)

1 =
∫ ∞

0
G(s) ds. (7)

Here a probability distribution G(s) has been introduced to take
into account a more realistic delay dynamics in the coupled
Logistic-Capacity model.

The general condition to study the stability at the attractor
N = K = N̄ can be written in the form

c + iω = 1 −
∫ ∞

0
G(s)e(c+iω)s ds; (8)

here I have used a perturbation n(t) ∝ exp(−ct + iωt) to do
the linear stability analysis around the attractor N̄ �= 0; see
Appendix A in Ref. [29].

Using the exponential distribution G(s) = λe−λs in Eq. (8)
we obtain c + iω = 1 + λ/(c + iω − λ), indicating that the
attractor is stable and there are no oscillations in Thornley and
France’s model.

To generalize the exponential distributed time delay, we
propose here to use the Laplace distribution. This probability
distribution is a biparametric function with a sharp peak at
s = tD:

G(s) = Nλ exp(−λ|s − tD|), λ > 0, tD � 0, s ∈ (0,∞),

(9)

where N = N (λ,tD) is the normalization constant (see
Appendix A). Using this distribution in Eq. (6) allows us to
have a much more interesting coupling between the population
and the carrying capacity. This fact ultimately will lead to an
inertial differential equation for the carrying capacity K , which
will have a nonlinear term [coming from Ṅ (t)], and a linear
delay coupling with the population, i.e., N (t − tD). In addition,
this generalization allows us to recover Thornley and France’s
model by taking tD = 0.
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III. THE TIME-DELAYED COUPLED LOGISTIC
CARRYING CAPACITY MODEL

In what follows we will concentrate on the analysis of the
delay-coupled Logistic-Capacity model:

Ṅ = N (1 − N/K),

K(t) =
∫ ∞

0
G(s)N (t − s) ds,

when time delay is characterized by the Laplace distribution
[Eq. (9)]. In this case the stability condition Eq. (8) reads

(z − 1)(z − λ) = (z − λ)G(0)

z + λ
+ 2λG(tD)eztD

(z + λ)
, (10)

where z ≡ (c + iω) and G(0),G(tD) follow from the definition
of G(s); see Eqs. (A9) and (A10) and Appendix B.

A. The case tD = 0

In the particular case when tD = 0 we re-obtain the previous
stability analysis:

c + iω = 1 + λ

(c + iω − λ)
, tD = 0. (11)

This equation can be transformed into a quadratic one, getting
(apart from the trivial solution z = 0) the exact solution:

c = 1 + λ

ω = 0

}
, tD = 0. (12)

This solution indicates that the attractor N̄ is stable and there
are no oscillations for any value of λ if tD = 0. The value of the
attractor will depend on the initial values N (0),K(0) needed
to solve Thornley and France’s dynamics:

Ṅ = N (1 − N/K), (13)

K̇ = λ(N − K). (14)

On the attractor N̄ for Thornley and France’s model

This model has infinitely many stationary solutions along
the line N = K . Therefore initial conditions N (0) = K(0) will
have no dynamical behavior. Within this model the choice of
initial condition determines the asymptotic carrying capacity.
In addition the system requires the initial value of the carrying
capacity to be higher value than the initial population in
order to observe the population growth. If the initial carrying
capacity is lower than the initial population, the population
decreases toward the carrying capacity [10,11].

In order to find an expression for N̄ we proceed in the
following way. First, from Eq. (14) we take the second
derivative of K(t), then we write the equivalent set of dynamics
equations [i.e., a three-dimensional system]:

Ṅ = N (1 − N/K), (15)

K̇ = V, (16)

V̇ = λN(1 − N/K) − λV. (17)

Note that these equations should be worked out with the set of
initial conditions N (0),K(0),V (0), where we must use

