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� Independent signaling pathways of short form of prolactin receptor are proposed. � Prolactin is important but not essential for follicular
development. � An essential role of short form in vascularization and survival of corpus luteum is proposed. � Cooperative and dominant neg-
ative actions of short and long form are highlighted.
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Prolaction – synthesis and regulation

Prolactin (PRL) is a polypeptide hormone belonging to the PRL/
/PL family (group I of the helix bundle protein hormones), that

cludes PRL-like and PRL-related proteins, with which PRL shares
ucture similarities and sequence homology, as well as overlap-

ng biological properties (Bole-Feysot et al., 1998; Soares, 2004).
L was originally identified by Stricker and Grueter (1928) as
e pituitary factor responsible for milk secretion in rabbits, and al-
ost 70 years later, its cDNA was cloned and characterized by Ga-
u and colleagues (1996). Today, its presence has been well
cumented in human (Truong et al., 1984), rat (Gubbins et al.,
79), mouse (Harigaya et al., 1986), guinea pig (Alam et al.,
10), goat (Le Provost et al., 1994), chicken (Harvey et al.,
78), and rainbow trout (Mercier et al., 1989). It is encoded by
six-exon gene, which is located in chromosome 6 in humans
werbach et al., 1981; Horseman and Yu-Lee, 1994); chromosome
in rats (Rat Genome Sequencing Project Consortium, 2004), and

romosome 13 in mice (Dai et al., 1998). PRL is synthesized as a
ohormone containing a signal peptide. The mature protein con-
ins 197–199 amino acid residues depending on the species, with
otal molecular mass of approximately 23 kDa (Shome and Par-
, 1977; Bole-Feysot et al., 1998).

PRL is mainly synthesized and secreted by the lactotrope cells of
e anterior lobe of the pituitary gland, and released into the blood
ainstream enabling transit to different target tissues where it

ds to its membrane receptor (PRLR) and acts as a classic endo-
ne hormone modulator. In addition, several extra-pituitary tis-
es produce PRL in a cell-specific manner and exert a local
tocrine/paracrine response (Review in Ben-Jonathan et al.,
96, 2008). The extra-pituitary sites include the decidua (Gibori

al., 1974; Jayatilak et al., 1985; Prigent-Tessier et al., 1999), 153by

154pr
155m
156th
157dP
158et
159et
160m
161in
162im
163wh
164(B

1652.

166

167re
168(W
1695, 15, or 2 for human (Boutin et al., 1989), mouse (Davis and Linzer,
17019
171re
172ex
173ch
174du
175et
176m
177bit
178ch
179bo
180pr
181lat
182Th
183tra
east (Fields et al., 1993; Kurtz et al., 1993; Steinmetz et al.,
93), prostate (Nevalainen et al., 1997; Li et al., 2004), brain
rattan and Kokay, 2008), skin (Craven et al., 2001; Foitzik
al., 2003, 2006), fat (Hugo et al., 2006) and immune cells (Jurco-
ová et al., 1993; Gala and Shevach, 1994). In fact, pioneering

vestigations into the extra-pituitary production of decidual pro-
tin (dPRL) in humans and rodents had established a powerful

ol by determining the local secretion of this hormone as one of
e main markers of decidualization of stromal cells (Maslar and
ddick, 1979; Jayatilak et al., 1985).

Pituitary PRL exhibits a tonic secretion, mainly under the control
hypothalamic inhibitory factors, with dopamine being the best

tablished modulator (reviewed in Ben-Jonathan, 1985; Freeman
al., 2000; Grattan and Kokay, 2008). Dopamine inhibits PRL re-
se by binding to the D2 receptor, an adenylyl cyclase-linked
pamine receptor, on the pituitary lactotroph cells. It has been re-
rted that PRL affects its own secretion by affecting the dopami-
rgic neurons via a short loop negative feedback (Milenkovic
al., 1990). Using either PRLR knockout or PRLR transgenic models,

and others have shown that disruption of normal PRLR expres-
n causes a significant rise of PRL serum levels, suggesting that
L/PRLR signaling down-regulates PRL synthesis and/or secretion
the hypothalamic and/or pituitary level (Binart et al., 2000 and
lperin et al., 2008). PRL secretion is pulsatile and is paced by a cir-

dian rhythm. The lowest levels are observed in the morning about
3 h after waking up and the highest during sleep (Linkowski
al., 1998). On the other hand, the mechanism of PRL secretion
extra-pituitary sites is not fully understood but appears to be cell
pe specific and is not necessarily dependent on dopaminergic sys-
m (Gellersen et al., 1994; Ben-Jonathan et al., 2008). Ben-Jona-
an and colleagues have recently shown expression of functional
pamine receptors in adipocytes that inhibit PRL expression and
lease after dopamine treatment (Borcherding et al., 2011).
ease cite this article in press as: Sangeeta Devi, Y., Halperin, J. Reproductive ac
olecular and Cellular Endocrinology (2013), http://dx.doi.org/10.1016/j.mce.201
wever, in other sites such as decidua, secretion of PRL is not
pendent on dopamine but rather on transcriptional control,
uch like other cytokines (Ben-Jonathan et al., 2008).
Transcriptional regulation of pituitary and extra-pituitary PRL

pression are under the control of two independent promoter re-
ns: a proximal promoter region modulates pituitary PRL expres-
n (Berwaer et al., 1991), whereas a distal upstream region

rects extra-pituitary expression (Berwaer et al., 1994; Feather-
ne et al., 2012). The proximal promoter region contains multiple
ding sites for Pit-1 transcription factor, a member of the POU

meodomain protein. Pit-1 is necessary for transcription of pitu-
ry PRL and mediates its effect by interacting with nuclear hor-

