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ARTICLE INFO ABSTRACT

Article history: Prolactin (PRL) is a polypeptide hormone with a wide range of physiological functions, and is critical for

Available online xxxx female reproduction. PRL exerts its action by binding to membrane bound receptor isoforms broadly clas-
sified as the long form and the short form receptors. Both receptor isoforms are highly expressed in the

Keywords: ovary as well as in the uterus. Although signaling through the long form is believed to be more predom-

PFOlaCti“ inant, it remains unclear whether activation of this isoform alone is sufficient to support reproductive

Prolactin receptor functions or whether both types of receptor are required. The generation of transgenic mice selectively

l(()t‘slzg)/ductlon expressing either the short or the long form of PRL receptor has provided insight into the differential sig-

Corpus luteum

naling mechanisms and physiological functions of these receptors. This review describes the essential

Endothelial cells finding that both long and short receptor isoforms are crucial for ovarian functions and female fertility,

and highlights novel mechanisms of action for these receptors.
© 2013 The Authors. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Prolaction - synthesis and regulation

Prolactin (PRL) is a polypeptide hormone belonging to the PRL/
GH/PL family (group I of the helix bundle protein hormones), that
includes PRL-like and PRL-related proteins, with which PRL shares
structure similarities and sequence homology, as well as overlap-
ping biological properties (Bole-Feysot et al., 1998; Soares, 2004).
PRL was originally identified by Stricker and Grueter (1928) as
the pituitary factor responsible for milk secretion in rabbits, and al-
most 70 years later, its cDNA was cloned and characterized by Ga-
bou and colleagues (1996). Today, its presence has been well
documented in human (Truong et al., 1984), rat (Gubbins et al.,
1979), mouse (Harigaya et al., 1986), guinea pig (Alam et al.,
2010), goat (Le Provost et al., 1994), chicken (Harvey et al.,
1978), and rainbow trout (Mercier et al., 1989). It is encoded by
a six-exon gene, which is located in chromosome 6 in humans
(Owerbach et al,, 1981; Horseman and Yu-Lee, 1994); chromosome
17 in rats (Rat Genome Sequencing Project Consortium, 2004), and
chromosome 13 in mice (Dai et al., 1998). PRL is synthesized as a
prohormone containing a signal peptide. The mature protein con-
tains 197-199 amino acid residues depending on the species, with
a total molecular mass of approximately 23 kDa (Shome and Par-
low, 1977; Bole-Feysot et al., 1998).

PRL is mainly synthesized and secreted by the lactotrope cells of
the anterior lobe of the pituitary gland, and released into the blood
mainstream enabling transit to different target tissues where it
binds to its membrane receptor (PRLR) and acts as a classic endo-
crine hormone modulator. In addition, several extra-pituitary tis-
sues produce PRL in a cell-specific manner and exert a local
autocrine/paracrine response (Review in Ben-Jonathan et al,
1996, 2008). The extra-pituitary sites include the decidua (Gibori
et al, 1974; Jayatilak et al., 1985; Prigent-Tessier et al., 1999),
breast (Fields et al.,, 1993; Kurtz et al., 1993; Steinmetz et al.,
1993), prostate (Nevalainen et al., 1997; Li et al., 2004), brain
(Grattan and Kokay, 2008), skin (Craven et al., 2001; Foitzik
et al., 2003, 2006), fat (Hugo et al., 2006) and immune cells (Jurco-
vicova et al., 1993; Gala and Ehevach, 1994). In fact, pioneering
investigations into the extra-pituitary production of decidual pro-
lactin (dPRL) in humans and rodents had established a powerful
tool by determining the local secretion of this hormone as one of
the main markers of decidualization of stromal cells (Maslar and
Riddicl<,1979; Jayatilak et al., 1985).

Pituitary PRL exhibits a tonic secretion, mainly under the control
of hypothalamic inhibitory factors, with dopamine being the best
established modulator (reviewed in Ben-Jonathan, 1985; Freeman
et al., 2000; Grattan and Kokay, 2008). Dopamine inhibits PRL re-
lease By binding to the D2 receptor, an adenylyl cyclase-linked
dopamine receptor, on the pituitary lactotroph cells. It has been re-
ported that PRL affects its own secretion by affecting the dopami-
nergic neurons via a short loop negative feedback (Milenkovic
etal., 1990). Using either PRLR knockout or PRLR transgenic models,
we and others have shown that disruption of normal PRLR expres-
sion causes a significant rise of PRL serum levels, suggesting that
PRL/PRLR signaling down-regulates PRL synthesis and/or secretion
at the hypothalamic and/or pituitary level (Binart et al., 2000 and
Halperin et al., 2008). PRL secretion is pulsatile and is paced by a cir-
cadian rhythm. The lowest levels are observed in the morning about
2-3 h after waking up and the highest during sleep (Linkowski
et al,, 1998). On the other hand, the mechanism of PRL secretion
in extra-pituitary sites is not fully understood but appears to be cell
type specific and is not necessarily dependent on dopaminergic sys-
tem (Gellersen et al., 1994; Ben-Jonathan et al., 2008). Ben-Jona-
than and colleagues have recently shown expression of functional
dopamine receptors in adipocytes that inhibit PRL expression and
release after dopamine treatment (Borcherding et al., 2011).

However, in other sites such as decidua, secretion of PRL is not
dependent on dopamine but rather on transcriptional control,
much like other cytokines (Ben-Jonathan et al., 2008).