V (0) = λ[N (0) − K(0)] (18)

in order to have a one-to-one equivalence with Eqs. (13)
and (14). The stationary state associated with this three-
dimensional system is characterized by N (∞) = K(∞) → N̄

and V (∞) → 0. Using these facts we can formally integrate
Eq. (17) to get∫ t

0
V̇ (s) ds = λ

∫ t

0
Ṅ (s) ds − λ

∫ t

0
V (s) ds

= λ[N (t) − N (0)] − λ2
∫ t

0
[N (s) − K(s)] ds;

(19)

then, taking t → ∞ we obtain

K(0) − N̄ = λ

∫ ∞

0
[K(s) − N (s)] ds. (20)

This formula is an Areas’s rule from which the attractor
N̄ = N (∞) can be interpreted. It is simple to check this
rule with the numerical solutions presented in Refs. [10,11].
Interestingly a similar Areas’s rule can also be obtained for the
general case tD �= 0; this will be presented in the next section
(see Appendix C).

B. The case λtD � 1

In the particular situation when λtD 	 1 and if we try to
introduce a perturbation analysis, we soon run into trouble.
For example from Eq. (10) the stability condition would read

(z − λ)(z − 1) = λ + [
(λtD)2 − 4

3 (λtD)3 + 23
12 (λtD)4 + · · · ]z

+ [
1
3 (λtD)2 − 5

12 (λtD)3 + · · · ]tDz2

+ [
1
12 (λtD)2 + · · · ]t2

Dz3 + · · · . (21)

We see that to O[(λtD)2] there are contributions of all order in
tnDzn+1 indicating the complex structure of its analysis. So to
study the stability analysis we will proceed in a different way
as we shall present in the next section.

C. The case tD �= 0

To characterize the stability, in the general case, we have to
work out Eq. (10); but this is a transcendental equation which
must be solved numerically. Nevertheless, some important
information can be analytically obtained.

1. Stability analysis without oscillations (case ω = 0)

Consider the situation when there are not oscillations, in
this case z = c and we can write from Eq. (10)

(c − 1)(c − λ) = (c − λ)G(0)

c + λ
+ 2λG(tD)ectD

(c + λ)

= G(tD)ectD

(c + λ)
(2λ + (c − λ)e−(λ+c)tD )

≡ f (λ,tD,c). (22)
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Here the function f (λ,tD,c) is an exponential-like function
which can easily be plotted. In particular we get the following
important values:

f (λ,tD,c) ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (λ,0,c) = λ

f (0,tD,c) = 0

f (λ,tD,−∞) = λ/(2eλtD − 1)

f (λ,tD,∞) → ∞
f (λ,tD,0) = λ.

(23)

Therefore, we can plot the parabola (c − 1)(c − λ) against
f (λ,tD,c) as a function of c, and from the intersection points
we get the roots showing the stability of the system if c > 0.
If there were negative roots, c < 0, this would indicate an
instability (the marginal situation c = 0 will be presented in
the next section). In particular for tD = 0 we recover the results
of the previous section [Eq. (12)].

From the behavior of the function f (λ,tD,c) it is simple
to realize that the roots are only positive. Nevertheless, for
some values of the parameters λ,tD (in particular if λtD � 1)
there are no intersection points; this fact signals the transition
to a different scenario where there could be some instable
oscillatory behavior. In Figs. 1(a) and 1(b) we present this
analysis for two cases λ ≶ 1 and several values of tD .

2. Andronov-Landau-Hopf bifurcation (case c = 0)

When z is pure imaginary, i.e., z = iω, it is known that there
may be an Andronov-Landau-Hopf bifurcation in the system,
corresponding to a pair of complex conjugated eigenvalues
crossing the imaginary axis, separating the left- and right-hand
complex plane. Substituting z = iω in Eq. (10) we obtain

−(iω − 1)(ω2 + λ2)

= (iω − λ)G(0) + 2λG(tD)eiωtD , tD � 0. (24)

Separating real and imaginary parts, and after some algebra,
we obtain

1

2

(
1 − 1

λ

)
G(0)

G(tD)
ωtD = ωtD cos ωtD + tD sin ωtD, tD > 0.