one receptors and other coregulators (Featherstone et al., 2012;
n-Jonathan et al., 2008)). As for the extra-pituitary PRL, its
pression is proposed to be independent of Pit-1 (Gellersen
al., 1994; Ben-Jonathan et al., 1996). However, recent data sug-
sts that Pit-1 may be involved in the expression of PRL in human
east cell lines and tumors (Ben-Batalla et al., 2010). It is not clear
ether this mechanism of regulation is unique to cancer cells or

presents a common mechanism in other extra-pituitary PRL pro-
cing sites. Nonetheless, the diverse expression profile of the PRL
ne in extra-pituitary sites suggests a complex system of regula-
n enabling cell-specific expression and response to differential

gulatory mediators. In the case of the decidua, dPRL is synthe-
ed and secreted by the human endometrium around day 23 of

e normal menstrual cycle and depends primarily on levels of pro-
sterone and estradiol (Lockwood and Schatz, 1996). In a fertile
cle, the capacity for dPRL production increases rapidly as implan-
tion progresses. Together with IGFBP1, dPRL is the most dramat-
lly induced genes in the human endometrium during pregnancy.
e transcription factor C/EBPb mediates cAMP induction of dPRL
forming a nucleoprotein complex that binds the proximal dPRL

omoter region upon PKA activation in human endometrial stro-
al cells (Pohnke et al., 1999). Other reports have demonstrated
at overexpression of Foxo1A induces a significant increase in
RL promoter activity by cooperating with C/EBPb (Christian
al., 2002 and Buzzio et al., 2006) and with HoxA-11 (Lynch
al., 2009), both studies performed in human endometrial stro-

al cells. Apart from serving as a useful marker of decidualization
endometrial stromal cells, dPRL has also been shown to play an
portant role in the maintenance of pregnancy, the findings of
ich are further emphasized in PRL and PRLR knockout mice

inart et al., 2000; Bao et al., 2007).

PRL receptor isoforms

Prolactin receptor (PRLR) is a member of the class 1 cytokine
ceptor superfamily that lacks intrinsic tyrosine kinase activity
alker, 2005), and is encoded by a gene located in chromosome
89), and rat (Jayatilak and Gibori, 1986; Boutin et al., 1988),
spectively. This membrane-anchored protein is composed of an
tracellular ligand-binding domain, a single pass transmembrane
ain and an intracellular domain responsible for the signal trans-
ction. PRLR was first cloned and characterized in rodents (Boutin
al., 1988; Kelly et al., 1989; Davis and Linzer, 1989, 1990), and al-
ost simultaneously described in human (Boutin et al., 1989), rab-

(Edery et al., 1989), and later in bovine (Scott et al., 1992),
icken (Zhou et al., 1996), frog (Yamamoto et al., 2000), and rain-
w trout (Prunet et al., 2000). Although it codes for a single gene
oduct, alternative splicing of its primary transcript or post-trans-
ional cleavage can generate multiple variants of the receptor.
ese various PRLR isoforms share a common extracellular and
nsmembrane domain, but differ in the length and composition
tions of prolactin mediated through short and long receptor isoforms.
3.09.016
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of their cytoplasmic domain, and therefore are designated as th
long form (PRL-RL) and short form (PRL-RS). The structures of thes
different isoforms have been discussed at length by several review
(Bouilly et al., 2012; Ben-Jonathan et al., 2008; Bole-Feysot et a
1998; Clevenger and Kline, 2001; Freeman et al., 2000). An interme
diate form (RI) has also been reported for human PRLR and in the ra
NB2 cell line but not in the mouse (Kline et al., 1999; Ali et a
1991). PRL-RL has been extensively studied and is considered th
major isoform through which PRL transmits its signals. The ra
PRL-RL has 591 amino acids, of which 357 residues reside withi
the intracellular domain, whereas mouse PRL-RL is composed o
589 amino acids, with 357 in the intracellular domain. There is
90% homology between these two species, including conservatio
of JAK2 binding domain (Ben-Jonathan et al., 2008). As to PRL-R
it has been cloned in several species, including humans (Hu et a
2001), rat (Boutin et al., 1988), mouse (Davis and Linzer, 1989
cow, and sheep (Bignon et al., 1997). The rat PRL-RS encodes a sma
protein of 291 amino acids, of which up to residue 261 is identica
to the PRL-RL isoform and differs thereafter (Boutin et al., 1988
Three short isoforms have been reported in mice, known as PR-1
PR-2, and PR-3, with unique C-terminal sequences following th
common membrane-proximal residues in the intracellular domai
(Davis and Linzer, 1989). Among these, one clone (PR-1) has bee
identified at protein level and shown to have functional signa
transduction capabilities (Binart et al., 2010). PR-1 consists of 30
amino acids, of which the first 280 amino acids are identical t

other mouse isoforms, but the last 23 amino acids located within

-
o
i-

e

e
l.,
r,
L
l,
t
R
f

t-
d
-
n
a
n
-
-
p
s
-
-

273S.
274-
275d
276y
277k
278R
279R
280-
281d
282e
283is
284a
285is
286).
287r
288is
289-
290-
291-
292t
293e
294e
295e
296

2974. PRLR activation mechanisms

298s
299d
the cytoplamic domain diverge from other isoforms (Davis and Lin
zer, 1989). This unique sequence may confer its ability to bind t
distinct intracellular signaling molecules and independent biolog
cal action.