Transcriptional regulation of pituitary and extra-pituitary PRL
expression are under the control of two independent promoter re-
gions: a proximal promoter region modulates pituitary PRL expres-
sion (Berwaer et al, 1991), whereas a distal upstream region
directs extra-pituitary expression (Berwaer et al., 1994; Feather-
stone et al., 2012). The proximal promoter region contains multiple
binding sites for Pit-1 transcription factor, a member of the POU
homeodomain protein. Pit-1 is necessary for transcription of pitu-
itary PRL and mediates its effect by interacting with nuclear hor-
mone receptors and other coregulators (Featherstone et al., 2012;
Ben-Jonathan et al,, 2008)). As for the extra-pituitary PRL, its
expression is proposed to be independent of Pit-1 (Gellersen
et al., 1994; Ben-Jonathan et al., 1996). However, recent data sug-
gests that Pit-1 may be involved in the expression of PRL in human
breast cell lines and tumors (Ben-Batalla et al., 2010). It is not clear
whether this mechanism of regulation is unique to cancer cells or
represents a common mechanism in other extra-pituitary PRL pro-
ducing sites. Nonetheless, the diverse expression profile of the PRL
gene in extra-pituitary sites suggests a complex system of regula-
tion enabling cell-specific expression and response to differential
regulatory mediators. In the case of the decidua, dPRL is synthe-
sized and secreted by the human endometrium around day 23 of
the normal menstrual cycle and depends primarily on levels of pro-
gesterone and estradiol (Lockwood and Schatz, 1996). In a fertile
cycle, the capacity for dPRL production increases rapidly as implan-
tation progresses. Together with IGFBP1, dPRL is the most dramat-
ically induced genes in the human endometrium during pregnancy.
The transcription factor C/EBPB mediates cAMP induction of dPRL
by forming a nucleoprotein complex that binds the proximal dPRL
promoter region upon PKA activation in human endometrial stro-
mal cells (Pohnke et al., 1999). Other reports have demonstrated
that overexpression of FoxolA induces a significant increase in
dPRL promoter activity by cooperating with C/EBPB (Christian
et al,, 2002 and Buzzio et al., 2006) and with HoxA-11 (Lynch
et al., 2009), both studies performed in human endometrial stro-
mal cells. Apart from serving as a useful marker of decidualization
in endometrial stromal cells, dPRL has also been shown to play an
important role in the maintenance of pregnancy, the findings of
which are further emphasized in PRL and PRLR knockout mice
(Binart et al., EOOO; Bao et al., 2007).

2. PRL receptor isoforms

Prolactin receptor (PRLR) is a member of the class 1 cytokine
receptor superfamily that lacks intrinsic tyrosine kinase activity
(Walker, 2005), and is encoded by a gene located in chromosome
5,15, or 2 for human (Boutin et al., 1989), mouse (Davis and Linzer,
1989), and rat (Jayatilak and Gibori, 1986; Boutin et al., 1988),
respectively. This membrane-anchored | protein is composed of an
extracellular ligand-binding domain, a single pass transmembrane
chain and an intracellular domain responsible for the signal trans-
duction. PRLR was first cloned and characterized in rodents (Boutin
et al., 1988; Kelly et al., 1989; Davis and Linzer, 1989, 1990), and al-
most simultaneously described in human (Boutin et al., 1989), rab-
bit (Edery et al., 1989), and later in bovine (Scott et al., 1992),
chicken (Zhou et al., 1996), frog (Yamamoto et al., 2000), and rain-
bow trout (Prunet et al., 2000). Although it codes for a single gene
product, alternative splicing of its primary transcript or post-trans-
lational cleavage can generate multiple variants of the receptor.
These various PRLR isoforms share a common extracellular and
transmembrane domain, but differ in the length and composition
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of their cytoplasmic domain, and therefore are designated as the
long form (PRL-RL) and short form (PRL-RS). The structures of these
different isoforms have been discussed at length by several reviews
(Bouilly et al., 2012; Ben-Jonathan et al., 2008; Bole-Feysot et al.,
1998; Clevenger and Kline, 2001; Freeman et al., 2000). An interme-
diate form (RI) has also been reported for human PRLR and in the rat
NB2 cell line but not in the mouse (Kline et al., 1999; Ali et al.,
1991). PRL-RL has been extensively studied and is considered the
major isoform through which PRL transmits its signals. The rat
PRL-RL has 591 amino acids, of which 357 residues reside within
the intracellular domain, whereas mouse PRL-RL is composed of
589 amino acids, with 357 in the intracellular domain. There is a
90% homology between these two species, including conservation
of JAK2 binding domain (Ben-Jonathan et al., 2008). As to PRL-RS,
it has been cloned in several species, including humans (Hu et al.,
2001), rat (Boutin et al., 1988), mouse (Davis and Linzer, 1989),
cow, and sheep (Bignon et al., 1997). The rat PRL-RS encodes a small
protein of 291 amino acids, of which up to residue 261 is identical
to the PRL-RL isoform and differs thereafter (Boutin et al., 1988).
Three short isoforms have been reported in mice, known as PR-1,
PR-2, and PR-3, with unique C-terminal sequences following the
common membrane-proximal residues in the intracellular domain
(Davis and Linzer, 1989). Among these, one clone (PR-1) has been
identified at protein level and shown to have functional signal
transduction capabilities (Binart et al., 2010). PR-1 consists of 303
amino acids, of which the first 280 amino acids are identical to
other mouse isoforms, but the last 23 amino acids located within
the cytoplamic domain diverge from other isoforms (Davis and Lin-
zer, 1989). This unique sequence may confer its ability to bind to
distinct intracellular signaling molecules and independent biologi-
cal action.