(25)
We are interested in the intersection points ωtD from the

plot of the left- and right-hand sides of Eq. (25). Depending
on the values of λ and tD there may or may not be roots ωtD of
this equation indicating a bifurcation. Thus, we will plot the
zero cross points of the function

ωtD cos ωtD + tD sin ωtD − g(λ,tD)ωtD,

where

g(λ,tD) = 1

2

(
1 − 1

λ

)
e−λtD .

In Fig. 2(a) the zero cross points can be seen in the interval
ωtD ∈ (0,2π ) for fixed tD and several values of λ. For λ = 1,
and for large values of λ � 1 the zero cross points coincide
with the zeros of the function ωtD cos ωtD + tD sin ωtD (we
remind readers that tD and λ are dimensionless). For λ < 1
there is a minimum value λmin = λmin(tD) after which there
are not any more roots, so the only solution of Eq. (25) is the
trivial one. In Fig. 2(b) the zero cross points are shown for
fixed λ and several values of tD . For large values of tD � 1

FIG. 1. (Color online) Stability analysis for λ ≶ 1 and for several
values of tD using Eq. (22) to show graphically possible intersection
points [roots of Eq. (10) using z = c, i.e., with ω = 0].

the roots are the same as the one from the function sin ωtD
independently of the value of λ. For small values of tD 	 1
the roots are the same as the roots of

X cos X � 1

2

(
1 − 1

λ

)
X,

X = ωtD.

3. The general case (c �= 0,ω �= 0)

When z = c + iω, from Eq. (10) we arrive to

(c + iω − 1)[(c + iω)2 − λ2]

= (c + iω − λ)G(0) + 2λG(tD)e(c+iω)tD . (26)

The real part of Eq. (26) is

(c − 1)(c − λ) + ω2(1 − 3c)

(c + λ)

= G(tD)ectD

(c + λ)
[2λ cos ωtD + (c − λ)e−(λ+c)tD ]. (27)
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FIG. 2. (Color online) Andronov-Landau-Hopf bifurcation anal-
ysis from Eq. (10) using z = iω (with c = 0) for several values
of λ and tD . (a) Zero cross points from Eq. (25) in the interval
ωtD ∈ (0,2π ) for tD = 10−1 and λ(=0.3,0.5,5,10,100). (b) Zero
cross points from Eq. (25) in the interval ωtD ∈ (0,4π ) for λ = 0.5
and tD(=1,5,10).

Taking the imaginary part of Eq. (26) we get

ω(3c2 − 2c) − ω(ω2 + λ2) = ωG(0) + 2λG(tD)ectD sin ωtD.

(28)

Using Eq. (27) with ω = 0 we obtain Eq. (22). Making the
combination 1

ω
Eq. (28) plus λ Eq. (27) and taking c = 0, we

obtain Eq. (25). To solve the general situation, when c �= 0 and
ω �= 0, we must work out numerically Eqs. (27) and (28).

D. The limit case λ → ∞ with tD �= 0

In this extreme situation it follows that G(s) → λ
2

exp(−λ|s − tD|) → δ(s − tD); therefore

K(t) =
∫ ∞

0
G(s)N (t − s) ds = N (t − tD).

The stability condition follows from Eq. (10) taking with
care the limit λ → ∞; therefore we get the transcendental

equation:

z = 1 − eztD ,

z = c + iω. (29)

This equation shows that the system is at the boundary of
stability if tD < 1; see also Appendix D.

IV. EXACT DIFFERENTIAL EQUATIONS FOR
THE DELAY-COUPLED LOGISTIC MODEL

The delay-coupled Logistic-Capacity model [using the
Laplace distribution G(s)]

Ṅ = N (1 − N/K), (30)

K(t) =
∫ ∞

0
G(s)N (t − s) ds, (31)

where G(t) fulfills the two-sided Green evolutions
(see Appendix A)

dG+/dt = +λG+(t), t < tD, (32)

dG−/dt = −λG−(t), t > tD (33)

can be written as a set of differential equations for a set of state
variables (see Appendix B in Ref. [29]). In general, to be able
to find a close differential equation for the carrying capacity
K(t) it is necessary that the probability density G(s) fulfills a
linear evolution equation, otherwise it is not possible to close
the system.