3. Expression and regulation of PRLR isoforms in reproductiv
tissues

Expression of PRLR at the transcript level has been shown in th
ovary of several species (Kowalewski et al., 2011; Kingston et a
2008; Picazo et al., 2004; Clarke et al., 1993; Clarke and Linze
1993 and Russell and Richards, 1999). In rodents, both PRL-R
and PRL-RS mRNAs are co-expressed in granulosa, interstitia
and luteal cells during the estrus cycle, with PRL-RL being the mos
dominant isoform along all stages (Clarke et al., 1993). PRL
expression levels vary along the estrus cycle as well as stages o
pregnancy. For both isoforms, maximal mRNAs levels were a
tained during proestrus, followed by a decline during estrus, an
then a recovery to maximal levels by late diestrus and early proes
trus (Clarke et al., 1993; Clarke and Linzer, 1993). This decrease i
PRLR levels presumably plays a role in attenuating PRL actions in
number of periovulatory events over specific ovarian cell types. I
addition, the attainment of high PRLR levels in late diestrus coin
cides with the requirement for PRL to maintain progesterone pro
duction in preparation for pregnancy or pseudopregnancy. A shar
increase in PRL-RL expression in preovulatory granulosa cells, a
compared with small follicles has been shown by Russell and Rich
ards (1999) and suggested a role for PRL in mature follicles. A sim

ilar increase in PRLR expression accompanied by the requirement

-

-
-
;
d

-
g

300f
301-
302n
303d
304n
305-
306i-
307e
308d
309f
for progesterone production has been demonstrated in other spe
cies as well (Thompson et al., 2011; Picazo et al., 2004).

Expression of both PRL-RL and PRL-RS is further enhanced dur
ing luteinization; in particular, a robust increase in PRL-RS tran
script level is associated with luteinization (Telleria et al., 1997
Stocco et al., 2007). Interestingly, this increase in PRL-RS is relate
to enhanced activation of STAT5b in the functional corpus luteum
of pregnancy (Russell and Richards, 1999). This suggests an impor
tant role for PRL-RS in corpus luteum function either by actin
Please cite this article in press as: Sangeeta Devi, Y., Halperin, J. Reproduct
Molecular and Cellular Endocrinology (2013), http://dx.doi.org/10.1016/j.m
synergistically with PRL-RL or through other independent func
tions (discussed in Section 7). The mechanisms involved in selec
tive regulation of the different isoforms remains unclear, bu
perhaps more understanding in the mechanisms of alternativ
splicing of PRLR will shed light into this differential regulation
The overall up-regulation of PRLR during luteinization in rodent
appears to coincide with the LH surge and presumably is importan
for sustained expression of PRLR (Stocco et al., 2007). There are n
significant changes in mRNA levels of either PRL-RL nor PRL-RS i
the corpus luteum until day 20 of gestation, whereas a profoun
decline in PRLR mRNA and protein for both receptor types occur
at the end of pregnancy (Russell and Richards, 1999 and Telleri
et al., 1997), an event mediated by prostaglandin F2 a (Stocc
et al., 2003, 2000). This drop in PRLR expression is accompanie
by a rapid increase in the expression of 20a-hydroxysteroid dehy
drogenase (20a-HSD) (Telleria et al., 1997) and decrease in proges
terone allowing parturition (Piekorz et al., 2005).

Decidua is another target of PRL function during pregnanc
Expression of PRLR has been demonstrated in many specie
including human (Jabbour and Critchley, 2001), non-human pr
mates (Frasor et al., 1999), and rodents (Gu et al., 1996 and Rees
et al., 2000). Interestingly, decidualization itself does not appea
to be a trigger for expression of PRLR, as only 3 days after th
induction of decidualization, PRL-RL first detected in the roden
uterus (Gu et al., 1996). Thereafter, mRNAs for both PRL-RS an
PRL-RL became detectable in both antimesometrial and mesome
trial decidua, although PRL-RL mRNA level is higher than PRL-R
One study has reported expression of PRLR only in the antime
sometrial side in mouse uterus (Reese et al., 2000). This coul
be due to species difference or due to difference in the sensitivit
of the techniques used. In rat, expression of both receptors pea
at mid pregnancy, and as embryo development progresses, PRL
mRNA levels decrease (Gu et al., 1996). This decline in PRL
mRNA strongly correlates with expression of activin A and is sup
ported by in vitro studies showing that treatment of culture
decidual cells with activin A results in accelerated disappearanc
of PRLR (Gu et al., 1996; Tessier et al., 2003). In contrast, th
inhibitory effect of activin is prevented by expression of alph
2-macroglobulin (a2 M), an activin binding protein which
highly expressed in mesometrial decidua (Gu et al., 1996
Whether this regulatory mechanism is limited to the uterus o
is also present in non-uterine tissues is not clear. However, it
interesting to note that an increase in a2 M expression is also ob
served during luteinization in the ovary concomitant with an in
crease in PRLR mRNA levels (Russell and Richards, 1999; Gaddy
Kurten et al., 1989). Taken together, these results suggest tha
PRLR is expressed in a spatio-temporal manner in reproductiv
tissues, and the regulation of PRLR expression involves multipl
mechanisms mediated by endocrine, paracrine and autocrin
factors.
Conflicting data have been reported regarding the mechanism
involved in the activation of PRLR. Several investigations propose
a ‘‘induced-fit’’ model given by an obligated-sequential chain o
events: PRL binds first to one receptor molecule and induces a con
formational change in the ligand, which in turn, favors interactio
with a second receptor molecule resulting in the known activate
PRLR dimer (Gertler et al., 1996; Sivaprasad et al., 2004; Va
Agthoven et al., 2010; Voorhees and Brooks, 2010). However, stud
ies in which PRL-RL was transfected into T47D cells revealed l
gand-independent dimerization of the receptor. Moreover, thes
studies also demonstrated that the addition of PRL to PRL-starve
cells did not increase dimer formation, suggesting that part o
ive actions of prolactin mediated through short and long receptor isoforms.
ce.2013.09.016
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310 the human PRLR is predimerized in these cell lines (Gadd and Cle-
311 venger, 2006). In addition, it was established by FRET and co-
312 immunoprecipitation that two PRLR molecules can dimerize in
313 the absence of PRL, bringing the proximal membrane regions of
314 their intracellular domains into close proximity, forming homo-di-
315 mers (PRL-RL – PRL-RL or PRL-RS – PRL-RS) (Tan et al., 2005; Qazi
316 et al., 2006). Activation occurs upon binding of the ligand to this
317 pre-homodimer, forming a one-ligand two-receptor complex. Once
318 the heterotrimeric complex is formed, either by the induced fit
319 model or by binding to a pre-homodimer, a conformational change
320 is induced in the intracellular domain that allows docking of the
321 tyrosine-protein kinase, JAK2, within the membrane-proximal pro-
322 line-enriched region of each PRLR molecule (Campbell et al., 1994;
323 Rui et al., 1994). Such a region is known as Box 1 and is conserved
324 among all the isoforms of the receptor. JAK2 auto-transphosphory-
325 lates and induces phosphorylation of numerous proteins, including
326 the receptor itself, which leads to activation of distinct signaling
327 cascades (Brooks, 2012; Freeman et al., 2000 and Kelly et al.,
328 1991). Interestingly, ligand independent heterodimerization of hu-
329 man PRL-RL and PRL-RS has also been demonstrated (Qazi et al.,
330 2006; Tan and Walker, 2010). Although such heterodimers are
331 competent to bind PRL, subsequent signal transduction events
332 via activation of JAK/STAT, the canonical PRL signaling pathway,
333 is inoperative. Whether heterodimers of PRL-RL and PRL-RS acti-
334 vate other signaling pathways and whether they have functional
335 relevance is not yet clear.

