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We study the colour changes induced by blending in a wormhole-like microlensing sce-
nario with extended sources. The results are compared with those obtained for limb
darkening. We assess the possibility of an actual detection of the colour curve using the
difference image analysis method.

1. Introduction

This paper continues our study on the possible observational effects that struts
of negative masses would produce if they are isolated in space.1 Since wormhole
structures require the violation of some of the most sensitive energy conditions at
the wormhole throat, wormholes are natural candidates — if they exist at all — for
stellar size negative mass objects. Different wormhole solutions have been presented
in the literature after the leading work of Morris and Thorne2 (see for example
Ref. 3). Many of these solutions actually present a negative energy density and
open the possibility of having a total negative mass. However, only a few works deal
with the problem of developing observational tests for the existence of wormhole-
like objects. Our aim in the present series of papers is to turn the speculation on
macroscopic amounts of negative masses into an experimental question, one whose
answer could be reached by current astrophysical observations.
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In a recent paper,4 we have studied the gravitational microlensing scenario that
a negative mass point lens would produce over an extended source. This allowed us
to present more realistic light curves for wormhole microlensing events than those
obtained earlier by Cramer et al.5 Using the formalism introduced in Ref. 6, we
computed the effects of a finite source extent on the spectral features of microlens-
ing. We showed that limb darkening of the intensity distribution on a stellar source
induces specific chromaticity effects that are very different from what is expected
in the positive mass lens case. The possibility of using multi-colour optical observa-
tions to search for galactic or inter-galactic natural wormhole-like objects was then
foreseen.

Detection of the extended source effects from colour measurements, instead of
single band photometry, is interesting because of two facts (see Ref. 7 for further
discussion). Firstly, by detecting the colour curves the extended nature of the source
is revealed: if the source approaches very close to the lens caustics but do not
cross them, the induced amplification can always be mimicked by changes in the
lensing parameters of a point-like object. By contrast, the colour curves cannot
be mimicked by any such changes: a point source lensing event should always be
achromatic. Secondly, the colour curve allows one to measure the lens proper motion
quite easily, without the need of fitting the entire light curve.

However, measurements of the colour curve can actually be hampered by light
blending caused from nearby and background sources, which also causes chromatic-
ity effects. Han et al.6 have demonstrated that even for a small fraction (less than
2%) of blended light, the colour changes caused by blending can be equivalent in
magnitude to those caused by limb-darkening. Therefore, in order to get predic-
tions for a colour curve, it is essential to take blending into account, and to remove,
somehow, its effects.

In this paper we shall analyze the chromaticity effects produced, in the case of a
wormhole-like microlensing event, by blending of other stars. In addition, we shall
estimate the likelihood of carrying out an actual observation of the colour curves
using the difference image analysis method within current technological capabilities.

2. A Brief Summary of Microlensing Formulae

The amplification produced by gravitational lensing of a point source is given by5

A0 =
B2

0 ± 2
B0

√
B2

0 ± 4
, (1)

where the plus sign corresponds to positive mass and the minus sign to negative
mass lensing, and B0 = b0/RE is the lens-source separation in units of the Einstein
radius RE,

RE =

√
4G|M |
c2

DolDls

Dos
. (2)
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As usual, Dos is the observer-source distance, Dol is the observer-lens distance,
Dls is the lens-source distance, and M the mass of the gravitational lens. For an
extended circular source, instead, the light curve is given by4

A =

∫ 2π

0

∫ r∗
0 I(r, ϕ)A0(r, ϕ)r dr dϕ∫ 2π

0

∫ r∗
0
I(r, ϕ)r dr dϕ

. (3)

Here, (r, ϕ) are polar coordinates in a reference frame placed in the center of the star,
r∗ is the radius of the source, and I(r, ϕ) is its surface intensity distribution. For a
radially symmetric distribution, the previous expression transforms into (defining
the dimensionless radius R = r/RE)

A =

∫ 2π

0

∫ R∗
0 I(R)A0(R,ϕ)RdRdϕ

2π
∫ R∗

0 I(R)RdR
, (4)

where R∗ = r∗/RE is the dimensionless radius of the star. If the lens is moving with
constant velocity v, the lens-source separation (in units of the Einstein radius) is
given by

B(T ) =
b(t)
RE

=
√

(B0 +R sinϕ)2 + (−T +R cosϕ)2 , (5)

where T = vt/RE (see Ref. 4 for a helpful plot and further details). Replacing B0 in
Eq. (1) by its time-dependent partner, B(T ), and using this expression in Eq. (4),
we arrive, for a given intensity distribution I(R), at the light curves produced by
lensing in an extended source case.