Taking two times the time derivative of K(t), from Eq. (31)
it is possible to arrive at an exact set of equations for the present
delay-coupled model:

Ṅ = N (1 − N/K), (34)

K̇ = V, (35)

V̇ = G(0)N (1 − N/K) − 2λG(tD)N (t − tD)

+ λG(0)N + λ2K. (36)

In the case tD = 0 this set of equations reduces to the system
of equations given in Eqs. (15)–(17). We remind that in the
case tD = 0 we recover the same dynamics as in the Thornley
and France model; i.e., Eqs. (13) and (14) are equivalents to
Eqs. (3) and (4). Note that if tD �= 0 the coupling has inertia and
is now written in terms of K̈ , i.e., a second order differential
equation. The structure of this equation is nonlinear and with
a delayed term proportional to the population at previous time
N (t − tD). This delay structure is induced by the sharp peak
around tD in the Laplace distribution.

Equation (36) can be used to find an approximated evolution
for V (t) if we introduce a perturbation in the characteristic
time tD . For example using a Taylor expansion: N (t − tD) =
[N (t) − Ṅ (t)tD + N̈ (t)t2

D/2 + · · · ], we can find [to any order
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O(tnD)] a set of coupled equations for the system which will be
valid for a short elapse of time; see the next section.

As before the set of initial conditions to be used are
N (0),K(0),V (0), but in this case V (t) has a much more
complex structure than in the case tD = 0. So in order to write
an expression for V (0) [in terms of the parameters N (0) and
K(0)] we now use the definition of V (t) = K̇(t):

V (t) = d

dt

∫ t

−∞
G(t − s)N (s) ds

= G(0)N (t) − λ

∫ t−tD

−∞
G+(t − s)N (s) ds

+ λ

∫ t

t−tD

G−(t − s)N (s) ds. (37)

Putting t = 0 in Eq. (37) and using a constant prefunction
N (−s) = ϕ [as we commented in Eq. (5)] we get

V (0) = G(0)[N (0) − ϕ]. (38)

From this equation we see that the constant ϕ must be equal
to K(0) in order to recover the same initial value problem of
Eqs. (13) and (14) in the limit tD → 0.

Areas’s rule for N̄ in the case tD �= 0

In the same way as we did with the evaluation of the
stationary state associated with the set of Eqs. (15)–(17), we
now proceed to make equivalent calculations in the case tD �= 0.
The stationary state for the system of Eqs. (34)–(36) is as
before characterized by N (∞) = K(∞) → N̄ and V (∞) →
0, but now V (t) is given by Eq. (37); note that in the case
tD = 0 we recover the expression V (t) = λ(N (t) − K(t)).

After some algebra (see Appendix C) we arrive at

G(0)[K(0) − N̄ ] = λ2
∫ ∞

0
[K(s) − N (s)]ds

− 2λG(tD)tDK(0). (39)

Equation (39) is an exact result which gives an Areas’s rule
for N̄ in the case tD �= 0; this formula reduces to Eq. (20) in
the limit tD → 0. Comparing this Areas’s rule with the one
for Thornley and France’s model [Eq. (20)], we see that apart
from the constant λ2/G(0) (that depends on tD) the difference
is given by the positive quantity 2λG(tD)K(0)tD . Therefore,
in the case when [K(0) − N (0)] > 0 the presence of a delay

time tD �= 0 reduces the gap difference 	 ≡ [K(0) − N̄ ] by
the quantity 2λG(tD)tDK(0)/G(0).