336 5. PRLR signaling pathways

337 5.1. Signaling mechanisms activated by PRL-RL
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370results could be due to species differences or due to technical is-
371sues arising from the use of cell lines expressing both receptors.
372Using a transgenic mouse model expressing exclusively PRL-RS
373(PR-1 isoform) in a PRLR�/� background (PRLR�/�RS), we have fi-
374nally demonstrated that PRL-RS alone does not activate JAK2/STAT
375signaling in either the ovary or the decidua (Devi et al., 2009a,b).
376Further controversy exists regarding the physiological function of
377RS. It was initially thought that PRL-RS played only a dominant-
378negative role preventing PRL signaling through PRL-RL (Perrot-
379Applanat et al., 1997, Berlanga et al., 1997; Lesueur et al., 1991).
380However, this view has been challenged by several groups, includ-
381ing ours (Devi et al., 2009a,b; Halperin et al., 2008; Binart et al.,
3822003; Huang et al., 2008; Das and Vonderhaar, 1995. Das and Von-
383derhaar (1995) first proposed a signaling role for PRL-RS in NIH-
3843T3 fibroblasts by showing that activation of the mouse PRL-RS in-
385duced MAPK activity, which ultimately suggested that PRL-RS-sig-
386naling may be involved in cell proliferation. The human PRL-RS can
387also activate MAPK in cultured cells (Huang et al., 2008), although
388this activation is delayed and prolonged, and therefore a role in dif-
389ferentiation rather than proliferation was suggested. Using a trans-
390genic mouse model, Binart et al. (2003) reported that
391overexpression of PRL-RS in the PRLR heterozygous background
392(PRLR+/�RS) could rescue the mammopoiesis defect displayed in
393the PRLR+/�mice. This led to the conclusion that, in mammary
394glands, PRL acting through RS may mediate activation of MAPK. Re-
395cent data generated using a transgenic mouse model expressing
396PRL-RS alone (PRLR�/�RS) has at least clarify some of the contro-
397versial findings in PRL-RS signaling. Using this mouse model, we
398have shown that in vivo activation of PRL-RS elicits profound ef-
399fects in the ovary, as it causes a clear defect in follicular develop-
400ment and massive granulosa cell death, leading to premature
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The most extensively characterized PRLR isoform is PRL-RL,
ich transduces both mitogenic and differentiative signals. This
form contains the entire spectrum of signalling entities attrib-

ed to PRLR, which include Box1 and Box2 motifs with the variable
x (V-box) in between, and an extended Box 2 (X-box) (Reviewed
Clevenger et al., 2003). JAK2 kinase is constitutively associated
th Box1 and rapidly activated upon ligand binding (Frasor and
bori, 2003; Lebrun et al., 1995). Well-known targets of activated
K2 include the signal transducers and activators of transcription
TAT) transcription factors (Frasor and Gibori, 2003). The two
ghly related STATs, STAT5a and STAT5b are major mediators of
L signaling in both mammary gland and ovary (Piekorz et al.,
05). Deficiencies in STAT5b or in both STAT5a and STAT5b result
loss of pregnancy during midgestation, and correlate with an in-
ase in ovarian 20a-HSD expression, and a decrease in serum pro-

sterone (Udy et al., 1997; Teglund et al., 1998). In addition to
AT5, STAT1 and STAT3 are known mediators of PRL signaling
d are JAK2 targets (DaSilva et al., 1996). PRL can also activate
any kinases other than JAK2/STAT, including phosphoinositide
kinase (PI3kinase), Src kinase, MAP kinase and Nek3 kinase (Tes-
r et al., 2001; Aksamitiene et al., 2011; Sakamoto et al., 2007;

iller et al., 2007). These pathways are presumed to be activated
rough PRL-RL even though most of the studies were performed
ing cells which express both PRL-RS and PRL-RL.