3. Expression and regulation of PRLR isoforms in reproductive
tissues

Expression of PRLR at the transcript level has been shown in the
ovary of several species (Kowalewski et al., 2011; Kingston et al.,
2008; Picazo et al., 2004; Clarke et al., 1993; Clarke and Linzer,
1993 and Russell and Richards, 1999). In rodents, both PRL-RL
and PRL-RS mRNAs are co-expressed in granulosa, interstitial,
and luteal cells during the estrus cycle, with PRL-RL being the most
dominant isoform along all stages (Clarke et al., 1993). PRLR
expression levels vary along the estrus cycle as well as stages of
pregnancy. For both isoforms, maximal mRNAs levels were at-
tained during proestrus, followed by a decline during estrus, and
then a recovery to maximal levels by late diestrus and early proes-
trus (Clarke et al., 1993; Clarke and Linzer, 1993). This decrease in
PRLR levels presumably plays a role in attenuating PRL actions in a
number of periovulatory events over specific ovarian cell types. In
addition, the attainment of high PRLR levels in late diestrus coin-
cides with the requirement for PRL to maintain progesterone pro-
duction in preparation for pregnancy or pseudopregnancy. A sharp
increase in PRL-RL expression in preovulatory granulosa cells, as
compared with small follicles has been shown by Russell and Rich-
ards (1999) and suggested a role for PRL in mature follicles. A sim-
ilar increase in PRLR expression accompanied by the requirement
for progesterone production has been demonstrated in other spe-
cies as well (Thompson et al., 2011; Picazo et al., 2004).

Expression of both PRL-RL and PRL-RS is further enhanced dur-
ing luteinization; in particular, a robust increase in PRL-RS tran-
script level is associated with luteinization (Telleria et al., 1997;
Stocco et al., 2007). Interestingly, this increase in PRL-RS is related
to enhanced activation of STAT5b in the functional corpus luteum
of pregnancy (Russell and Richards, 1999). This suggests an impor-
tant role for PRL-RS in corpus luteum function either by acting

synergistically with PRL-RL or through other independent func-
tions (discussed in Section 7). The mechanisms involved in selec-
tive regulation of the different isoforms remains unclear, but
perhaps more understanding in the mechanisms of alternative
splicing of PRLR will shed light into this differential regulation.
The overall up-regulation of PRLR during luteinization in rodents
appears to coincide with the LH surge and presumably is important
for sustained expression of PRLR (Stocco et al., 2007). There are no
significant changes in mRNA levels of either PRL-RL nor PRL-RS in
the corpus luteum until day 20 of gestation, whereas a profound
decline in PRLR mRNA and protein for both receptor types occurs
at the end of pregnancy (Russell and Richards, 1999 and Telleria
et al, 1997), an event mediated by prostaglandin F2 o (Stocco
et al., 2003, 2000). This drop in PRLR expression is accompanied
by a rapid increase in the expression of 20a-hydroxysteroid dehy-
drogenase (200-HSD) (Telleria et al., 1997) and decrease in proges-
terone allowing parturition (Piekorz et al., 2005).

Decidua is another target of PRL function during pregnancy.
Expression of PRLR has been demonstrated in many species
including human (Jabbour and Critchley, 2001), non-human pri-
mates (Frasor et al., 1999), and rodents (Gu et al., 1996 and Reese
et al., 2000). Interestingly, decidualization itself does not appear
to be a trigger for expression of PRLR, as only 3 days after the
induction of decidualization, PRL-RL first detected in the rodent
uterus (Gu et al., 1996). Thereafter, mRNAs for both PRL-RS and
PRL-RL became detectable in both antimesometrial and mesome-
trial decidua, although PRL-RL mRNA level is higher than PRL-RS.
One study has reported expression of PRLR only in the antime-
sometrial side in mouse uterus (Reese et al., 2000). This could
be due to species difference or due to difference in the sensitivity
of the techniques used. In rat, expression of both receptors peak
at mid pregnancy, and as embryo development progresses, PRLR
mRNA levels decrease (Gu et al., 1996). This decline in PRLR
mRNA strongly correlates with expression of activin A and is sup-
ported by in vitro studies showing that treatment of cultured
decidual cells with activin A results in accelerated disappearance
of PRLR (Gu et al., 1996; Tessier et al., 2003). In contrast, this
inhibitory effect of activin is prevented by expression of alpha
2-macroglobulin &cxz M), an activin binding protein which is
highly expressed in mesometrial decidua (Gu et al, 1996).
Whether this regulatory mechanism is limited to the uterus or
is also present in non-uterine tissues is not clear. However, it is
interesting to note that an increase in o2 M expression is also ob-
served during luteinization in the ovary concomitant with an in-
crease in PRLR mRNA levels (Russell and Eichards, 1999; Gaddy-
Kurten et al., 1989). Taken together, these results suggest that
PRLR is expressed in a spatio-temporal manner in reproductive
tissues, and the regulation of PRLR expression involves multiple
mechanisms mediated by endocrine, paracrine and autocrine
factors.