Thus, for many organisms, where the final mass depends
on conditions during growth, application of the present
generalized coupled-Logistic model is feasible. For example,
in the case of a small time delay, tD � 0, the gap difference is
given by

[K(0) − N̄ ] = λ(1 + 2λtD)
∫ ∞

0
[K(s) − N (s)]ds

− 2λtDK(0) + O
(
t2
D

)
. (40)

V. SOLUTIONS FOR THE GENERALIZED COUPLED
LOGISTIC MODEL UP TO O(tD)

In this section we are going to work out Eqs. (34)–(36) up
to O(tD). Thus we can write

Ṅ = N (1 − N/K), (41)

K̇ = V, (42)

V̇ = G(0)N (1 − N/K) − 2λG(tD)
[
N − Ṅ tD + O

(
t2
D

)]
+ λG(0)N + λ2K

= [G(0) + 2λG(tD)tD]N (1 − N/K)

+ [λG(0) − 2λG(tD)]N + λ2K + O
(
t2
D

)
= λN (1 − N/K) + λ2(K − N ) + O

(
t2
D

)
. (43)

The first important point to be noted from Eq. (43) is that
to order O(tD) there are not corrections in the dynamics
evolution, for the only difference appears in the initial
condition for V (0); see Eq. (38).

We have solved numerically these equations for two sets
of initial conditions {N (0),K(0)} and using the prescription
Eq. (38) for assigning a value to V (0), which to order O(tD)
can be written as V (0) � λ(1 − 2λtD)[N (0) − K(0)]. In Fig. 3
we show these solutions for two values of λ and different values
of the parameter tD inside the domain of stability. A reasonable
criterion to establish how good is the approximation used in
Eq. (43) is to look at the time t ′ when the function V (t) leaves
its asymptotic zero value [we know that in the stationary state
V (∞) = 0]. It is easy to see from Fig. 3 that when V (t) reachs
the zero value the functions N (t) and K(t) are in a plateau,
indicating that they have arrived at the stationary state N̄ . On
the other hand the value of N̄ is in accordance with the Areas’s
rule [Eq. (39)].

TABLE I. Values for the differences 	 ≡ [K(0) − N̄ ] calculated from Eq. (39) using a numerical integration of the solutions of Eqs. (41)–
(43). In the case λ = 0.5 two different initial conditions {N (0),K(0)} were used. In the case λ = 0.1 and λ = 0.05 we use only N (0) = 0.1,
K(0) = 0.2. The predicted values of 	 show very good agreement with the plateau observed in Fig. 3. The last column corresponds to the
Thornley and France model (the exponential distributed delay case, tD = 0).

tD = 10−2 tD = 10−3 tD = 0

λ = 0.1 	 = 0.011821 	 = 0.0121746 	 = 0.0122121
λ = 0.5 {N (0) = 0.1,K(0) = 0.4} 	 = 0.147724 	 = 0.147976
λ = 0.5 {N (0) = 0.1,K(0) = 0.2} 	 = 0.0410764 	 = 0.0412352

tD = 0.5 tD = 10−4 tD = 0
λ = 0.05 	 = 0.00528931 	 = 0.00649179 	 = 0.00649372
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FIG. 3. (Color online) Numerical solutions from Eqs. (41)–(43)
as a function of time for two set of initial conditions {N (0),K(0)},
using the Laplace distributed time-delayed coupled Logistic-Capacity
model. Two values of λ(=0.05,0.5) and different values of tD have
been used. Solutions correspond to the approximation O(tD), so these
evolutions are valid only for a short elapse of time. This crucial
time t ′ can be observed by looking at the behavior of V (t). This
time t ′ corresponds to the time when having arrived the function at
its stationary state, V (∞) = 0, it starts to abandon its plateau; this
means that after this elapse of time the approximation O(tD) used in
Eq. (43) does not work any more. The asymptotic value N̄ can be
observed to be in agreement with the Areas’s rule Eq. (39) before
the approximation O(tD) starts to fail. (a) The temporal behavior
of N (t),K(t), and V (t) ≡ K̇(t) for N (0) = 0.1 and K(0) = 0.4,
using λ = 0.5 and tD = 10−3. (b) N (t),K(t),V (t) for N (0) = 0.1
and K(0) = 0.2, for the same values of λ,tD . (c) Corresponds to
λ = 0.05 with initial conditions N (0) = 0.1 and K(0) = 0.2, for two
values of the delay time: tD = 10−4 (circles) and tD = 0.5 (squares).