3. Blending

The obscuration of the intensity profile of a star towards its border is known as
limb darkening. An extended source microlensing event becomes chromatic as a
consequence of this effect, see for instance Ref. 6. The colour change caused by
limb darkening of the source star can be computed using6

∆(mν2 −mν1) = −2.5 log
(
Aν2

Aν1

)
, (6)

where Aν1 and Aν2 are the amplifications in two different wavelength bands, ν1 and
ν2. For the intensity profile we shall take, in terms of the radius R, and as in Refs. 4
and 6,

Iν(R) = 1− Cν

1−

√
1−

(
R

R∗

)2
 , (7)

with the limb-darkening coefficients Cν1 = 0.503, Cν2 = 1.050 corresponding to the
I and U bands of a K-giant with Teff = 4750 K.

But the light curve of a microlensing event can also be chromatic by another
effect: blending. Basically, the light flux of a source star can be affected by blended
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light of other unresolved stars, having themselves different colours, what results in
a change of the colour curve. If we consider both effects at the same time, limb
darkening and blending, the so generated colour curve was recently computed by
Han et al.7 to be

∆(mν2 −mν1) = −2.5 log

[(
Aν2 + fν2

Aν1 + fν1

)(
1 + fν2

1 + fν1

)−1
]
, (8)

where fνi are the fractions of the blended light in the individual wavelength bands.
These fractions depend on the specific situation and will be different for different
backgrounds. The colour changes due only to the blending effect will be the dif-
ference between the colour curve of the limb darkening event affected by blending
[Eq. (8)] and the colour curve for limb darkening alone [given in Eq. (6) and Ref. 4].
To ease the comparison with the standard (i.e. positive mass) case, we shall adopt
the blending coefficients as fU = 1.39% and fI = 1.04%, and a source star with
radius R∗ = 0.1.7 Our new results, including the effect of blending, and for different
impact parameters k = b0/r∗ = B0/R∗, are shown in Figs. 1 and 2.

The colour curves without blending present an umbra region in the negative
lensing case (no light reaches the observer) when the impact parameter is small
(k < 20).4 Considering blending, instead, we now discover that this umbra is no
longer present, but rather that there is a “plateau” [∆(U−I) ≈ −0.31] in the colour
curves, produced only by the blended light. This plateau is not directly shown in
the figures in order to show the detail in the upper portion of the colour curve. This
new effect has important implications in the full colour curves, as Fig. 2 shows.

In the case of an ordinary lens, the colour curves affected by blending are very
similar to the photometric ones, see Ref. 4 for a comparison. We see that as it
gets closer to the star, the colour of the observed source becomes redder due to
the differential amplification of the coldest regions. When the lens transits towards
the star interior, the hot center starts to dominate the amplification, producing a
dramatic change in the slope.

For the limb darkening colour curve (dash curve in Fig. 2), the spectral changes
start long before than in the standard situation. Initially, the source also becomes
redder and then experiences a switch when shorter wavelengths begin to dominate.
Contrary to what happens with positive masses, the spectral trend changes again,
with the source appearing colder and colder until it vanishes in the umbra during
the transit. When the source is seen again, the inverse behaviour is observed. If we
now take into account the blending effect as well, the existence of the previously
mentioned plateau, instead of the umbra region, make the colour curve change its
trend again, towards the blue region. During the transit, it is the blended contri-
bution that dominates the colour curve. It makes sense: blending fluxes come from
stars whose light is not deflected by the wormhole-like object, and so the typi-
cal umbra effect is absent. Blending, then, and contrary to the positive mass case
[where the pattern of the colour curve is maintained with only slight changes in
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Fig. 1. Colour changes produced by blending in microlensing events. The number of blended
stars is shown in each curve. (a) Positive lensing, impact parameter k = b0/r∗ = 0.5, (b) negative
lensing, same impact parameter, (c) positive lensing, k = 2, (d) negative lensing, k = 20. The
source star has dimensionless radius R∗ = 0.1.
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(a)

(c)

(b)

(d)

Fig. 2. Full and partial contributions to chromaticity effects in microlensing. The solid line is the
full colour curve of an event affected by blending (two blended stars), the dashed curve represents
the colour curve if the same event is not affected by blending, whereas the dash-dotted curve
gives only the colour changes due to the blending effect. (a) Positive lensing, impact parameter
k = b0/r∗ = 0.5, (b) negative lensing, same impact parameter. The umbra is no longer present,
but rather there is a plateau (∆(U − I) ≈ −0.31), that dominates the umbra region in the colour
curves, produced only by the blended light. This plateau is not shown in the figure in order to

show the detail in the upper portions of the colour curve. (c) Positive lensing, k = 2, (d) negative
lensing, k = 20. The source star has dimensionless radius R∗ = 0.1.
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the actual values for ∆(U − I)], noticeably affects the form of the colour curve in
a wormhole-like microlensing event.

The difference between the negative and the positive colour curves (that we
show for comparison in the same set of figures) continues to be very clear, and
hence, these combined effects allow to distinguish between the different kind of
lenses. We shall now focus on demonstrating that the colour curve can actually be
observed with current technology in typical cases.

