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In this work we study the surface plasmon generation by a suddenly created electron-hole pair in
nanoparticles of spherical shape. We use a previously developed model based on the Hamiltonian
formulation for plasmon field.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years many techniques for synthesis of nanoparticles
have been developed. Many of these techniques provide particles
of spherical shape [1,2], the so-obtained nanospheres do have
many applications, e. g. in the field of catalysis [3] or as nano-
antennas [4].

In this work we use the Hamiltonian model developed in
previous works [5,6] to study the plasmon production due to a
suddenly created electron-hole pair. Applying the Hamiltonian
formalism it is assumed that the collective electron density os-
cillations in the system can be described by a quantum mechanical
Hamiltonian including annihilation (a) and creation (a*) operators
over the plasmon field [7e10]. In order to construct such a
Hamiltonian the knowledge of the electrostatic potential as well
as the boundary conditions for the particular geometry are
required.

2. Theoretical model

The unperturbed Hamiltonian for a system of electronic charges
under an electrostatic potential is given by Ref. [5]

H0 ¼ 1
2

Z
rsfsd

3r þ 1
2
n0me

Z
ðVjsÞ2d3r (1)

where rs is the volume charge density associated to the volume
electron density at rest ns with rs ¼ �nsqe; n0 the volume density at
rest, me the electron mass, qe the electron charge, js is the field of
velocities given by

vðr; tÞ ¼ �Vjðr; tÞ

where v is the velocity of the material electronic density, and f is
the electrostatic potential which for spherical bodies [11] is given
by

fsðr; tÞ ¼
X
l;m

(
blr

lYl;mðq;4Þ r � b
alr

�ðlþ1ÞYl;mðq;4Þ b < r
(2)

where we use spherical coordinates (r,q,4), b is the radius of
the sphere, and Yl,m are the spherical harmonics (See Fig. 1).
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In the rest of this work we do use atomic units (au.), so
me ¼ qe ¼ Z ¼ 1.

The electron density in this case is

nsðr; tÞ ¼
X
l;m

nlðtÞdðr � bÞYl;mðq;4Þ (3)

and the field of velocities [5] is:

jsðr; tÞ ¼
X
l;m

�
jl;mðtÞrlYl;mðq;4Þ r � b
0 b < r

(4)

The factors a, b and jl,m are obtained by using the boundary
conditions:

vfs

vr

ext��
r¼a �

vfs

vr

int��
r¼a ¼ �4ps (5)

3ðuÞvfs

vr

int��
r¼a �

vfs

vr

ext��
r¼a ¼ 0 (6)

where 3(u) is the dielectric function, s is the surface charge density,
which is related to the density ns by

s ¼
X
l;m

nlðtÞYl;mðq;4Þ (7)

Then, from the boundary conditions Eqs. (5) and (6), and Eq. (7)
we obtain

al ¼ nlðtÞ
4p 3blþ2

ðlþ 1Þð 3� 1Þ

bl ¼ �nlðtÞ
4p

lbl�1ð 3� 1Þ

jl;mðtÞ ¼ _nlðtÞ
no

1
lbl�1

and finally

H0 ¼ 4pb3

2u2
P

X
l;m

ð�1Þm1
l

h
u2nl;�mnl;m þ _nl;�m _nl;m

i

where uP is the frequency of the bulk plasmon.
In the frame of second quantization we should write nl as a

combination of plasmon creation and annihilation operators, a�l
and al respectively. These operators act over the plasmon field
absorbing and creating a plasmon of the mode l:

nl ¼
ffiffiffiffiffiffiffi
luP

8u

r �
al þ a*l

�

where l is an integer number. With this, the potential can be
expressed as

fsðr; tÞ ¼
X
l

FlðtÞ
�
al þ a�l

�
(8)

where Fl is a real function ðFl ¼ F�l Þ defined by:

FlðtÞ ¼
�
Pl½cosðqðtÞÞ�xlðrðtÞÞ r � b
Pl½cosðqðtÞÞ�clðrðtÞÞ b < r

(9)

where the Pl are the Legendre polynomials of order l, and the
functions xl and cl are given by

xl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2lu2

P
ub3

s
rðtÞl

bl�1ð2lþ 1Þ

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2lu2

P
ub3

s
blþ2

rðtÞlþ1ð2lþ 1Þ
In this way we get the unperturbed Hamiltonian Eq. (1) in the

harmonic oscillator form:

H0 ¼
X
l

ula
*
l al (10)

For spheres [12], the dispersion ratio gives us the allowed values
for thewave vector k, so in effect, we do not have really a dispersion
ratio; we have instead a relation between u and the mode l, giving
us the permitted values for u:

u2
l ¼ u2

Pl=ð2lþ 1Þ
In addition, we note that l¼ 0 is not an availablemode because it

gives u0 ¼ 0. Fig. 2 shows the dispersion ratio. As we see the
dispersion ratio has the form of horizontal lines which get closer
and closer to u/uP ¼ 1/2 as l / N.

In Fig. 3 we see the behavior of ul for many values of l; as l/N,
ul=up/1=

ffiffiffi
2

p
, which means that the Drude Law’s relation between

volume and surface plasmon frequencies is reached.
Let us suppose now that there is a charged particle traveling

inside the sphere as shown in Fig. 1, with a trajectory R(t), then
the total Hamiltonian should include an interaction term in
addition to the unperturbed one (Eq. (10)). Due its electrostatic
nature [5], this interaction term can be written in the form
H I¼ Zf(R(r)).