FIG. 4. (Color online) Numerical solutions of N (t),K(t),V (t)
from Eqs. (41)–(43) using λ = 1,tD = 10−3. Here it is possible to see
that V (t) crosses the zero value without approaching any plateau-like
behavior as its does in Fig. 3.

In Table I we present several values for the difference
	≡ [K(0) − N̄ ] as a function of the parameters λ,tD . This
table shows a good agreement between the Areas’s rule and
the plateau reached by N (t),K(t) from the numerical solutions,
N (t),K(t), of Eqs. (41)–(43). In addition the stability criterion
given in Eqs. (27) and (28) has also been checked.

In Fig. 4 we show the time evolution of N (t),K(t),V (t)
in the neighborhood of the instability using the values λ = 1,

tD = 0.001.
Higher order analysis of the solutions can be studied

considering the next contribution in the Taylor expansion of
N (t − tD). Also a nonperturbative analysis from the integro-
differential Eqs. (30) and (31) could be done in order to
compare the solution N (t) for any {λ,tD} with the numerical
evaluation of the exact stability criterion given in Eqs. (27)
and (28); these and other numerical results will be reported
elsewhere.

VI. DISCUSSION

We have presented a Logistic-like model in terms of
coupled equations considering N and K as state variables. The
important point in our approach is that the carrying capacity, K ,
is coupled linearly to the population size, N , but introducing a
multiple time delay coupling, which in this case is represented
by a biparametric exponential probability distribution G(s)
(see Appendix A). Then we have shown that the integro-
diferential system of Eqs. (30) and (31) is equivalent to the
set of differential Eqs. (34)–(36). Interestingly the system
of Eqs. (34) and (36) has inertia and a delay (linear) term
proportional to the population in a previous time N (t − tD). We
have numerically solved the set of differential Eqs. (41)–(43),
which correspond to a first order approximation in the Taylor
expansion of N (t − tD), showing good agreement with the
theoretical predictions from the stability analysis Eqs. (27)
and (28), as well as with the Areas’s rule. In fact, our Areas’s
rule [Eq. (39)] provides a useful way to interpret the value of
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the attractor for distributed time-delayed Logistic-like models.
We have proved that in a distributed time-delayed coupled
dynamics the difference [K(0) − N̄ ] (i.e., initial value of the
carrying capacity minus the final value of the attractor) is
modified by the quantity 2λG(tD)tDK(0)/G(0); see Eq. (40)
for a small approximation to O(tD).

Many biological applications require a late inflexion point
toward a higher fraction than the one-half of the final
asymptotic mass as provided by the Verhulst model [10]. Our
model shows this functionality moving the inflexion point to
higher values of the final mass. In addition the present approach
gives a rich oscillatory instability behavior when tD �= 0.

The present approach also includes the possibility to recover
the previously reported coupled Logistic-Capacity model [10]
by taking the time scale tD going to zero. In particular we
have investigated the cause of instabilities by changing the
parameters λ,tD of the model. These results are of importance
because they could often signal changes in the dynamics
of complex ecosystems. Our approach can be considered
as a straightforward extension of the Thornley and France
model, but showing, however, a very different behavior. A
striking feature is the appearance of instabilities and oscillatory
behaviors when tD �= 0, which are important facts to be taken
into account in problems involving diseases.

Realistic models in ecosystems must account for the
many factors producing changes in the environment; this is
an extremely difficult issue which is currently under active
investigation. Nevertheless, by incorporating a distributed time
delay in the coupling between the carrying capacity and the
population size we have been able to generalize the Logistic
equation in a satisfactory and treatable way, which promotes
the idea of the interrelation that coexists between the envi-
ronment and the population. In general the integro-differential
system characterized by Eqs. (3) and (6) is a valid model for
any G(s); then its stability analysis can be studied by using
Eq. (8), for example, using a Gamma probability distribution
as was used to study problems involving diseases [24]. The
only difficulty lies in that if G(s) does not have a Green’s
function evolution, it is not possible to find an equivalent set
of differential equations for the system as we did in the present
work.