4. PRLR activation mechanisms

Conflicting data have been reported regarding the mechanisms
involved in the activation of PRLR. Several investigations proposed
a “induced-fit” model given by an obligated-sequential chain of
events: PRL binds first to one receptor molecule and induces a con-
formational change in the ligand, which in turn, favors interaction
with a second receptor molecule resulting in the known activated
PRLR dimer (Gertler et al., 1996; Sivaprasad et al., 2004; Van
Agthoven et al., 2010; Voorhees and Brooks, 2010). However, stud-
ies in which PRL-RL was transfected into T47D cells revealed li-
gand-independent dimerization of the receptor. Moreover, these
studies also demonstrated that the addition of PRL to PRL-starved
cells did not increase dimer formation, suggesting that part of
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the human PRLR is predimerized in these cell lines (Gadd and Cle-
venger, 2006). In addition, it was established by FRET and co-
immunoprecipitation that two PRLR molecules can dimerize in
the absence of PRL, bringing the proximal membrane regions of
their intracellular domains into close proximity, forming homo-di-
mers (PRL-RL - PRL-RL or PRL-RS - PRL-RS) (Tan et al., 2005; Qazi
et al., 2006). Activation occurs upon binding of the ligand to this
pre-homodimer, forming a one-ligand two-receptor complex. Once
the heterotrimeric complex is formed, either by the induced fit
model or by binding to a pre-homodimer, a conformational change
is induced in the intracellular domain that allows docking of the
tyrosine-protein kinase, JAK2, within the membrane-proximal pro-
line-enriched region of each PRLR molecule (Campbell et al., 1994;
Rui et al., 1994). Such a region is known as Box 1 and is conserved
among all the isoforms of the receptor. JAK2 auto-transphosphory-
lates and induces phosphorylation of numerous proteins, including
the receptor itself, which leads to activation of distinct signaling
cascades (Brooks, 2012; Freeman et al., 2000 and Kelly et al.,
1991). Interestingly, ligand independent heterodimerization of hu-
man PRL-RL and PRL-RS has also been demonstrated (Qazi et al.,
2006; Tan and Walker, 2010). Although such heterodimers are
competent to bind PRL, subsequent signal transduction events
via activation of JAK/STAT, the canonical PRL signaling pathway,
is inoperative. Whether heterodimers of PRL-RL and PRL-RS acti-
vate other signaling pathways and whether they have functional
relevance is not yet clear.

5. PRLR signaling pathways
5.1. Signaling mechanisms activated by PRL-RL

The most extensively characterized PRLR isoform is PRL-RL,
which transduces both mitogenic and differentiative signals. This
isoform contains the entire spectrum of signalling entities attrib-
uted to PRLR, which include Box1 and Box2 motifs with the variable
box (V-box) in between, and an extended Box 2 (X-box) (Reviewed
in Clevenger et al., 2003). JAK2 kinase is constitutively associated
with Box1 and rapidly activated upon ligand binding (Frasor and
Gibori, 2003; Lebrun et al., 1995). Well-known targets of activated
JAK2 include the signal transducers and activators of transcription
(STAT) transcription factors (Frasor and Gibori, 2003). The two
highly related STATs, STAT5a and STAT5b are major mediators of
PRL signaling in both mammary gland and ovary (Piekorz et al.,
2005). Deficiencies in STAT5b or in both STAT5a and STAT5b result
in loss of pregnancy during midgestation, and correlate with an in-
crease in ovarian 200-HSD expression, and a decrease in serum pro-
gesterone (Udy et al., 1997 Teglund et al., 1998). In addition to
STAT5, STAT1 and STAT3 are known mediators of PRL signaling
and are JAK2 targets (DaSilva et al,, 1996). PRL can also activate
many kinases other than JAK2/STAT, including phosphoinositide
3-kinase (PI3kinase), Src kinase, MAP kinase and Nek3 kinase (Tes-
sier et al., 2001; Aksamitiene et al., 2011; Sakamoto et al., 2007;
Miller et al., 2007). These pathways are presumed to be activated
through PRL-RL even though most of the studies were performed
using cells which express both PRL-RS and PRL-RL.

5.2. Signaling mechanisms activated by PRL-RS

Conflicting results have been reported over the activation of
JAK2/STAT by PRL-RS. It has been proposed that PRL-RS cannot
activate JAK2/STAT signalling, as it lacks the distal region on the
intracellular domain required for STAT docking (Lebrun et al.,
1995; Perrot-Applanat et al., 1997). However, this finding was con-
tradicted by other studies that showed activation of STAT5 through
PRL-RS (Bignon et al., }999; Goupille et al., 1997). These conflicting