The interaction Hamiltonian has the form:

HI ¼ �ZfðeÞQðt � t0Þ þ ZfðhÞQðt � t0Þ

where Z is the electric charge of the particle in units of electron
charge andQ is the Heaviside step function. As we see, we have two

Fig. 1. Photoemission from a spherical particle. The electron-hole pair is created inside
the sphere at a radial distance r0. The hole remains stationary in that position and the
electron escapes following a radial trajectory.
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terms in the potential: one from the electron and another from the
hole and according to Eq. (8) we write:

HI ¼ �
X
l

�
f ðeÞl þ f ðhÞl

��
al þ a*l

�

with

f ðeÞl ðtÞ ¼ ZQðt � t0ÞFl
�
RðeÞðtÞ

�
(11)

f ðhÞl ðtÞ ¼ ZQðt � t0ÞFl
�
RðhÞðtÞ

�
(12)

where the superscripts (e) and (h) indicate electron and hole,
respectively.

3. Results and discussion

We are interested now in finding the number Q of the plasmons
produced, which can be obtained by Ref. [5]

Q ¼ A

ð2pÞ2
Z ���XlðNÞ

���2d2k (13)

where Xl(t) is given by Ref. [5]:

XlðtÞ ¼
Zt

�N

flðt0Þe�iut0dt0 (14)

Then using the Eqs. (9), (11), (12) and (14), with t0 ¼ 0:

Xl ¼ xl

ZT
0

h
� rlPlðcos qÞ þ rlhPlðcos qhÞ

i
dt

in our case r ¼ r0 þ vt, q ¼ q0 ¼ qh ¼ 0 and rh ¼ r0; then integrating:

Xl ¼ �xl
ðr0 þ vTÞlþ1

lþ 1
þ xlr

l
0T

If the time necessary for electrons to leave the sphere is
T ¼ (b � r0)/v, we obtain from Eq. (13) a sum of three terms:

Ql ¼ Q ðeÞ
l þ Q ðhÞ

l þ Q ðehÞ
l

where

Q ðeÞ
l ¼ ðxlÞ2

	
r0 þ vt
lþ 1


2ðlþ1Þ

Q ðhÞ
l ¼ ðxlÞ2

�
rl0T

�2

Q ðehÞ
l ¼ �ðxlÞ2

	
r0 þ vt
lþ 1


lþ1�
rl0T

�
Fig. 4 shows the results for an Al sphere of radius 20 au. (w1 nm)

and an electron escaping with v ¼ 4 au. (w108 eV), for the modes
l ¼ 1,2,3, .; as we see, all contributions increase as the distance of
the electron-hole pair creation from the surface approaches zero.
Also, we note that the contributions to Ql decrease strongly as l
increases, this tendency is stronger for the electron contribution
Ql
(e).
We note also that the interference term Ql

(eh) is negative and
larger than the hole term, Q ðhÞ

l which is smaller for the mode
l ¼ 0, than Q ðeÞ

l ; in such a way we cannot separate the intrinsic
(hole) and extrinsic (electron) terms. We note that as l increases,
the electron contribution decreases strongly being even smaller
than the hole contribution, at the same time the interference
(electron-hole) term becomes very important in production of
surface plasmons.

4. Concluding remarks

In this work we used the Hamiltonian formalism for studying
the plasmon production in a spherical nanoparticle of aluminum.
Such a model is a very suitable way for the study of plasmon gen-
eration and decay due to a suddenly created electron-hole pair in
nanoscaled bodies [5,13], and it has the advantage of giving a more
complete view of the system from the point of view of quantum
mechanics. The advantage of the Hamiltonian formalism consists in
describing the production and decay of plasmons in terms of op-
erators creation a*, and absorption a of plasmon, respectively, over
the plasmon field. However this method requires more complex
mathematics, which is not always easy to apply.

Fig. 3. Discrete set of points representing the oscillation modes of the electron gas in a
sphere for l from 1 to 15. As seen in this figure, as l / N, u tends to 1=

ffiffiffi
2

p
, which is the

value for the ratio us/uP for macroscopic bodies.

Fig. 2. Dispersion ratio for a sphere of radius b ¼ 20 au. For a given value of l, ul does
not depend on the wavenumber k. As a result, the horizontal lines in the Figure get
closer to the limit value 1=

ffiffiffi
2

p
, which is the corresponding ratio us/uP for a macroscopic

body [5].
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As expected for spherical particles, the plasmon production in-
creases as the site of the electron-hole pair generation approaches
the surface.

We see that the hole term in the expression describing the
average number of plasmons produced is very small comparedwith
the electron one and due to the interference term, the obtained
average number of the surface plasmons produced shows us that
for nanospheres it is not possible to distinguish between the
plasmon generation processes of intrinsic (hole) and extrinsic
(electron) type, which was previously indicated in the case of
nanocylinders, so one should be very careful when trying to
interpret the respective plasmon spectra in terms of intrinsic and
extrinsic excitations [14,13].

In addition, it is very important to note that these values do not
depend on the size of the sphere, which is a very different behav-
iour from other geometrical shapes i. e. cylindrical [13].
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Fig. 4. Contributions to the average number of plasmons produced Q ðeÞ
l , Q ðhÞ

l , Q ðehÞ
l and Ql respectively, from the electron, the hole, the interference (electron-hole) and total, for the

values l ¼ 1, 2, 3, 4 and 5; as a function of rh, the radial distance at which the electron-hole pair is created; for an Al sphere of radius 20 au. (w1 nm) and an electron escaping with
v ¼ 4 au. (w108 eV).
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