4. The DIA Colour Curve

The difference image analysis (DIA) is a method to measure blending-free light
colour variations by subtracting an observed image from a convolved and normalized
reference one. The flux would then be, within DIA,

Fν = Fν,obs − Fν,ref = (Aν − 1)Fν,0 , (9)

where Fν,obs = AνFν,0 +Bν and Fν,ref = Fν,0 +Bν stand for the source star fluxes
measured from the images obtained during the progress of the microlensing event,
and from the reference (unlensed) image, respectively. Bν is the blended flux. Then,
the DIA colour curve is given by7

∆(mν2 −mν1)DIA = −2.5 log

[(
Aν2(t)− 1
Aν1(t)− 1

)(
Aν2(tref)− 1
Aν1(tref)− 1

)−1
]
. (10)

The advantage of measuring this curve, instead of that given by Eq. (8), is that
it does not depend on the blending parameters fν,i (equivalently, Bν,i). We shall
choose tref from the condition

∆(mν2 −mν1)DIA = 0 , (11)

when the reference star suffers no amplification. Basically, tref →∞. Again, we shall
fix our attention to the U and I bands of a K-giant source star with dimensionless
radius R∗ = 0.1 and Teff = 4750 K. The results for positive and negative lensing
with different impact parameters k = b0/r∗ = B0/R∗ are shown in Fig. 3.

Even when the DIA colour curve can have a different form when compared with
that produced only by limb-darkening, they both depend on the same parameters,
Aν1 and Aν2 . Hence, the same information can be extracted from both curves, but
with significantly reduced uncertainties in the DIA case, because of the absence of
blending.

It is interesting to directly compare, then, the DIA colour curve just presented
with the limb-darkening photometric curve presented in Fig. 3b of Ref. 4, or here
in the right panels of Fig. 2, dashed lines. The analytical difference between both
colour curves reduces itself to the replacement

Aν2

Aν1

→ Aν2 − 1
Aν1 − 1

(12)
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(a) (b)

Fig. 3. DIA colour curves. (a) Positive lensing, impact parameter k = b0/r∗ = 0.5 (solid curve)
and k = 2 (dashed curve), (b) negative lensing, k = 0.5 (solid curve) and k = 20 (dashed curve).
The source star has dimensionless radius R∗ = 0.1.

(a) (b)

Fig. 4. (a) Example of the partial evolution of the ratio (Aν2 − 1)/(Aν1 − 1) in the case of
negative mass lensing. (b) DIA colour curve in the same temporal interval. Impact parameter is
k = 0.5, and R∗ = 0.1, for both figures.
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within the logarithm function used in the magnitude definition. This apparently
simple change has, however, large implications for the negative mass colour curve
when k < 20 (b0 < 2RE). In particular, when either Aν1 or Aν2 is less than 1,
but not both, the ratio (Aν2 − 1)/(Aν1 − 1) is less than zero, yielding an undefined
colour change. This happens just before the umbra, when large variations in the
amplification suddenly occur at slightly different times for different frequencies, this
being the reason of the apparent extra cusp in the DIA colour curve. We show the
behaviour of the ratio (Aν2−1)/(Aν1−1) for our two particular frequencies in Fig. 4.

Interestingly, the positive mass DIA curve is completely similar to the photo-
metric one, since there is no time at which Aν1 − 1 and Aν2 − 1 have a different
sign.

The behaviour of the negative DIA colour curve deserves further study. In order
to explore exactly the form of the curve that could actually be measured, we would
need to implement a numerical code with a given binning in time (corresponding
to a given integration time of a telescope). If one of the cusps in the colour curve
is produced only by a single point, we might lose it in the binning process, but we
shall shed some light on the behaviour that could actually be observed. We have
then adapted the numerical code used in Ref. 7 to the case of negative mass lenses.
Figure 5 shows two particular examples obtained with this code. These curves show
the qualitative expected behaviour in its full extent.
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Fig. 5. Negative mass DIA colour curves obtained with a numerical code, by binning the time

interval for an impact parameter k = 10 (a) and 20 (b). (a) presents a break on the x-axis of the
colour curve, where the umbra is located, in order to provide extra details. The source star has
dimensionless radius R∗ = 0.1.
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5. Measuring the DIA Colour Curve

Although the colour changes are usually small, they can be measured within current
technological limitations. Following Han et al.,7 we write the uncertainty in the
determined source star flux as related to the signal-to-noise ratio by

δmν =
δFν,0/Fν,0
0.4 ln 10

=
1.09
S/N

. (13)

Then, the uncertainty in the measured colour is related as well to S/N by

δ[∆(mν2 −mµν1
)DIA] ∼

√
2δmν ∼

1.54
S/N

. (14)