. Signaling mechanisms activated by PRL-RS

Conflicting results have been reported over the activation of
K2/STAT by PRL-RS. It has been proposed that PRL-RS cannot
tivate JAK2/STAT signalling, as it lacks the distal region on the
tracellular domain required for STAT docking (Lebrun et al.,
95; Perrot-Applanat et al., 1997). However, this finding was con-
dicted by other studies that showed activation of STAT5 through
L-RS (Bignon et al., 1999; Goupille et al., 1997). These conflicting
ease cite this article in press as: Sangeeta Devi, Y., Halperin, J. Reproductive ac
olecular and Cellular Endocrinology (2013), http://dx.doi.org/10.1016/j.mce.201
arian failure (Devi et al., 2009a,b; Halperin et al., 2008). In sharp
ntrast to the mammary gland, PRL signaling through PRL-RS
activates both ERK1/2 and p38 MAPK in the ovary (Devi et al.,
11). This deactivation was shown to be mediated through a no-
l phosphatase, DUPD1, which physically associates with both
K1/2 and p38 MAPK. We have also demonstrated that DUPD1
exclusively associated with PRL-RS irrespective of ligand bind-
g. Activation of PRL-RS by PRL causes dephosphorylation of a crit-
l threonine site on DUPD1. It has been postulated that this
phosphoryation causes activation of DUPD1 activity, which then
phosphorylates and inhibits MAPK activity (Devi et al., 2011).
rthermore, by using PRLR�/�RS mice we have demonstrated
at PRL signaling through PRL-RS represses or stimulates the
tivity of several transcription factors (Devi et al., 2009a and Hal-
rin et al., 2008), presumably leading to alteration in the expres-
n of genes essential for normal follicular development and

rvival. Interestingly, co-expression of PRL-RS and PRL-RL could
scue the inhibition of MAPK and transcription factors, and pre-
nt the deleterious effect on follicular development (Devi et al.,
11; Halperin et al., 2008). A simplified model of PRL-RS signaling
echanism leading to premature ovarian failure is shown in Fig. 1.

PRL actions and the role in reproduction

Numerous reports have established a wide spectrum of PRL
nctions that broadly exceed its traditional role in mammary
nd development, differentiation and nurturing of offspring (re-
wed in Bole-Feysot et al., 1998). Indeed, PRL-induced effects
ve been noted in diverse processes that range from electrolyte
lance, behavior, immune and stress response, cell growth, differ-
tiation, anti-apoptotic action and breast tumorigenesis. None-
eless, reproductive processes represent the largest group of
nctions attributed to this hormone (Bole-Feysot et al., 1998; Bou-
y et al., 2012). An essential role of PRL in female reproduction has
tions of prolactin mediated through short and long receptor isoforms.
3.09.016
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been well established in rodents, but remains to be determined i
human. We have outlined the findings from rodents and human i
this section.

6.1. In rodents

PRL was first identified as a key factor for mammary gland deve
opment and differentiation (Ormandy et al., 1997; Brisken et a
1999; Gallego et al., 2001). Although associated with this reproduc
tion-related process, it was not until the generation of PRL�/� an
PRLR�/�mice that the vital role of PRL in female fertility became ev
dent (Horseman et al., 1997; Ormandy et al., 1997). Both PRL�/� an
PRLR�/� females are totally infertile. One of the major defects seen i
PRLR�/� female mice is infertility directly related to insufficient pro
gesterone levels and implantation failure (Ormandy et al., 1997). Tw
days after mating, the ovaries of female PRLR�/� exhibit corpus lu
eum undergoing regression, strong DNA cleavage, poor vasculariza
tion, impaired steroidogenesis (Ormandy et al., 1997; Grosdemoug
et al., 2003; Bachelot et al., 2009). These findings clearly establishe
a critical role of PRL in the maintenance of ovarian corpus luteum an
progesterone production for rodent reproduction (Risk and Gibor
2001; Stocco et al., 2007). Apart from this, PRLR�/� mice also ha
various reproductive defects, including lack of pseudopregnancy, de
creased number of primary follicles, mistimed oocyte release, an
impaired oocyte maturation, all signs of disruption in follicular deve
opment and possibly atresia (Ormandy et al., 1997). Oocyte matura
tion is a complex process involving germinal vesicle breakdown
oocyte growth and reinitiating of meiosis in response to gonadotro
pins. This process requires signals from both oocyte itself and sur
rounding somatic cells. A large number of oocytes ovulated i
PRLR�/� mice still contain intact germinal vesicles, indicating a
important role for PRL in normal oocyte maturation. Indeed, expres
sion of PRLR had been shown in oocytes (Kiapekou et al., 2009
Nakamura et al., 2010) and PRL treatment has been shown to improv

PRL-RS

P D
U

PD
1 

P 

Foxo3 

GALT 

PRL 

JAK2 JAK2 

? 

Fig. 1. A proposed model of short form receptor (PRL-RS) signaling in the follicle
inactive form) is constitutively associated PRL-RS. Ligand-mediated activation o
process. Activated DUPD1 physically interacts with and dephosphorylates MAPK,
genes involved in follicular growth and differentiation. On the other hand, PR
mechanism yet to be determined. This inhibition causes downregulation of GAL
depletion of follicles, and ultimately, premature ovarian failure. Recent findings
ovarian failure by a mechanism(s) yet to be determined.
Please cite this article in press as: Sangeeta Devi, Y., Halperin, J. Reproduct
Molecular and Cellular Endocrinology (2013), http://dx.doi.org/10.1016/j.m
the rate of oocyte maturation in cultured preantral mouse follicle
(Kiapekou et al., 2009). It is unclear, however, whether this defec
in oocyte maturation exhibited by PRLR�/� females is due to a lac
of PRL signaling in the oocyte, a defect in surrounding granulosa cell
or the combined effect of both. PRL is known to act synergisticall
with gonadotropins to affect follicular development. Some of th
well-established functions of PRL are suppression of FSH-induce
aromatase expression and estradiol production while stimulatin
FSH-induced progesterone production in granulosa cells (Nakamur
et al., 2010; Dorrington and Gore-Langton, 1982). In the absence o
PRLR, this inhibitory and synergistic affect is abrogated, which ma
explain why PRLR knockout females exhibit an abnormal increas
in the estrogen levels during the estrous cycle and a lack of pseudo
pregnancy. Although the evidences mentioned above point to a
important role for PRL in normal follicular development and ovula
tion, the absolute requirement for PRL (or PRLR) in these processe
could be excluded since PRLR�/� ovaries have mature follicles an
are capable of ovulation, albeit with defects.