Future extensions of this work will include a further study of
the instabilities and the explicit incorporation of a noise term
in order to study the characteristic time scale of the pattern
formation. This future work will be done by using the first
passage time techniques [29].
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APPENDIX A: ON THE LAPLACE
PROBABILITY DISTRIBUTION

To generalize the exponential time delay occurring in
Eq. (4) we propose here to use the Laplace distribution. This
probability is a biparametric function with a sharp peak at

s = tD:

G(s) = Nλ exp(−λ|s − tD|), λ > 0, tD � 0, s ∈ (0,∞),

(A1)

where the constant N is given by a normalization condition in
the positive domain, i.e.,

∫ ∞
0 G(s)ds = 1; then

N = (2 − e−λtD )−1. (A2)

When λ � 1 Laplace’s probability distribution is a narrow
function around tD , and in the opposite case when λ 	 1 the
distribution is a broad function with an exponential decay in
the long-time regime s � tD . In the case tD = 0 we recover
the exponential distribution G(s) = λe−λs . For tD �= 0 the limit
λ → ∞ corresponds to the fixed delay case G(s) → δ(s − tD).

Note that the Laplace distribution fulfills a two-sided Green
function evolution:

dG+/dt = +λG+(t), t < tD, (A3)

dG−/dt = −λG−(t), t > tD. (A4)

These equations are very useful to reduce the integro-
differential Eqs. (30) and (31) into the set of differential
equations (34)–(36) (with delay); see also Ref. [29].

From Laplace’s distribution, Eq. (A1), the mean delay time
and its variance are given by

〈s〉 = N
(

e−λtD

λ
+ 2tD

)
, (A5)

σ 2 ≡ 〈s2〉 − 〈s〉2 = 2

(
1

λ2
+ N t2

D

)
− N 2

(
e−λtD

λ
+ 2tD

)2

.

(A6)

Therefore the variance σ 2 ≡ σ 2(λ,tD) as function of the
two parameters has interesting behaviors to be explored. For
example, for fixed λ the variance saturates at large tD , and for
fixed tD the variance goes to zero for large λ.

Note that for any value of the parameters λ,tD the
normalization constant N ∈ (1, 1

2 ); it is also simple to see that

〈s〉 →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/λ, (tD → 0,λ �= ∞)

tD, (tD � 1,λ �= 0)

1/λ, (λ 	 1,tD < ∞)

tD, (λ → ∞,tD �= 0)

. (A7)

The dispersion 〈s2〉 − 〈s〉2 has the asymptotic behavior

σ 2 →

⎧⎪⎨
⎪⎩

1/λ2, (tD → 0,λ �= ∞)

2/λ2, (tD → ∞,λ �= 0)

0, (λ → ∞,tD �= 0)

. (A8)

For completeness we present here the expansion of G(0)
and G(tD) for small tD:

G(0) = Nλ exp(−λtD) = λ − 2λ2tD + 3λ3t2
D

− 13
3 λ4t3

D + O
(
t4
D

)
, (A9)

G(tD) = Nλ = λ − λ2tD + 3
2λ3t2

D − 13
6 λ4t3

D + O
(
t4
D

)
.

(A10)
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In the exponential case (i.e., when tD = 0), G(t) fulfills
dG(t)/dt = −λG(t), then system Eqs. (3) and (4) is reduced
to the Thornley and France’s equations:

dN

dt
= N (1 − N/K),

dK

dt
= λ(N − K).

APPENDIX B: ON THE STABILITY EQUATION FOR tD �= 0

The general condition to study the stability of Eqs. (3)
and (6), around the attractor N = K = N̄ �= 0, considering
a perturbation of the form n(t) ∝ exp(−ct + iωt) is given
[for any G(s)] by the equation

z = 1 −
∫ ∞

0
G(s)ezs ds,

z = c + iω. (B1)

Using the distribution Eq. (9) to make the integral in Eq. (B1)
we get

z = 1 −
∫ tD

0
G(s)ezs ds −

∫ ∞

tD

G(s)ezs ds

= 1 − Nλe−λtD

(
e(z+λ)tD − 1

z + λ
− e(z+λ)tD

z − λ

)

= 1 −
[
G(tD)eztD − G(0)

z + λ
− G(tD)eztD

z − λ

]
.