If S/N = 10, δ[∆(mν2−mµν1
)DIA] ∼ 0.15. The signal measured from the subtracted

image is proportional to the source flux variation,

S ∝ (Aν − 1)F0,ν texp , (15)

where texp is the exposure time. The noise comes from the lensed source as well as
from the blended background stars,7

N ∝ [AνF0,ν +B]1/2 t1/2exp , (16)

where B represents the average total flux of unresolved stars within a seeing disc
of radius θseeing. Then, the signal-to-noise ratio is given by

S/N = (Aν − 1)F0,ν

(
texp

AνF0,ν +B

)1/2

. (17)

Since we want to compare our error estimates with those corresponding to a positive
case, we shall assume mutatis mutandis all parameters used in the discussion of the
latter in Sec. 5 of Ref. 7.

Let us first take the source size as 0.07 Einstein radii, and the Einstein time scale
as 67.5/2 days.7 The lensed source is a K-star with I = 14.05 mag. Observations
are assumed to be carried with a 1m-telescope with a CCD camera that can detect
12 photons per second for a I = 20 mag star. The exposure, texp, is considered
variable so as to allow for the measured signal to be ∼ 4× 104 photons, which is in
the range of the linear regime response in modern CCD cameras. Actually,

texp =
4× 104 photons

AνF0,ν
, (18)

and so it will be different for each given magnification. The estimation of B is
done by assuming that blended light comes from stars fainter (i.e. with greater
magnitudes) than the crowding limit, set when the stellar number density reaches
∼ 106 stars deg−2. This number density corresponds to I ∼ 18.1.7 The background
flux is normalized for stars in the seeing disc with θseeing = 2 arcsec. In the case of a
positive lens, the exposure time required to achieve the requested flux of 104 photons
is only about some seconds, and this happens due to the huge magnifications that
the lensing produces (up to 20 times around t = 0).
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Fig. 6. (a) Error estimate in the DIA colour curve for a positive lens, impact parameter k = 0.9
and a source star with radius R = 0.07RE. Other parameters are discussed in the text. (b) Example
of the error estimate in the partial evolution (left of the umbra) of the colour curve for a negative
lens. Lensing parameters are the same as in (a).

In the negative mass lensing situation, the overall presence of the umbra domi-
nates part of the error estimation as well. In particular, for magnification less than
1, the S/N is not well defined, since it becomes negative. But this happens just be-
fore the umbra, for only one point in the binned plot, and do not affect the correct
estimate of the previously rising curve (on the left of the umbra, for instance). In
addition, there is no sense in assigning an error to an absent signal, the umbra. We
find that S/N for the negative case can be around 80, with exposure time slightly
larger than in the positive mass case, of about 8–10 s. This difference is produced
by generically lower values for the magnification, which is of order 1, instead of
the range 10–20 reached in the positive mass situation. In Fig. 6 we show the case
of k = 0.9. Note that the natural scale for microlensing, the Einstein time scale,
represents half the physical time spread in the x-axis of the left panel in Fig. 6.
Then, the negative mass lens has a longer time evolution, since the particular peak
we are showing happens already in a time scale for which almost the complete
microlensing event occurs in the positive mass case. In Fig. 7 we show the cases
of impact parameters k = 10 and k = 20, for which we have previously investi-
gated the colour curve. Interestingly, due to small values of the amplification for
the earliest or the latest times, the error significantly increases in these regions. This
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Fig. 7. Error estimate in the DIA colour curve for negative lenses, impact parameter k = 10
(again showing a break, (a) and 20 (b), and a source star with radius R = 0.1RE.

can be noticed particularly on the right panel of Fig. 7. Overall, it is clear, then,
that within current observational capabilities we could be able to distinguish be-
tween ordinary and exotic lenses, through the analysis of gravitational microlensing
chromatic effects.

At the moment, most of the microlensing experiments do not use the DIA
method in their data analysis. However, this is already beginning to change, see
for instance Ref. 8, and will become a common practice in the near future. If the
microlensing alert systems are adapted to take into account the possible colour
and light curves produced by negative mass lenses, we shall be in position to
make extensive searches — and to establish bounds on the possible existence — of
wormhole-like objects.

6. Concluding Remarks

All theoretical constructions thought to represent features of the real world should
be queried through experimental or observational tests. This process is fundamental
for science. In this paper, we have expanded the formalism for wormhole-like grav-
itational microlensing of extended sources by including the analysis of the effects
of blending. Having so constructed a complete colour curve, taking into account
the effects of limb darkening as well, we analyzed the possibilities for an actual
detection of chromaticity effects.
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Struts of negative masses, if they exist at all, will be detected through the
effects they produce upon the light coming from distant sources. If a consistent
lensing survey yields a negative result, we could then set empirical constraints from
a statistical point of view to the amount of negative mass in the universe.
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