results could be due to species differences or due to technical is-
sues arising from the use of cell lines expressing both receptors.
Using a transgenic mouse model expressing exclusively PRL-RS
(PR-1 isoform) in a PRLR—/— background (PRLR—/—RS), we have fi-
nally demonstrated that PRL-RS alone does not activate JAK2/STAT
signaling in either the ovary or the decidua (Devi et al., 2009a,b).
Further controversy exists regarding the physiological function of
RS. It was initially thought that PRL-RS played only a dominant-
negative role preventing PRL signaling through PRL-RL (Perrot-
Applanat et al., 1997, Berlanga et al.,, 1997; Lesueur et al., 1991).
However, this view has been challenged by several groups, includ-
ing ours (Devi et al., 2009a,b; Halperin et al., 2008; Binart et al.,
2003; Huang et al., 2008; Das and Vonderhaar, 1995. Das and Von-
derhaar (1995) first proposed a signaling role for PRL-RS in NIH-
3T3 fibroblasts by showing that activation of the mouse PRL-RS in-
duced MAPK activity, which ultimately suggested that PRL-RS-sig-
naling may be involved in cell proliferation. The human PRL-RS can
also activate MAPK in cultured cells (Huang et al., 2008), although
this activation is delayed and prolonged, and therefore a role in dif-
ferentiation rather than proliferation was suggested. Using a trans-
genic mouse model, Binart et al. (2003) reported that
overexpression of PRL-RS in the PRLR heterozygous background
(PRLR+/—RS) could rescue the mammopoiesis defect displayed in
the PRLR+/—mice. This led to the conclusion that, in mammary
glands, PRL acting through RS may mediate activation of MAPK. Re-
cent data generated using a transgenic mouse model expressing
PRL-RS alone (PRLR—/—RS) has at least clarify some of the contro-
versial findings in PRL-RS signaling. Using this mouse model, we
have shown that in vivo activation of PRL-RS elicits profound ef-
fects in the ovary, as it causes a clear defect in follicular develop-
ment and massive granulosa cell death, leading to premature
ovarian failure (Devi et al., 2009a,b; Halperin et al., 2008). In sharp
contrast to the mammary gland, PRL signaling through PRL-RS
deactivates both ERK1/2 and p38 MAPK in the ovary (Devi et al.,
2011). This deactivation was shown to be mediated through a no-
vel phosphatase, DUPD1, which physically associates with both
ERK1/2 and p38 MAPK. We have also demonstrated that DUPD1
is exclusively associated with PRL-RS irrespective of ligand bind-
ing. Activation of PRL-RS by PRL causes dephosphorylation of a crit-
ical threonine site on DUPD1. It has been postulated that this
dephosphoryation causes activation of DUPD1 activity, which then
dephosphorylates and inhibits MAPK activity (Devi et al., 2011).
Furthermore, by using PRLR— /—RS mice we have demonstrated
that PRL signaling through PRL-RS represses or stimulates the
activity of several transcription factors (Devi et al., 2009a and Hal-
perin et al., 2008), presumably leading to alteration in the expres-
sion of genes essential for normal follicular development and
survival. Interestingly, co-expression of PRL-RS and PRL-RL could
rescue the inhibition of MAPK and transcription factors, and pre-
vent the deleterious effect on follicular development (Devi et al.,

2011; Halpelm et al., 2008). A simplified model of PRL-RS signaling
mechanism leading to premature ovarian failure is shown in Fig. 1.

6. PRL actions and the role in reproduction

Numerous reports have established a wide spectrum of PRL
functions that broadly exceed its traditional role in mammary
gland development, differentiation and nurturing of offspring (re-
viewed in Bole-Feysot et al., 1998). Indeed, PRL-induced effects
have been noted in diverse processes that range from electrolyte
balance, behavior, immune and stress response, cell growth, differ-
entiation, anti-apoptotic action and breast tumorigenesis. None-
theless, reproductive processes represent the largest group of
functions attributed to this hormone (Bole-Feysot et al., 1998; Bou-
illy et al., 2012). An essential role of PRL in female reprod‘uction has
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Fig. 1. A proposed model of short form receptor (PRL-RS) signaling in the follicle leading to premature ovarian failure. DUPD1 phosphatase (most likely the phosphorylated
inactive form) is constitutively associated PRL-RS. Ligand-mediated activation of PRL-RS causes activation of DUPD1 phosphatase activity through a dephosphorylation
process. Activated DUPD1 physically interacts with and dephosphorylates MAPK, causing its inhibition, and prevents downstream signaling. This inhibition negatively affects
genes involved in follicular growth and differentiation. On the other hand, PRL signaling through PRL-RS inhibits Foxo3 transcription factor at the protein level by a
mechanism yet to be determined. This inhibition causes downregulation of GALT expression, leading to follicular death. The net result of these pathways leads to early
depletion of follicles, and ultimately, premature ovarian failure. Recent findings demonstrate that coexpression of long form (PRL-RL) prevents PRL-RS-induced premature

ovarian failure by a mechanism(s) yet to be determined.

been well established in rodents, but remains to be determined in
human. We have outlined the findings from rodents and human in
this section.

6.1. In rodents

PRL was first identified as a key factor for mammary gland devel-
opment and differentiation (Ormandy et al., 1997; Brisken et al.,
1999; Eallego et al., 2001). Although associated with this reproduc-
tion-related process, it was not until the generation of ERL—/— and
PRLR—/— mice that the vital role of PRL in female fertility became evi-
dent (Horseman et al.,1997; Ormandy et al., 1997). Both PRL—/— and
PRLR—/— females are totally infertile. One of the major defects seenin
PRLR—/— female mice is infertility directly related to insufficient pro-
gesterone levels and implantation failure (Ormandy et al., 1997). Two
days after mating, the ovaries of female PRLR /— exhibit corpus lut-
eum undergoing regression, strong DNA cleavage poor vasculariza-
tion, impaired steroidogenesis (Ormandy et al., 1997; Grosdemouge
etal, 2003 Bachelot et al., 2009). These findings clearly established
a critical role of PRL in the maintenance of ovarian corpus luteum and
progesterone production for rodent reproduction (Risk and Gibori,
2001; Stocco et al., 2007). Apart from this, PRLR /— mice also had
various reproductlve defects, including lack of pseudopregnancy, de-
creased number of primary follicles, mistimed oocyte release, and
impaired oocyte maturation, all signs of disruption in follicular devel-
opment and possibly atresia (Ormandy et al., 1997). Oocyte matura-
tion is a complex process involving germinal vesicle breakdown,
oocyte growth and reinitiating of meiosis in response to gonadotro-
pins. This process requires signals from both oocyte itself and sur-
rounding somatic cells. A large number of oocytes ovulated in
PRLR—/— mice still contain intact germinal vesicles, indicating an
important role for PRL in normal oocyte maturation. Indeed, expres-
sion of PRLR had been shown in oocytes (Kiapekou et al., 2009;
Nakamura et al.,2010) and PRL treatment has been shown to iml*arove