This expression can be put in the following alternative form,
which is useful for studying different limits:

(z − λ)(z − 1) = [G(0) − G(tD)eztD ]
(z − λ)

(z + λ)
+ G(tD)eztD

= G(0)
(z − λ)

(z + λ)
+ G(tD)eztD

2λ

(z + λ)
.

APPENDIX C: ON THE EVALUATION OF N(∞)
FOR THE CASE tD �= 0

To interpret the value of the attractor N (∞) = N̄ we
integrate formally Eq. (36), and we get

∫ t

0
V̇ (s) ds = G(0)

∫ t

0
Ṅ (s) ds − 2λG(tD)

∫ t

0
N (s − tD) ds

+ λG(0)
∫ t

0
N (s) ds + λ2

∫ t

0
K(s) ds

= G(0)[N (t) − N (0)] − 2λG(tD)

×
[∫ tD

0
N (s − tD) ds +

∫ t

tD

N (s − tD) ds

]

+ λG(0)
∫ t

0
N (s) ds + λ2

∫ t

0
K(s) ds; (C1)

taking t → ∞ and using V (∞) = 0 we obtain

−V (0) = G(0)[N (∞) − N (0)] − 2λG(tD)
∫ 0

−tD

N (x) dx

+ [λG(0) − 2λG(tD)]
∫ ∞

0
N (x) dx

+ λ2
∫ ∞

0
K(s) ds. (C2)

Noting that λG(0) − 2λG(tD) = −λ2, using V (0) = G(0)
[N (0) − ϕ], and assuming a constant prefunction [ϕ = K(0)]
in Eq. (C2) we arrive at

G(0)[N̄ − K(0)]

= λ2
∫ ∞

0
[N (s) − K(s)] ds + 2λG(tD)tDK(0). (C3)

This is an exact result which gives an Areas’s rule for N̄ in the
case tD �= 0; this result reduces to Eq. (20) in the limit tD → 0.
An equivalent formula can also be obtained in the general case
when the prefunction ϕ(s) is not a constant.

APPENDIX D: STABILITY CONDITION
WHEN λ → ∞ WITH tD �= 0

In this particular situation we get G(s) → δ(s − tD); there-
fore our generalized delay-coupled Logistic-capacity model
looks like

Ṅ = N (1 − N/K), (D1)

K(t) = N (t − tD). (D2)

Putting N (t) ∼ N̄ (1 + n(t)) in Eqs. (D1) and (D2) the linear
stability condition follows from the analysis of

ṅ(t) = −n(t) + n(t − tD). (D3)

Using n(t) ∝ e(−c+iω)t gives the equation (−c + iω) = −1 +
e−(−c+iω)tD , which is in agreement with Eq. (29).

It is well known [30,31] that a necessary and sufficient
condition for the stability of any solution of

ṅ(t) = −an(t) + bn(t − tD) (D4)

is

tD <
cos−1(a/b)√

b2 − a2
.

This inequality defines the domain of stability, whose bound-
aries, in the plane (a,b), are given by the line a = b, and
the curve defined parametrically as a = −ω/ tan(ωtD) and
b = −ω/ sin(ωtD), where for a given tD it follows that
ωtD ∈ (0,π ). These two boundaries intersect at the point
(−1/tD,−1/tD). From these results it follows that in the
limit λ → ∞ (with tD < 1) our system is at the boundary
of stability.

Note that the parameters a,b in Eq. (D4) do not appear in
our case, but it could be of interest to define a related model
where K(t) ∝ N (t − tD), in which case new constants will
appear in the linear stability analysis, changing the condition
Eq. (D3) into the form (D4).
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