PRL also plays an important role in fertilization and develop
ment of the pre-implantation embryos. Fertilization rates are re
duced in PRLR�/� females compared to wild type controls, an
most of the fertilized eggs fail to develop correctly (Ormand
et al., 1997). Majority of oocytes arrest at the single cell stag
immediately after fertilization and only 19% of blastocyst-stag
embryos can be recovered on day 3.5 of pregnancy in the uteru
of PRLR�/� animals. The presence of PRLR mRNA during all stage
of mouse pre-implantation embryos have been demonstrated (Kia
pekou et al., 2005), and PRL has been shown to accelerate pre
implantation mouse embryo development in vitro (Yohkaichiy
et al., 1988). However, oocyte PRLR does not appear to be essentia
for the development of the pre-implantation embryo, since em
bryos from PRLR�/�mother that are transplanted into the oviduc
of PRLR+/+ foster mothers develop normally. Expression of PRL
has been observed in the oviduct of both mouse and human (Sha
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ing to premature ovarian failure. DUPD1 phosphatase (most likely the phosphorylate
L-RS causes activation of DUPD1 phosphatase activity through a dephosphorylatio

ing its inhibition, and prevents downstream signaling. This inhibition negatively affec
gnaling through PRL-RS inhibits Foxo3 transcription factor at the protein level by
xpression, leading to follicular death. The net result of these pathways leads to ear
onstrate that coexpression of long form (PRL-RL) prevents PRL-RS-induced prematu
ive actions of prolactin mediated through short and long receptor isoforms.
ce.2013.09.016
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499 et al., 2008) where it may play a role in the development of pre-
500 implantation embryo. These findings highlight the important role
501 of PRL not only in ovarian function but also elsewhere in the repro-
502 ductive tract. Intriguingly, the defects in pre-implantation egg
503 development and implantation seen in PRLR�/� mice can also be
504 rescued by supplementation of progesterone from day 0.5 of preg-
505 nancy (Reese et al., 2000; Binart et al., 2000). Of note, the PRL-in-
506 duced progesterone surge does not occur until day 2.5 of
507 pregnancy whereas the defect in pre-implantation embryos of
508 PRLR�/� females occurs earlier (between days 0.5 and 1.5) and
509 at a time when progesterone levels are normal in PRLR�/� fe-
510 males. This suggests that PRL and progesterone may have redun-
511 dant functions during post-fertilization events and the PRL deficit
512 may be compensated for by progesterone. However, the quality
513 of embryos developed in such progesterone supplemented animals
514 (PRLR�/�) have not been thoroughly examined. Interestingly, a
515 large number of embryos were lost from mid-gestation and only
516 22% of the embryos remained viable till term (Binart et al., 2000).
517 This observation could be either due to quality of embryos being
518 compromised during preimplantation development or upregula-
519 tion of detrimental factors in the uterus in the absence of PRLR,
520 or a combined effect of both factors. Decidual PRL is known to
521 act locally and inhibit detrimental factors such as IL-6 and 20a-
522 HSD during gestation (Bao et al., 2007) and upregulation of these
523 factors may be a plausible reason for fetal loss at mid-pregnancy.

524 6.2. In humans

525 While a critical role of PRL in female reproduction in rodents has
526 been established, it remains unclear whether PRL plays a similar
527 essential role in human reproduction. This is partly due to the over-
528 lapping functions of PRL with placental lactogen and human growth
529 hormone, both of which can bind and elicit signaling through PRLR
530 (Cunningham et al., 1990 and Lowman et al., 1991). Moreover, there
531 is no known homozygous inactivating mutation of PRLR or PRL gene
532 in human that could confirm the role of PRL/PRLR in human repro-
533 duction. Hyperprolactinemia is currently the best known PRL-re-
534 lated pathology that affects human fertility and is defined as
535 abnormally high levels of circulating PRL. Hyperprolactinemia
536 causes galactorrhea, amenorrhea, and infertility in women, mainly
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561some of these issues with the generation of transgenic mice, which
562selectively express either PRL-RS or PRL-RL. These mice allow us to
563investigate the specific physiological role of each receptor type and
564the signals activated exclusively of one isoform in the absence of
565others. We have identified novel signaling pathways mediated by
566each receptor isoform and established that PRL-RS has an impor-
567tant physiological role beyond the alleged dominant-negative
568function. Transgenic mice expressing PRL-RS in a PRLR null back-
569ground (PRLR�/�RS) were generated by mating fertile transgenic
570PRLR+/�RS females with PRLR�/�males. The PRLR�/�RS females
571were not only infertile, but also exhibited severe defects in follicu-
572lar development characterized by accelerated follicular recruit-
573ment followed by massive granulosa cell death, collapsed zona
574pellucida, and ultimately exhausting all follicular pool leading to
575premature ovarian failure (Halperin et al., 2008). Furthermore,
576in vitro transfection of PRL-RS in granulosa and luteal cell lines
577lacking endogeneous PRLR die after PRL treatment (Devi et al.,
5782009b). These results strongly suggest that PRL-RS can signal on
579its own and has a physiological role independent of PRL-RL. Gene
580expression profiling and analysis of transcription factors have re-
581vealed that PRL-RS signaling can affect the expression of several
582genes as well as the activity of transcription factors involved in
583multiple critical pathways (Halperin et al., 2008; Devi et al.,
5842009a,b). Of particular interest was the inhibition of expression
585and activity of transcription factors involved in oxidative stress
586and cell death, namely Sp1 and FOXO3. In recent years, Sp1 has
587been shown to play a critical role in multiple cellular responses be-
588yond the traditional view as a constitutive activator of housekeep-
589ing genes and other TATA-less genes (Wierstra, 2008). Indeed, Sp1
590was shown to stimulate survival in cells under oxidative stress
591(Dorrington and Gore-Langton, 1982; Ryu et al., 2003; Lee et al.,
5922006). Our observation that cells expressing PRL-RS as the only
593form of the receptor die after PRL treatment, concomitant with
594the loss of Sp1, suggesting that this transcription factor is critical
595for cell survival in the ovary and that expression of PRL-RS alone
596disrupts this pathway.
597The deleterious phenotype observed in PRLR�/�RS females
598could be attributed in large part to diminished expression of
599FOXO3 in the ovary. An essential role for FOXO3 in follicular devel-
600opment has been well established. FOXO3 is part of the inhibitory
601m
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e to inhibition of hypothalamic GnRH pulsatility, suppression of
e preovulatory gonadotropin surge, and its consequent inhibition
ovarian function (Kaiser, 2012). Hyperprolactinaemia is found in
% of women with secondary amenorrhoea, and 75% of women
th both amenorrhoea and galactorrhoea (Prabhakar and Davis,
08). Although hyperprolactinemia has been proposed to block
ulation through inhibition of GnRH release, the mechanisms in-
lved in this process are poorly understood. Using a mouse model
continuous PRL infusion, a recent report demonstrated that