the rate of oocyte maturation in cultured preantral mouse follicles
(Kiapekou et al., 2009). It is unclear, however, whether this defect
in oocyte maturation exhibited by PRLR— |— females is due to a lack
of PRL signaling in the oocyte, a defect in surrounding granulosa cells,
or the combined effect of both. PRL is known to act synergistically
with gonadotropins to affect follicular development. Some of the
well-established functions of PRL are suppression of FSH-induced
aromatase expression and estradiol production while stimulating
FSH-induced progesterone production in granulosa cells (Nakamura
et al, %010; Dorrington and Gore-Langton, 1982). In the absence of
PRLR, this inhibitory and synergistic affect is abrogated, which may
explain why PRLR knockout females exhibit an abnormal increase
in the estrogen levels during the estrous cycle and a lack of pseudo-
pregnancy. Although the evidences mentioned above point to an
important role for PRL in normal follicular development and ovula-
tion, the absolute requirement for PRL (or PRLR) in these processes
could be excluded since ERLR— /— ovaries have mature follicles and
are capable of ovulation, albeit with defects.

PRL also plays an important role in fertilization and develop-
ment of the pre-implantation embryos. Fertilization rates are re-
duced in PRLR—/— females compared to wild type controls, and
most of the fertilized eggs fail to develop correctly (Ormandy
et al, 1997). Majority of oocytes arrest at the single cell stage
immediately after fertilization and only 19% of blastocyst-stage
embryos can be recovered on day 3.5 of pregnancy in the uterus
of PRLR—/— animals. The presence of PRLR mRNA during all stages
of Mouse pre-implantation embryos have been demonstrated (Kia-
pekou et al., 2005), and PRL has been shown to accelerate pre-
implantation mouse embryo development in vitro (Yohkaichiya
et al., 1988). However, oocyte PRLR does not appear to be essential
for the development of the pre-implantation embryo, since em-
bryos from PRLR—/— mother that are transplanted into the oviduct
of PRLR+/+ foster mothers develop normally. Expression of PRLR
has been observed in the oviduct of both mouse and human (Shao
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et al., 2008) where it may play a role in the development of pre-
implantation embryo. These findings highlight the important role
of PRL not only in ovarian function but also elsewhere in the repro-
ductive tract. Intriguingly, the defects in pre-implantation egg
development and implantation seen in PRLR—/— mice can also be
rescued by supplementation of progesterone from day 0.5 of preg-
nancy (Reese et al., 2000; Binart et al., 2000). Of note, the PRL-in-
duced progesterone surge does not occur until day 2.5 of
pregnancy whereas the defect in pre-implantation embryos of
PRLR—/— females occurs earlier (between days 0.5 and 1.5) and
at a time when progesterone levels are normal in PRLR—/— fe-
males. This suggests that PRL and progesterone may have redun-
dant functions during post-fertilization events and the PRL deficit
may be compensated for by progesterone. However, the quality
of embryos developed in such progesterone supplemented animals
(PRLR—/—) have not been thoroughly examined. Interestingly, a
large number of embryos were lost from mid-gestation and only
22% of the embryos remained viable till term (Binart et al., 2000).
This observation could be either due to quality of embryos being
compromised during preimplantation development or upregula-
tion of detrimental factors in the uterus in the absence of PRLR,
or a combined effect of both factors. Decidual PRL is known to
act locally and inhibit detrimental factors such as IL-6 and 20a-
HSD during gestation (Bao et al., 2007) and upregulation of these
factors may be a plausible reason for fetal loss at mid-pregnancy.

6.2. In humans

While a critical role of PRL in female reproduction in rodents has
been established, it remains unclear whether PRL plays a similar
essential role in human reproduction. This is partly due to the over-
lapping functions of PRL with placental lactogen and human growth
hormone, both of which can bind and elicit signaling through PRLR
(Cunningham et al., 1990 and Lowman et al., 1991). Moreover, there
is no known homozygous inactivating mutation of PRLR or PRL gene
in human that could confirm the role of PRL/PRLR in human repro-
duction. Hyperprolactinemia is currently the best known PRL-re-
lated pathology that affects human fertility and is defined as
abnormally high levels of circulating PRL. Hyperprolactinemia
causes galactorrhea, amenorrhea, and infertility in women, mainly
due to inhibition of hypothalamic GnRH pulsatility, suppression of
the preovulatory gonadotropin surge, and its consequent inhibition
of ovarian function (Kaiser, 2012). Hyperprolactinaemia is found in
30% of women with secondary amenorrhoea, and 75% of women
with both amenorrhoea and galactorrhoea (Prabhakar and Davis,
2008). Although hyperprolactinemia has been proposed to block
ovulation through inhibition of GnRH release, the mechanisms in-
volved in this process are poorly understood. Using a mouse model
of continuous PRL infusion, a recent report demonstrated that
hyperprolactinemia significantly decreased kisspeptin mRNA and
peptide staining, induced anovulation, and reduced GnRH and gon-
adotropin secretion (Sonigo et al., 2012). Furthermore, kisspeptin
administration restored gonadotropin secretion and ovarian cyclic-
ity, suggesting that kisspeptin neurons play a major role in hyper-
prolactinemic anovulation.