perprolactinemia significantly decreased kisspeptin mRNA and
ptide staining, induced anovulation, and reduced GnRH and gon-
otropin secretion (Sonigo et al., 2012). Furthermore, kisspeptin
ministration restored gonadotropin secretion and ovarian cyclic-
, suggesting that kisspeptin neurons play a major role in hyper-
olactinemic anovulation.

Differential and cooperative functions of PRLR isoforms:
ssons from transgenic mice selectively expressing PRL-RS or
L-RL

Studies from PRL�/� and PRLR�/� mice have undoubtedly
ghlighted a critical role of PRL/PRLR in various reproductive func-
ns. Although PRL-RL has been always assumed to be the main
form involved in the regulations of those functions, neither
L nor PRLR knockout mice models could clarify which receptor
form is essential for these functions. We are able to address
ease cite this article in press as: Sangeeta Devi, Y., Halperin, J. Reproductive ac
olecular and Cellular Endocrinology (2013), http://dx.doi.org/10.1016/j.mce.201
achinery controlling oocyte growth during primordial follicle
tivation (Liu et al., 2007; Reddy et al., 2008; John et al., 2008).
fact, FOXO3 knockout mice exhibit an ovarian phenotype of

celerated follicular activation, cell death, and premature ovarian
lure (Castrillon et al., 2003 and Hosaka et al., 2004) similar to
at seen in PRLR�/�RS. Whether there is a link between single-
cleotide polymorphisms or mutations in FOXO3 gene with idio-
thic premature ovarian failure in women is currently being
vestigated by several groups (Wang et al., 2010; Gallardo et al.,
08). Interestingly, we have identified a novel cellular target of
XO3, an enzyme known as galactose-1-phosphate uridyltrans-
ase (GALT) in the PRLR�/�RS mice. In vitro analysis of the GALT

omoter confirmed that FOXO3 exerts a significant up-regulation
GALT expression. GALT is an enzyme that participates in normal

lactose metabolism and deficiency of this enzyme leads to cell
xicity and death due to increased accumulation of the metabo-
es gal-1P and galactitol in a disease known as galactosemia.
ore than 180 mutations in the GALT gene have been identified

people with the classic form of galactosemia (Gort et al.,
06). Intriguingly, women with this disease are fertile early in life,
t later exhibit a strong depletion of follicles, which eventually
ds to premature ovarian failure (Kaufman et al., 1981). The neg-

ive impact of galactosemia on ovarian function has been also
ll demonstrated in animal models, e. g. high galactose diet in

ts led to a decrease follicular development (Liu et al., 2006)
d an increase in apoptosis of maturing follicles (Lai et al.,
tions of prolactin mediated through short and long receptor isoforms.
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2003). We believe there is a close relation between GALT and PRL
RS as ovaries from PRLR�/�RS females exhibit a dramatic loss o
GALT mRNA and overexpression of PRL-RS in culture strongly re
presses GALT transcriptional activity (Halperin et al., 2008). Th
loss of GALT is presumably a major factor in early follicular deple
tion and premature ovarian failure phenotype of PRLR�/�RS mic
(summarized in Fig. 1).