7. Differential and cooperative functions of PRLR isoforms:
Lessons from transgenic mice selectively expressing PRL-RS or
PRL-RL

Studies from PRL—/— and PRLR-/— mice have undoubtedly
highlighted a critical role of PRL/PRLR in various reproductive func-
tions. Although PRL-RL has been always assumed to be the main
isoform involved in the regulations of those functions, neither
PRL nor PRLR knockout mice models could clarify which receptor
isoform is essential for these functions. We are able to address

some of these issues with the generation of transgenic mice, which
selectively express either PRL-RS or PRL-RL. These mice allow us to
investigate the specific physiological role of each receptor type and
the signals activated exclusively of one isoform in the absence of
others. We have identified novel signaling pathways mediated by
each receptor isoform and established that PRL-RS has an impor-
tant physiological role beyond the alleged dominant-negative
function. Transgenic mice expressing PRL-RS in a PRLR null back-
ground (PRLR—/—RS) were generated by mating fertile transgenic
PRLR+/—RS females with PRLR—/—males. The PRLR—/—RS females
were not only infertile, but also exhibited severe defects in follicu-
lar development characterized by accelerated follicular recruit-
ment followed by massive granulosa cell death, collapsed zona
pellucida, and ultimately exhausting all follicular pool leading to
premature ovarian failure (Halperin et al., 2008). Furthermore,
in vitro transfection of PRL-RS in granulosa and luteal cell lines
lacking endogeneous PRLR die after PRL treatment (Devi et al.,
2009b). These results strongly suggest that PRL-RS can signal on
its own and has a physiological role independent of PRL-RL. Gene
expression profiling and analysis of transcription factors have re-
vealed that PRL-RS signaling can affect the expression of several
genes as well as the activity of transcription factors involved in
multiple critical pathways (Halperin et al, 2008; Devi et al,
2009a,b). Of particular interest was the inhibition of expression
and activity of transcription factors involved in oxidative stress
and cell death, namely Sp1 and FOXO3. In recent years, Sp1 has
been shown to play a critical role in multiple cellular responses be-
yond the traditional view as a constitutive activator of housekeep-
ing genes and other TATA-less genes (Wierstra, 2008). Indeed, Sp1
was shown to stimulate survival in cells under oxidative stress
(Dorrington and Gore-Langton, 1982; Ryu et al, 2003; Lee et al,
2006). Our observation that cells expressing PRL-RS as the only
form of the receptor die after PRL treatment, concomitant with
the loss of Sp1, suggesting that this transcription factor is critical
for cell survival in the ovary and that expression of PRL-RS alone
disrupts this pathway.

The deleterious phenotype observed in PRLR—/-RS females
could be attributed in large part to diminished expression of
FOXO03 in the ovary. An essential role for FOXO03 in follicular devel-
opment has been well established. FOXO3 is part of the inhibitory
machinery controlling oocyte growth during primordial follicle
activation (Liu et al., 2007; Reddy et al., 2008; John et al., 2008).
In fact, FOXO3 knockout mice exhibit an ovarian phenotype of
accelerated follicular activation, cell death, and premature ovarian
failure (Castrillon et al., 2003 and Hosaka et al., 2004) similar to
that seen in PRLR—/—RS. Whether there is a link between single-
nucleotide pSIymorphisms or mutations in FOX0O3 gene with idio-
pathic premature ovarian failure in women is currently being
investigated by several groups (Wang et al., 2010; Gallardo et al.,
2008). Interestingly, we have identified a novel cellular target of
FOXO03, an enzyme known as galactose-1-phosphate uridyltrans-
ferase (GALT) in the PRLR—/—RS mice. In vitro analysis of the GALT
promoter confirmed that FOXO3 exerts a significant up-regulation
on GALT expression. GALT is an enzyme that participates in normal
galactose metabolism and deficiency of this enzyme leads to cell
toxicity and death due to increased accumulation of the metabo-
lites gal-1P and galactitol in a disease known as galactosemia.
More than 180 mutations in the GALT gene have been identified
in people with the classic form of galactosemia (Gort et al.,
2006). Intriguingly, women with this disease are fertile early in life,
but later exhibit a strong depletion of follicles, which eventually
leads to premature ovarian failure (Kaufman et al., 1981). The neg-
ative impact of galactosemia on ovarian function has been also
well demonstrated in animal models, e. g. high galactose diet in
rats led to a decrease follicular development (Liu et al., 2006)
and an increase in apoptosis of maturing follicles (Lai et al.,
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Fig. 2. A proposed and simplified model of coordinated action of PRL-RS and PRL-RL in the corpus luteum. Based on both previous and recent findings, we propose a model of
PRL-RS and PRL-RL signaling pathways in the corpus luteum involving two cell compartments, namely endothelial cells and steroidogenic luteal cells. PRL mediated activation
of PRL-RS causes activation of transcription factors (TF) e.g. HIF-1 and induction of angiogenic genes such as VEGF. In conjunction with other growth factors (GFs), VEGF acts
upon endothelial cells to induce vascularization, which is critical for corpus luteum survival. Since PRL-RS is expressed by both endothelial and luteal cells, this receptor may
mediate its action in both cell types. PRL-RS also physically associates with HSD17p-7, an enzyme that converts estrone to estradiol, bringing it in close proximity to JAK2
allowing phosphorylation and stabilization of HSD178-7; thus contributing to local estradiol synthesis. This locally produced estradiol, in turn, acts on the luteal cells to
induce hypertrophy and VEGF expression. On the other hand, PRL-mediated activation of PRL-RL in luteal steroidogenic cells is critical for induction of luteal genes involved in
progesterone production and inhibition of 20aHSD. Activation of Jak2/STATS5 is crucial for these PRL-mediated functions; however, other signaling pathways may also be
involved. These results strongly suggest that the coordinated actions of both receptors are required for survival and maintenance of corpus luteum. However, the precise

signaling mechanism remains to be explored.

2003). We believe there is a close relation between GALT and PRL-
RS as ovaries from BRLR—/—RS females exhibit a dramatic loss of
GALT mRNA and overexpression of PRL-RS in culture strongly re-
presses GALT transcriptional activity (Halperin et al., 2008). This
loss of GALT is presumably a major factor in early follicular deple-
tion and premature ovarian failure phenotype of ERLR—/—RS mice
(summarized in Fig. 1).

In spite of the many defects in follicular development observed
inl’RLR— /|—RS ovaries, some follicles do escape atresia and manage
to ovulate in young females. However, the corpus luteum rapidly
degenerates and these females never become pregnant. Since
expression of PRL-RS could not prevent the luteal failure induced
by the deletion of PRLR gene (Ormandy et al., 1997; Halperin
et al., 2008), activation of PRL-RL was thought to be the sole recep-
tor responsible for the luteotropic effect of PRL. In an attempt to
study the role of PRL-RL in mediating the luteotropic effect of
PRL in the corpus luteum, two novel transgenic mouse models
which selectively express PRL-RL either ubiquitously or in a corpus
luteum specific manner (PRLR—/—RL) were developed by Gibori
and colleagues (Le et al., 2012). Surprisingly, both of these trans-
genic females are infertile and exhibit low progesterone levels de-
spite the activation of JAK2/STAT5 signaling, suggesting that
expression of PRL-RL alone is not sufficient to rescue infertility.
Closer analysis revealed a defect in luteal cell hypertrophy and
steroidogenic capacity. Interestingly, the luteal cells derived from

PRLR-/-RL transgenic mice are perfectly normal in culture, suggest-
ing extrinsic factor(s) may be involved in this luteinization defect.
Expression of VEGFA, a key regulator of angiogenesis and vascular-
ization is dramatically reduced in ERLR—/ —RL mice. Furthermore,
PRLR—/—RL females exhibit aberrant expression of collagen IV, a
marker for the basal lamina of endothelial cells and a discordant
organization of endothelial cells in the corpus luteum (ke et al,,
2012& suggesting that PRL-RS may be necessary for proper expres-
sion of these factors. We have recently shown that PRL activation
of PRL-RS robustly stimulated the activity of HIF-1 transcription
factor (Devi et al., 2009a), which is a key inducer of VEGF expres-
sion (Alam et al., 2009). All these results strongly suggest that
PRL-RS plays an essential role in vascularization of pregnancy cor-
pus luteum. This notion is further supported by the fact that (j)
PRL-RS is the predominant isoform in endothelial cells derived
from CL (Ricken et al., 2007), (2) a robust increase in the expression
of PRL-RS is observed duringfuteinization in normal ovary (Russell
and Richards, 1999; Telleria et al., 1997), (3) PRL induces endothe-
lial cell prolifé‘ation and vascularization in corpus luteum (Chen
et al., 2002; Gaytan et al., 1997), (4) mice expressing only one allele
of PRLR (RS) in the PRL-RL transﬁnic background (PRLR+/—RL) are
fertile and have normal corpus luteum. Furthermore, PRL-RS could
be also involved in luteal cell hypertrophy which is a critical step
preceding proliferation of vascular endothelial cells in the corpus
luteum (Tamura and Greenwald, 1987). It is well known that
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estradiol stimulates luteal cell hypertrophy (McLean et al., 1990).
PRL-RS was shown to be physically associated with HSD17B-7, a
key enzyme in estradiol biosynthesis, in the corpus luteum (Risk
et al,, 2005; Duan et al,, 1996, 1997). This association appears to
stabilize and increase expression of HSD17B-7, which in turn stim-
ulates estradiol biosynthesis. Fig. 2 depicts a proposed model of
PRL-RS and PRL-RL signaling in corpus luteum. Although the pre-
cise signaling mechanism is still unclear, these findings strongly
advocate an important role of PRL-RS in angiogenesis and a coordi-
nate action with PRL-RL for proper maintenance of functional cor-
pus luteum and fertility.

8. Concluding remarks

PRL impacts a large number of ovarian functions including fol-
licular development and the maintenance of functional corpus lut-
eum. PRL actions on each ovarian cell type and which receptor
isoform is important for these functions remains a deeply debated
area. This became more complicated by the fact that both long and
short isoform of the receptor are expressed in varying concentra-
tions in many cell types throughout the estrus cycle and during
gestation. The long form has been viewed as the predominant
receptor with active and positive signaling whereas the physiolog-
ical role as well as signaling of the short form remains controver-
sial. However, recent and compelling evidences suggest that the
short form can interact with signaling molecules, activates specific
signaling pathways, and can cooperate with or inhibits the long
form signaling. The function and the differential signaling mecha-
nisms elicited exclusively by one type of receptor are beginning to
unravel with the help of transgenic mice, which selectively express
either the short or the long form receptor. Contrary to previous be-
liefs that the short form is a sole dominant negative receptor, these
recent findings have clearly demonstrated that either long or short
form can act as dominant negative to each other and prevent
excessive signaling of one isoform. On the other hand, their con-
certed cooperative actions are required for survival of the corpus
luteum. What remains to be explored is the manner in which these
isoforms cross talk with each other and mediate differential or
cooperative signaling. This review highlighted important findings
on novel PRL signaling though different isoforms of receptor and
discussed their implications in normal reproductive function and
reproductive pathologies.
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