In spite of the many defects in follicular development observe
in PRLR�/�RS ovaries, some follicles do escape atresia and manag
to ovulate in young females. However, the corpus luteum rapidl
degenerates and these females never become pregnant. Sinc
expression of PRL-RS could not prevent the luteal failure induce
by the deletion of PRLR gene (Ormandy et al., 1997; Halperi
et al., 2008), activation of PRL-RL was thought to be the sole recep
tor responsible for the luteotropic effect of PRL. In an attempt t
study the role of PRL-RL in mediating the luteotropic effect o
PRL in the corpus luteum, two novel transgenic mouse mode
which selectively express PRL-RL either ubiquitously or in a corpu
luteum specific manner (PRLR�/�RL) were developed by Gibo
and colleagues (Le et al., 2012). Surprisingly, both of these trans
genic females are infertile and exhibit low progesterone levels de
spite the activation of JAK2/STAT5 signaling, suggesting tha
expression of PRL-RL alone is not sufficient to rescue infertilit
Closer analysis revealed a defect in luteal cell hypertrophy an
steroidogenic capacity. Interestingly, the luteal cells derived from
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Fig. 2. A proposed and simplified model of coordinated action of PRL-RS and PRL-
PRL-RS and PRL-RL signaling pathways in the corpus luteum involving two cell com
of PRL-RS causes activation of transcription factors (TF) e.g. HIF-1 and induction o
upon endothelial cells to induce vascularization, which is critical for corpus luteum
mediate its action in both cell types. PRL-RS also physically associates with HSD
allowing phosphorylation and stabilization of HSD17b-7; thus contributing to lo
induce hypertrophy and VEGF expression. On the other hand, PRL-mediated activa
progesterone production and inhibition of 20aHSD. Activation of Jak2/STAT5 is
involved. These results strongly suggest that the coordinated actions of both rec
signaling mechanism remains to be explored.
Please cite this article in press as: Sangeeta Devi, Y., Halperin, J. Reproduct
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PRLR-/-RL transgenic mice are perfectly normal in culture, sugges
ing extrinsic factor(s) may be involved in this luteinization defec
Expression of VEGFA, a key regulator of angiogenesis and vascular
ization is dramatically reduced in PRLR�/�RL mice. Furthermor
PRLR�/�RL females exhibit aberrant expression of collagen IV,
marker for the basal lamina of endothelial cells and a discordan
organization of endothelial cells in the corpus luteum (Le et a
2012), suggesting that PRL-RS may be necessary for proper expres
sion of these factors. We have recently shown that PRL activatio
of PRL-RS robustly stimulated the activity of HIF-1 transcriptio
factor (Devi et al., 2009a), which is a key inducer of VEGF expres
sion (Alam et al., 2009). All these results strongly suggest tha
PRL-RS plays an essential role in vascularization of pregnancy cor
pus luteum. This notion is further supported by the fact that (1
PRL-RS is the predominant isoform in endothelial cells derive
from CL (Ricken et al., 2007), (2) a robust increase in the expressio
of PRL-RS is observed during luteinization in normal ovary (Russe
and Richards, 1999; Telleria et al., 1997), (3) PRL induces endothe
lial cell proliferation and vascularization in corpus luteum (Che
et al., 2002; Gaytan et al., 1997), (4) mice expressing only one allel
of PRLR (RS) in the PRL-RL transgenic background (PRLR+/�RL) ar
fertile and have normal corpus luteum. Furthermore, PRL-RS coul
be also involved in luteal cell hypertrophy which is a critical ste
preceding proliferation of vascular endothelial cells in the corpu
luteum (Tamura and Greenwald, 1987). It is well known tha
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the corpus luteum. Based on both previous and recent findings, we propose a model
tments, namely endothelial cells and steroidogenic luteal cells. PRL mediated activatio
giogenic genes such as VEGF. In conjunction with other growth factors (GFs), VEGF ac
rvival. Since PRL-RS is expressed by both endothelial and luteal cells, this receptor ma
7, an enzyme that converts estrone to estradiol, bringing it in close proximity to JAK
estradiol synthesis. This locally produced estradiol, in turn, acts on the luteal cells
of PRL-RL in luteal steroidogenic cells is critical for induction of luteal genes involved

ial for these PRL-mediated functions; however, other signaling pathways may also b
rs are required for survival and maintenance of corpus luteum. However, the preci
ive actions of prolactin mediated through short and long receptor isoforms.
ce.2013.09.016
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tradiol stimulates luteal cell hypertrophy (McLean et al., 1990).
L-RS was shown to be physically associated with HSD17B-7, a
y enzyme in estradiol biosynthesis, in the corpus luteum (Risk
al., 2005; Duan et al., 1996, 1997). This association appears to
bilize and increase expression of HSD17B-7, which in turn stim-

ates estradiol biosynthesis. Fig. 2 depicts a proposed model of
L-RS and PRL-RL signaling in corpus luteum. Although the pre-
e signaling mechanism is still unclear, these findings strongly
vocate an important role of PRL-RS in angiogenesis and a coordi-
te action with PRL-RL for proper maintenance of functional cor-
s luteum and fertility.

Concluding remarks

PRL impacts a large number of ovarian functions including fol-
ular development and the maintenance of functional corpus lut-
m. PRL actions on each ovarian cell type and which receptor
form is important for these functions remains a deeply debated

ea. This became more complicated by the fact that both long and
ort isoform of the receptor are expressed in varying concentra-
ns in many cell types throughout the estrus cycle and during
station. The long form has been viewed as the predominant
ceptor with active and positive signaling whereas the physiolog-
l role as well as signaling of the short form remains controver-
l. However, recent and compelling evidences suggest that the
ort form can interact with signaling molecules, activates specific
naling pathways, and can cooperate with or inhibits the long

rm signaling. The function and the differential signaling mecha-
sms elicited exclusively by one type of receptor are beginning to
ravel with the help of transgenic mice, which selectively express
her the short or the long form receptor. Contrary to previous be-
fs that the short form is a sole dominant negative receptor, these
cent findings have clearly demonstrated that either long or short
rm can act as dominant negative to each other and prevent
cessive signaling of one isoform. On the other hand, their con-
rted cooperative actions are required for survival of the corpus
teum. What remains to be explored is the manner in which these
forms cross talk with each other and mediate differential or

operative signaling. This review highlighted important findings
novel PRL signaling though different isoforms of receptor and

scussed their implications in normal reproductive function and
productive pathologies.
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